SCIENTIFIC PUBLICATIONS

You are researching: Titanium Carbide
Matching entries: 3 /3
All Groups
AUTHOR Li, Jianfeng and Hashemi, Payam and Liu, Tianyi and Dang, Ka My and Brunk, Michael G. K. and Mu, Xin and Nia, Ali Shaygan and Sacher, Wesley D. and Feng, Xinliang and Poon, Joyce K. S.
Title 3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation [Abstract]
Year 2024
Journal/Proceedings Communications Materials
Reftype Li2024
DOI/URL DOI
Abstract
The exploration of neural circuitry is paramount for comprehending the computational mechanisms and physiology of the brain. Despite significant advances in materials and fabrication techniques, controlling neuronal connectivity and response in 3D remains a formidable challenge. Here, we introduce a method for engineering the growth of 3D neural circuits with the capability for optical stimulation. We fabricate bioactive interfaces by melt electrospinning writing (MEW) 3D polycaprolactone (PCL) scaffolds followed by coating with titanium carbide (Ti3C2Tx MXene). Beyond enhancing hydrophilicity, cell adhesion, and electrical conductivity, the Ti3C2Tx MXene coating enables optocapacitance-based neuronal stimulation, induced by localized temperature increases upon illumination. This approach offers a pathway for additive manufacturing of neural tissues endowed with optical control, facilitating functional tissue engineering and neural circuit computation.
AUTHOR Liu, Guangde and Yu, Rongrong and Liu, Dong and Xia, Yuanhua and Pei, Xiaoyuan and Wang, Wei and Min, Chunying and Liu, Shengkai and Shao, Ruiqi and Xu, Zhiwei
Title 3D-printed TiO2-Ti3C2Tx heterojunction/rGO/PDMS composites with gradient pore size for electromagnetic interference shielding and thermal management [Abstract]
Year 2022
Journal/Proceedings Composites Part A: Applied Science and Manufacturing
Reftype
DOI/URL URL DOI
Abstract
In this paper, the Ti3C2Tx/GO frame with vertical pore gradient is constructed by using 3D printing technology. The TiO2-Ti3C2Tx heterojunctions is generated in situ by thermal annealing to control the oxidation of 3D frames. TiO2-Ti3C2Tx/rGO/PDMS composites with high EMI SE and excellent thermal management performance are assembled by curing the annealed 3D frame with polydimethylsiloxane (PDMS). Notably, the composites have a unique multilayer-scale structure that rod-shaped TiO2 particles are decorated on Ti3C2Tx substrate and TiO2-Ti3C2Tx/rGO stack to form an amorphous porous gradient pore size structure. The effect of gradient pore size on EMI SE of composites is studied by simulation. Under the synergistic effect of multiple loss mechanism, the designed composites show conductivity of up to 173.1 S/m, the thickness of the composite is 2 mm and the density is 67mg/cm3, which shows excellent EMI SE of 58 dB. The composites also have excellent thermal management performance.
AUTHOR Huang, Benzhao and Li, Shishuo and Dai, Shimin and Lu, Xiaoqing and Wang, Peng and Li, Xiao and Zhao, Zhibo and Wang, Qian and Li, Ningbo and Wen, Jie and Liu, Yifang and Wang, Xin and Man, Zhentao and Li, Wei and Liu, Bing
Title Ti3C2Tx MXene-Decorated 3D-Printed Ceramic Scaffolds for Enhancing Osteogenesis by Spatiotemporally Orchestrating Inflammatory and Bone Repair Responses [Abstract]
Year 2024
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Inflammatory responses play a central role in coordinating biomaterial-mediated tissue regeneration. However, precise modulation of dynamic variations in microenvironmental inflammation post-implantation remains challenging. In this study, the traditional β-tricalcium phosphate-based scaffold is remodeled via ultrathin MXene-Ti3C2 decoration and Zn2+/Sr2+ ion-substitution, endowing the scaffold with excellent reactive oxygen species-scavenging ability, near-infrared responsivity, and enhanced mechanical properties. The induction of mild hyperthermia around the implant via periodic near-infrared irradiation facilitates spatiotemporal regulation of inflammatory cytokines secreted by a spectrum of macrophage phenotypes. The process initially amplifies the pro-inflammatory response, then accelerates M1-to-M2 macrophage polarization transition, yielding a satisfactory pattern of osteo-immunomodulation during the natural bone healing process. Later, sustained release of Zn2+/Sr2+ ions with gradual degradation of the 3D scaffold maintains the favorable reparative M2-dominated immunological microenvironment that supports new bone mineralization. Precise temporal immunoregulation of the bone healing process by the intelligent 3D scaffold enhances bone regeneration in a rat cranial defect model. This strategy paves the way for the application of β-tricalcium phosphate-based materials to guide the dynamic inflammatory and bone tissue responses toward a favorable outcome, making clinical treatment more predictable and durable. The findings also demonstrate that near-infrared irradiation-derived mild hyperthermia is a promising method of immunomodulation.