SCIENTIFIC PUBLICATIONS

You are researching: Chiao Tung University
Matching entries: 2 /2
All Groups
AUTHOR Yu, Hao-Cheng and Hsieh, Kun-Liang and Hirai, Tomoyasu and Li, Ming-Chia
Title Dynamics of Nanocomposite Hydrogel Alignment during 3D Printing to Develop Tissue Engineering Technology [Abstract]
Year 2023
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
Abstract
Taking inspiration from spider silk protein spinning, we developed a method to produce tough filaments using extrusion-based 3D bioprinting and salting-out of the protein. To enhance both stiffness and ductility, we have designed a blend of partially crystalline, thermally sensitive natural polymer gelatin and viscoelastic G-polymer networks, mimicking the components of spider silk. Additionally, we have incorporated inorganic nanoparticles as a rheological modifier to fine-tune the 3D printing properties. This self-healing nanocomposite hydrogel exhibits exceptional mechanical properties, biocompatibility, shear thinning behavior, and a well-controlled gelation mechanism for 3D printing.
AUTHOR Huang, Yun-An and Ho, Chris T. and Lin, Yu-Hsuan and Lee, Chen-Ju and Ho, Szu-Mo and Li, Ming-Chia and Hwang, Eric
Title Nanoimprinted Anisotropic Topography Preferentially Guides Axons and Enhances Nerve Regeneration [Abstract]
Year 2018
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI
Abstract
Abstract Surface topography has a profound effect on the development of the nervous system, such as neuronal differentiation and morphogenesis. While the interaction of neurons and the surface topography of their local environment is well characterized, the neuron–topography interaction during the regeneration process remains largely unknown. To address this question, an anisotropic surface topography resembling linear grooves made from poly(ethylene-vinyl acetate) (EVA), a soft and biocompatible polymer, using nanoimprinting, is established. It is found that neurons from both the central and peripheral nervous system can survive and grow on this grooved surface. Additionally, it is observed that axons but not dendrites specifically align with these grooves. Furthermore, it is demonstrated that neurons on the grooved surface are capable of regeneration after an on-site injury. More importantly, these injured neurons have an accelerated and enhanced regeneration. Together, the data demonstrate that this anisotropic topography guides axon growth and improves axon regeneration. This opens up the possibility to study the effect of surface topography on regenerating axons and has the potential to be developed into a medical device for treating peripheral nerve injuries.