SCIENTIFIC PUBLICATIONS

You are researching: Dental Pulp Stem Cells (DPSCs)
Matching entries: 4 /4
All Groups
AUTHOR Salar Amoli, Mehdi and Anand, Resmi and EzEldeen, Mostafa and Geris, Liesbet and Jacobs, Reinhilde and Bloemen, Veerle
Title Development of 3D Printed pNIPAM-Chitosan Scaffolds for Dentoalveolar Tissue Engineering [Abstract]
Year 2024
Journal/Proceedings Gels
Reftype
DOI/URL URL DOI
Abstract
While available treatments have addressed a variety of complications in the dentoalveolar region, associated challenges have resulted in exploration of tissue engineering techniques. Often, scaffold biomaterials with specific properties are required for such strategies to be successful, development of which is an active area of research. This study focuses on the development of a copolymer of poly (N-isopropylacrylamide) (pNIPAM) and chitosan, used for 3D printing of scaffolds for dentoalveolar regeneration. The synthesized material was characterized by Fourier transform infrared spectroscopy, and the possibility of printing was evaluated through various printability tests. The rate of degradation and swelling was analyzed through gravimetry, and surface morphology was characterized by scanning electron microscopy. Viability of dental pulp stem cells seeded on the scaffolds was evaluated by live/dead analysis and DNA quantification. The results demonstrated successful copolymerization, and three formulations among various synthesized formulations were successfully 3D printed. Up to 35% degradability was confirmed within 7 days, and a maximum swelling of approximately 1200% was achieved. Furthermore, initial assessment of cell viability demonstrated biocompatibility of the developed scaffolds. While further studies are required to achieve the tissue engineering goals, the present results tend to indicate that the proposed hydrogel might be a valid candidate for scaffold fabrication serving dentoalveolar tissue engineering through 3D printing.
AUTHOR Li, Huihua and Chen, Shangsi and Dissanayaka, Waruna Lakmal and Wang, Min
Title Gelatin Methacryloyl/Sodium Alginate/Cellulose Nanocrystal Inks and 3D Printing for Dental Tissue Engineering Applications [Abstract]
Year 2024
Journal/Proceedings ACS Omega
Reftype
DOI/URL DOI
Abstract
In tissue engineering, developing suitable printing inks for fabricating hydrogel scaffolds via 3D printing is of high importance and requires extensive investigation. Currently, gelatin methacryloyl (GelMA)-based inks have been widely used for the construction of 3D-printed hydrogel scaffolds and cell-scaffold constructs for human tissue regeneration. However, many studies have shown that GelMA inks at low polymer concentrations had poor printability, and printed structures exhibited inadequate fidelity. In the current study, new viscoelastic inks composed of gelatin methacryloyl (GelMA), sodium alginate (Alg), and cellulose nanocrystal (CNC) were formulated and investigated, with CNC being used to improve the printability of inks and the fidelity of printed hydrogel structures and Alg being used to form ionically cross-linking polymer networks to enhance the mechanical strength of printed hydrogel structures. Rheological results showed that GelMA/Alg/CNC inks with different Alg-to-CNC ratios possessed good shear-thinning behavior, indicating that GelMA/Alg/CNC inks were suitable for 3D printing. The quantitative evaluation of printability and fidelity showed that a high concentration of CNC improved the printability of GelMA/Alg/CNC inks and concurrently promoted the fidelity of printed GelMA/Alg/CNC hydrogels. On the other hand, compression tests showed that a high concentration of Alg could enhance the mechanical strength of GelMA/Alg/CNC hydrogels due to the increase in cross-link density. Furthermore, GelMA/Alg/CNC hydrogels exhibited good biocompatibility and could promote the proliferation of human dental pulp stem cells (hDPSCs), suggesting their great potential in dental tissue engineering.
AUTHOR Salar Amoli, Mehdi and Anand, Resmi and EzEldeen, Mostafa and Amorim, Paulo Alexandre and Geris, Liesbet and Jacobs, Reinhilde and Bloemen, Veerle
Title The development of a 3D printable chitosan-based copolymer with tunable properties for dentoalveolar regeneration [Abstract]
Year 2022
Journal/Proceedings Carbohydrate Polymers
Reftype
DOI/URL URL DOI
Abstract
Dentoalveolar tissue engineering is an emerging yet challenging field, considering the lack of suitable materials and difficulty to produce patient-specific hydrogel scaffolds. The present paper aims to produce a 3D printable and tuneable biomaterial by copolymerizing a synthesized water-soluble chitosan derivative called maleic anhydride grafted chitosan (MA-C) with gelatin using genipin, a natural crosslinking agent. Development and testing of this material for 3D printing, degradation, and swelling demonstrated the ability to fabricate scaffolds with controlled physical properties based on pre-determined designs. The MA-C-gelatin copolymer demonstrated excellent biocompatibility, which was verified by analyzing the viability, growth and proliferation of human dental pulp stem cells seeded on MA-C-gelatin constructs through live/dead, alamar blue and DNA quantification assays. Based on the present findings, the proposed material might be a suitable candidate for dentoalveolar tissue engineering, while further research is required to achieve this goal.
AUTHOR Dubey, Nileshkumar and Ferreira, Jessica A. and Malda, Jos and Bhaduri, Sarit B. and Bottino, Marco C.
Title Extracellular Matrix/Amorphous Magnesium Phosphate Bioink for 3D Bioprinting of Craniomaxillofacial Bone Tissue [Abstract]
Year 2020
Journal/Proceedings ACS Applied Materials & Interfaces
Reftype
DOI/URL DOI
Abstract
Bioprinting, a promising field in regenerative medicine, holds great potential to create three-dimensional, defect-specific vascularized bones with tremendous opportunities to address unmet craniomaxillofacial reconstructive challenges. A cytocompatible bioink is a critical prerequisite to successfully regenerate functional bone tissue. Synthetic self-assembling peptides have a nanofibrous structure resembling the native extracellular matrix (ECM), making them an excellent bioink component. Amorphous magnesium phosphates (AMPs) have shown greater levels of resorption while maintaining high biocompatibility, osteoinductivity, and low inflammatory response, as compared to their calcium phosphate counterparts. Here, we have established a novel bioink formulation (ECM/AMP) that combines an ECM-based hydrogel containing 2% octapeptide FEFEFKFK and 98% water with AMP particles to realize high cell function with desirable bioprintability. We analyzed the osteogenic differentiation of dental pulp stem cells (DPSCs) encapsulated in the bioink, as well as in vivo bone regeneration, to define the potential of the formulated bioink as a growth factor-free bone-forming strategy. Cell-laden AMP-modified bioprinted constructs showed an improved cell morphology but similar cell viability (∼90%) compared to their AMP-free counterpart. In functional assays, the cell-laden bioprinted constructs modified with AMP exhibited a high level of mineralization and osteogenic gene expression without the use of growth factors, thus suggesting that the presence of AMP-triggered DPSCs’ osteogenic differentiation. Cell-free ECM-based bioprinted constructs were implanted in vivo. In comparison with the ECM group, bone volume per total volume for ECM/1.0AMP was approximately 1.7- and 1.4-fold higher at 4 and 8 weeks, respectively. Further, a significant increase in the bone density was observed in ECM/1.0AMP from 4 to 8 weeks. These results demonstrate that the presence of AMP in the bioink significantly increased bone formation, thus showing promise for in situ bioprinting strategies. We foresee significant potential in translating this innovative bioink toward the regeneration of patient-specific bone tissue for regenerative dentistry. Bioprinting, a promising field in regenerative medicine, holds great potential to create three-dimensional, defect-specific vascularized bones with tremendous opportunities to address unmet craniomaxillofacial reconstructive challenges. A cytocompatible bioink is a critical prerequisite to successfully regenerate functional bone tissue. Synthetic self-assembling peptides have a nanofibrous structure resembling the native extracellular matrix (ECM), making them an excellent bioink component. Amorphous magnesium phosphates (AMPs) have shown greater levels of resorption while maintaining high biocompatibility, osteoinductivity, and low inflammatory response, as compared to their calcium phosphate counterparts. Here, we have established a novel bioink formulation (ECM/AMP) that combines an ECM-based hydrogel containing 2% octapeptide FEFEFKFK and 98% water with AMP particles to realize high cell function with desirable bioprintability. We analyzed the osteogenic differentiation of dental pulp stem cells (DPSCs) encapsulated in the bioink, as well as in vivo bone regeneration, to define the potential of the formulated bioink as a growth factor-free bone-forming strategy. Cell-laden AMP-modified bioprinted constructs showed an improved cell morphology but similar cell viability (∼90%) compared to their AMP-free counterpart. In functional assays, the cell-laden bioprinted constructs modified with AMP exhibited a high level of mineralization and osteogenic gene expression without the use of growth factors, thus suggesting that the presence of AMP-triggered DPSCs’ osteogenic differentiation. Cell-free ECM-based bioprinted constructs were implanted in vivo. In comparison with the ECM group, bone volume per total volume for ECM/1.0AMP was approximately 1.7- and 1.4-fold higher at 4 and 8 weeks, respectively. Further, a significant increase in the bone density was observed in ECM/1.0AMP from 4 to 8 weeks. These results demonstrate that the presence of AMP in the bioink significantly increased bone formation, thus showing promise for in situ bioprinting strategies. We foresee significant potential in translating this innovative bioink toward the regeneration of patient-specific bone tissue for regenerative dentistry.