SCIENTIFIC PUBLICATIONS

You are researching: University Children's Hospital Zurich
Matching entries: 2 /2
All Groups
AUTHOR Dominika Zielinska and Philipp Fisch and Ueli Moehrlen and Sergio Finkielsztein and Thomas Linder and Marcy Zenobi-Wong and Thomas Biedermann and Agnes S. Klar
Title Combining bioengineered human skin with bioprinted cartilage for ear reconstruction [Abstract]
Year 2023
Journal/Proceedings Science Advances
Reftype
DOI/URL DOI
Abstract
Microtia is a congenital disorder that manifests as a malformation of the external ear leading to psychosocial problems in affected children. Here, we present a tissue-engineered treatment approach based on a bioprinted autologous auricular cartilage construct (EarCartilage) combined with a bioengineered human pigmented and prevascularized dermo-epidermal skin substitute (EarSkin) tested in immunocompromised rats. We confirmed that human-engineered blood capillaries of EarSkin connected to the recipient’s vasculature within 1 week, enabling rapid blood perfusion and epidermal maturation. Bioengineered EarSkin displayed a stratified epidermis containing mature keratinocytes and melanocytes. The latter resided within the basal layer of the epidermis and efficiently restored the skin color. Further, in vivo tests demonstrated favorable mechanical stability of EarCartilage along with enhanced extracellular matrix deposition. In conclusion, EarCartilage combined with EarSkin represents a novel approach for the treatment of microtia with the potential to circumvent existing limitations and improve the aesthetic outcome of microtia reconstruction. A therapy for microtia patients utilizes bioprinted auricular cartilage combined with a tissue-engineered skin graft.
AUTHOR Pontiggia, Luca and Hengel, Ingmar A.J. Van and Klar, Agnes and Rütsche, Dominic and Nanni, Monica and Scheidegger, Andreas and Figi, Sandro and Reichmann, Ernst and Moehrlen, Ueli and Biedermann, Thomas
Title Bioprinting and plastic compression of large pigmented and vascularized human dermo-epidermal skin substitutes by means of a new robotic platform [Abstract]
Year 2022
Journal/Proceedings Journal of Tissue Engineering
Reftype
DOI/URL URL DOI
Abstract
Extensive availability of engineered autologous dermo-epidermal skin substitutes (DESS) with functional and structural properties of normal human skin represents a goal for the treatment of large skin defects such as severe burns. Recently, a clinical phase I trial with this type of DESS was successfully completed, which included patients own keratinocytes and fibroblasts. Yet, two important features of natural skin were missing: pigmentation and vascularization. The first has important physiological and psychological implications for the patient, the second impacts survival and quality of the graft. Additionally, accurate reproduction of large amounts of patient’s skin in an automated way is essential for upscaling DESS production. Therefore, in the present study, we implemented a new robotic unit (called SkinFactory) for 3D bioprinting of pigmented and pre-vascularized DESS using normal human skin derived fibroblasts, blood- and lymphatic endothelial cells, keratinocytes, and melanocytes. We show the feasibility of our approach by demonstrating the viability of all the cells after printing in vitro, the integrity of the reconstituted capillary network in vivo after transplantation to immunodeficient rats and the anastomosis to the vascular plexus of the host. Our work has to be considered as a proof of concept in view of the implementation of an extended platform, which fully automatize the process of skin substitution: this would be a considerable improvement of the treatment of burn victims and patients with severe skin lesions based on patients own skin derived cells.