SCIENTIFIC PUBLICATIONS

You are researching: Cell Type
Matching entries: 394 /394
All Groups
AUTHOR Li, Jianfeng and Hashemi, Payam and Liu, Tianyi and Dang, Ka My and Brunk, Michael G. K. and Mu, Xin and Nia, Ali Shaygan and Sacher, Wesley D. and Feng, Xinliang and Poon, Joyce K. S.
Title 3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation [Abstract]
Year 2024
Journal/Proceedings Communications Materials
Reftype Li2024
DOI/URL DOI
Abstract
The exploration of neural circuitry is paramount for comprehending the computational mechanisms and physiology of the brain. Despite significant advances in materials and fabrication techniques, controlling neuronal connectivity and response in 3D remains a formidable challenge. Here, we introduce a method for engineering the growth of 3D neural circuits with the capability for optical stimulation. We fabricate bioactive interfaces by melt electrospinning writing (MEW) 3D polycaprolactone (PCL) scaffolds followed by coating with titanium carbide (Ti3C2Tx MXene). Beyond enhancing hydrophilicity, cell adhesion, and electrical conductivity, the Ti3C2Tx MXene coating enables optocapacitance-based neuronal stimulation, induced by localized temperature increases upon illumination. This approach offers a pathway for additive manufacturing of neural tissues endowed with optical control, facilitating functional tissue engineering and neural circuit computation.
AUTHOR Tung, Yen-Ting and Chen, Yu-Chi and Derr, Kristy and Wilson, Kelli and Song, Min Jae and Ferrer, Marc
Title A 3D Bioprinted Human Neurovascular Unit Model of Glioblastoma Tumor Growth [Abstract]
Year 2024
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract A 3D bioprinted neurovascular unit (NVU) model was developed to study glioblastoma (GBM) tumor growth in a brain-like microenvironment. The NVU model included human primary astrocytes, pericytes and brain microvascular endothelial cells, and patient-derived glioblastoma cells (JHH-520) were used for this study. We used fluorescence reporters with confocal high content imaging to quantitate real-time microvascular network formation and tumor growth. Extensive validation of the NVU-GBM model included immunostaining for brain relevant cellular markers and extracellular matrix components; single cell RNA sequencing to establish physiologically relevant transcriptomics changes; and secretion of NVU and GBM-relevant cytokines. The scRNAseq revealed changes in gene expression and cytokines secretion associated with wound healing/angiogenesis, including the appearance of an endothelial mesenchymal transition (EndMT) cell population. The NVU-GBM model was used to test 18 chemotherapeutics and anti-cancer drugs to assess the pharmacological relevance of the model and robustness for high throughput screening. This article is protected by copyright. All rights reserved
AUTHOR Barceló, Xavier and Eichholz, Kian F. and Gonçalves, Inês F. and Garcia, Orquidea and Kelly, Daniel J.
Title Bioprinting of structurally organized meniscal tissue within anisotropic melt electrowritten scaffolds [Abstract]
Year 2023
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
The meniscus is characterised by an anisotropic collagen fibre network which is integral to its biomechanical functionality. The engineering of structurally organized meniscal grafts that mimic the anisotropy of the native tissue remains a significant challenge. In this study, inkjet bioprinting was used to deposit a cell-laden bioink into additively manufactured scaffolds of differing architectures to engineer fibrocartilage grafts with user defined collagen architectures. Polymeric scaffolds consisting of guiding fibre networks with varying aspect ratios (1:1; 1:4; 1:16) were produced using either fused deposition modelling (FDM) or melt electrowriting (MEW), resulting in scaffolds with different internal architectures and fibre diameters. Scaffold architecture was found to influence the spatial organization of the collagen network laid down by the jetted cells, with higher aspect ratios (1:4 and 1:16) supporting the formation of structurally anisotropic tissues. The MEW scaffolds supported the development of a fibrocartilaginous tissue with compressive mechanical properties similar to that of native meniscus, while the anisotropic tensile properties of these constructs could be tuned by altering the fibre network aspect ratio. This MEW framework was then used to generate scaffolds with spatially distinct fibre patterns, which in turn supported the development of heterogenous tissues consisting of isotropic and anisotropic collagen networks. Such bioprinted tissues could potentially form the basis of new treatment options for damaged and diseased meniscal tissue. Statement of significance This study describes a multiple tool biofabrication strategy which enables the engineering of spatially organized fibrocartilage tissues. The architecture of MEW scaffolds can be tailored to not only modulate the directionality of the collagen fibres laid down by cells, but also to tune the anisotropic tensile mechanical properties of the resulting constructs, thereby enabling the engineering of biomimetic meniscal-like tissues. Furthermore, the inherent flexibility of MEW enables the development of zonally defined and potentially patient-specific implants.
AUTHOR Golafshan, Nasim and Castilho, Miguel and Daghrery, Arwa and Alehosseini, Morteza and van de Kemp, Tom and Krikonis, Konstantinos and de Ruijter, Mylene and Dal-Fabbro, Renan and Dolatshahi-Pirouz, Alireza and Bhaduri, Sarit B. and Bottino, Marco C. and Malda, Jos
Title Composite Graded Melt Electrowritten Scaffolds for Regeneration of the Periodontal Ligament-to-Bone Interface
Year 2023
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
AUTHOR Ainsworth, Madison Jade and Chirico, Nino and de Ruijter, Mylène and Hrynevich, Andrei and Dokter, Inge and Sluijter, Joost P. G. and Malda, Jos and van Mil, Alain and Castilho, Miguel
Title Convergence of melt electrowriting and extrusion-based bioprinting for vascular patterning of a myocardial construct [Abstract]
Year 2023
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
To progress cardiac tissue engineering strategies closer to the clinic, thicker constructs are required to meet the functional need following a cardiac event. Consequently, pre-vascularization of these constructs needs to be investigated to ensure survival and optimal performance of implantable engineered heart tissue. The aim of this research is to investigate the potential of combining extrusion-based bioprinting (EBB) and melt electrowriting for the fabrication of a myocardial construct with a precisely patterned pre-vascular pathway. Gelatin methacryloyl (GelMA) was investigated as a base hydrogel for the respective myocardial and vascular bioinks with collagen, Matrigel and fibrinogen as interpenetrating polymers to support myocardial functionality. Subsequently, extrusion-based printability and viability were investigated to determine the optimal processing parameters for printing into melt electrowritten meshes. Finally, an anatomically inspired vascular pathway was implemented in a dual EBB set-up into melt electrowritten meshes, creating a patterned pre-vascularized myocardial construct. It was determined that a blend of 5% GelMA and 0.8 mg·ml−1 collagen with a low crosslinked density was optimal for myocardial cellular arrangement and alignment within the constructs. For the vascular fraction, the optimized formulation consisted of 5% GelMA, 0.8 mg·ml−1 collagen and 1 mg·ml−1 fibrinogen with a higher crosslinked density, which led to enhanced vascular cell connectivity. Printability assessment confirmed that the optimized bioinks could effectively fill the microfiber mesh while supporting cell viability (∼70%). Finally, the two bioinks were applied using a dual EBB system for the fabrication of a pre-vascular pathway with the shape of a left anterior descending artery within a myocardial construct, whereby the distinct cell populations could be visualized in their respective patterns up to D14. This research investigated the first step towards developing a thick engineered cardiac tissue construct in which a pre-vascularization pathway is fabricated within a myocardial construct.
AUTHOR Gerardo Cedillo-Servin and Ana Filipa Louro and Beatriz Gamelas and Ana Meliciano and Anne Zijl and Paula M. Alves and Jos Malda and Margarida Serra and Miguel Castilho
Title Microfiber-reinforced hydrogels prolong the release of human induced pluripotent stem cell-derived extracellular vesicles to promote endothelial migration [Abstract]
Year 2023
Journal/Proceedings Biomaterials Advances
Reftype
DOI/URL URL DOI
Abstract
Extracellular vesicle (EV)-based approaches for promoting angiogenesis have shown promising results. Yet, further development is needed in vehicles that prolong EV exposure to target organs. Here, we hypothesized that microfiber-reinforced gelatin methacryloyl (GelMA) hydrogels could serve as sustained delivery platforms for human induced pluripotent stem cell (hiPSC)-derived EV. EV with 50–200 nm size and typical morphology were isolated from hiPSC-conditioned culture media and tested negative for common co-isolated contaminants. hiPSC-EV were then incorporated into GelMA hydrogels with or without a melt electrowritten reinforcing mesh. EV release was found to increase with GelMA concentration, as 12 % (w/v) GelMA hydrogels provided higher release rate and total release over 14 days in vitro, compared to lower hydrogel concentrations. Release profile modelling identified diffusion as a predominant release mechanism based on a Peppas-Sahlin model. To study the effect of reinforcement-dependent hydrogel mechanics on EV release, stress relaxation was assessed. Reinforcement with highly porous microfiber meshes delayed EV release by prolonging hydrogel stress relaxation and reducing the swelling ratio, thus decreasing the initial burst and overall extent of release. After release from photocrosslinked reinforced hydrogels, EV remained internalizable by human umbilical vein endothelial cells (HUVEC) over 14 days, and increased migration was observed in the first 4 h. EV and RNA cargo stability was investigated at physiological temperature in vitro, showing a sharp decrease in total RNA levels, but a stable level of endothelial migration-associated small noncoding RNAs over 14 days. Our data show that hydrogel formulation and microfiber reinforcement are superimposable approaches to modulate EV release from hydrogels, thus depicting fiber-reinforced GelMA hydrogels as tunable hiPSC-EV vehicles for controlled release systems that promote endothelial cell migration.
AUTHOR de Ruijter, Mylène and Diloksumpan, Paweena and Dokter, Inge and Brommer, Harold and Smit, Ineke H. and Levato, Riccardo and van Weeren, P. René and Castilho, Miguel and Malda, Jos
Title Orthotopic equine study confirms the pivotal importance of structural reinforcement over the pre-culture of cartilage implants [Abstract]
Year 2023
Journal/Proceedings Bioengineering & Translational Medicine
Reftype
DOI/URL DOI
Abstract
Abstract In articular cartilage (AC), the collagen arcades provide the tissue with its extraordinary mechanical properties. As these structures cannot be restored once damaged, functional restoration of AC defects remains a major challenge. We report that the use of a converged bioprinted, osteochondral implant, based on a gelatin methacryloyl cartilage phase, reinforced with precisely patterned melt electrowritten polycaprolactone micrometer-scale fibers in a zonal fashion, inspired by native collagen architecture, can provide long-term mechanically stable neo-tissue in an orthotopic large animal model. The design of this novel implant was achieved via state-of-the-art converging of extrusion-based ceramic printing, melt electrowriting, and extrusion-based bioprinting. Interestingly, the cell-free implants, used as a control in this study, showed abundant cell ingrowth and similar favorable results as the cell-containing implants. Our findings underscore the hypothesis that mechanical stability is more determining for the successful survival of the implant than the presence of cells and pre-cultured extracellular matrix. This observation is of great translational importance and highlights the aptness of advanced 3D (bio)fabrication technologies for functional tissue restoration in the harsh articular joint mechanical environment.
AUTHOR Ribezzi, Davide and Gueye, Marième and Florczak, Sammy and Dusi, Franziska and de Vos, Dieuwke and Manente, Francesca and Hierholzer, Andreas and Fussenegger, Martin and Caiazzo, Massimiliano and Blunk, Torsten and Malda, Jos and Levato, Riccardo
Title Shaping Synthetic Multicellular and Complex Multimaterial Tissues via Embedded Extrusion-Volumetric Printing of Microgels [Abstract]
Year 2023
Journal/Proceedings Advanced Materials
Reftype
DOI/URL URL DOI
Abstract
Abstract In living tissues, cells express their functions following complex signals from their surrounding microenvironment. Capturing both hierarchical architectures at the micro- and macroscale, and anisotropic cell patterning remains a major challenge in bioprinting, and a bottleneck towards creating physiologically-relevant models. Addressing this limitation, we introduced a novel technique, termed Embedded Extrusion-Volumetric Printing (EmVP), converging extrusion-bioprinting and layer-less, ultra-fast volumetric bioprinting, allowing to spatially pattern multiple inks/cell types. Light-responsive microgels were developed for the first time as bioresins (μResins) for light-based volumetric bioprinting, providing a microporous environment permissive for cell homing and self-organization. Tuning the mechanical and optical properties of gelatin-based microparticles enables their use as support bath for suspended extrusion printing, in which features containing high cell densities can be easily introduced. μResins can be sculpted within seconds with tomographic light projections into centimetre-scale, granular hydrogel-based, convoluted constructs. Interstitial microvoids enhanced differentiation of multiple stem/progenitor cells (vascular, mesenchymal, neural), otherwise not possible with conventional bulk hydrogels. As proof-of-concept, EmVP was applied to create complex synthetic biology-inspired intercellular communication models, where adipocyte differentiation is regulated by optogenetic-engineered pancreatic cells. Overall, EmVP offers new avenues for producing regenerative grafts with biological functionality, and for developing engineered living systems and (metabolic) disease models. This article is protected by copyright. All rights reserved
AUTHOR Daghrery, Arwa and Ferreira, Jessica A. and Xu, Jinping and Golafshan, Nasim and Kaigler, Darnell and Bhaduri, Sarit B. and Malda, Jos and Castilho, Miguel and Bottino, Marco C.
Title Tissue-specific melt electrowritten polymeric scaffolds for coordinated regeneration of soft and hard periodontal tissues [Abstract]
Year 2023
Journal/Proceedings Bioactive Materials
Reftype
DOI/URL URL DOI
Abstract
Periodontitis is a chronic inflammatory condition that often causes serious damage to tooth-supporting tissues. The limited successful outcomes of clinically available approaches underscore the need for therapeutics that cannot only provide structural guidance to cells but can also modulate the local immune response. Here, three-dimensional melt electrowritten (i.e., poly(ε-caprolactone)) scaffolds with tissue-specific attributes were engineered to guide differentiation of human-derived periodontal ligament stem cells (hPDLSCs) and mediate macrophage polarization. The investigated tissue-specific scaffold attributes comprised fiber morphology (aligned vs. random) and highly-ordered architectures with distinct strand spacings (small 250 μm and large 500 μm). Macrophages exhibited an elongated morphology in aligned and highly-ordered scaffolds, while maintaining their round-shape on randomly-oriented fibrous scaffolds. Expressions of periostin and IL-10 were more pronounced on the aligned and highly-ordered scaffolds. While hPDLSCs on the scaffolds with 500 μm strand spacing show higher expression of osteogenic marker (Runx2) over 21 days, cells on randomly-oriented fibrous scaffolds showed upregulation of M1 markers. In an orthotopic mandibular fenestration defect model, findings revealed that the tissue-specific scaffolds (i.e., aligned fibers for periodontal ligament and highly-ordered 500 μm strand spacing fluorinated calcium phosphate [F/CaP]-coated fibers for bone) could enhance the mimicking of regeneration of natural periodontal tissues.
AUTHOR Daghrery, Arwa and Ferreira, Jessica A. and Xu, Jinping and Golafshan, Nasim and Kaigler, Darnell and Bhaduri, Sarit B. and Malda, Jos and Castilho, Miguel and Bottino, Marco C.
Title Tissue-specific melt electrowritten polymeric scaffolds for coordinated regeneration of soft and hard periodontal tissues [Abstract]
Year 2023
Journal/Proceedings Bioactive Materials
Reftype
DOI/URL URL DOI
Abstract
Periodontitis is a chronic inflammatory condition that often causes serious damage to tooth-supporting tissues. The limited successful outcomes of clinically available approaches underscore the need for therapeutics that cannot only provide structural guidance to cells but can also modulate the local immune response. Here, three-dimensional melt electrowritten (i.e., poly(ε-caprolactone)) scaffolds with tissue-specific attributes were engineered to guide differentiation of human-derived periodontal ligament stem cells (hPDLSCs) and mediate macrophage polarization. The investigated tissue-specific scaffold attributes comprised fiber morphology (aligned vs. random) and highly-ordered architectures with distinct strand spacings (small 250 μm and large 500 μm). Macrophages exhibited an elongated morphology in aligned and highly-ordered scaffolds, while maintaining their round-shape on randomly-oriented fibrous scaffolds. Expressions of periostin and IL-10 were more pronounced on the aligned and highly-ordered scaffolds. While hPDLSCs on the scaffolds with 500 μm strand spacing show higher expression of osteogenic marker (Runx2) over 21 days, cells on randomly-oriented fibrous scaffolds showed upregulation of M1 markers. In an orthotopic mandibular fenestration defect model, findings revealed that the tissue-specific scaffolds (i.e., aligned fibers for periodontal ligament and highly-ordered 500 μm strand spacing fluorinated calcium phosphate [F/CaP]-coated fibers for bone) could enhance the mimicking of regeneration of natural periodontal tissues.
AUTHOR Daghrery, Arwa and Ferreira, Jessica A. and Xu, Jinping and Golafshan, Nasim and Kaigler, Darnell and Bhaduri, Sarit B. and Malda, Jos and Castilho, Miguel and Bottino, Marco C.
Title Tissue-specific melt electrowritten polymeric scaffolds for coordinated regeneration of soft and hard periodontal tissues [Abstract]
Year 2023
Journal/Proceedings Bioactive Materials
Reftype
DOI/URL URL DOI
Abstract
Periodontitis is a chronic inflammatory condition that often causes serious damage to tooth-supporting tissues. The limited successful outcomes of clinically available approaches underscore the need for therapeutics that cannot only provide structural guidance to cells but can also modulate the local immune response. Here, three-dimensional melt electrowritten (i.e., poly(ε-caprolactone)) scaffolds with tissue-specific attributes were engineered to guide differentiation of human-derived periodontal ligament stem cells (hPDLSCs) and mediate macrophage polarization. The investigated tissue-specific scaffold attributes comprised fiber morphology (aligned vs. random) and highly-ordered architectures with distinct strand spacings (small 250 μm and large 500 μm). Macrophages exhibited an elongated morphology in aligned and highly-ordered scaffolds, while maintaining their round-shape on randomly-oriented fibrous scaffolds. Expressions of periostin and IL-10 were more pronounced on the aligned and highly-ordered scaffolds. While hPDLSCs on the scaffolds with 500 μm strand spacing show higher expression of osteogenic marker (Runx2) over 21 days, cells on randomly-oriented fibrous scaffolds showed upregulation of M1 markers. In an orthotopic mandibular fenestration defect model, findings revealed that the tissue-specific scaffolds (i.e., aligned fibers for periodontal ligament and highly-ordered 500 μm strand spacing fluorinated calcium phosphate [F/CaP]-coated fibers for bone) could enhance the mimicking of regeneration of natural periodontal tissues.
AUTHOR Daghrery, Arwa and Ferreira, Jessica A. and Xu, Jinping and Golafshan, Nasim and Kaigler, Darnell and Bhaduri, Sarit B. and Malda, Jos and Castilho, Miguel and Bottino, Marco C.
Title Tissue-specific melt electrowritten polymeric scaffolds for coordinated regeneration of soft and hard periodontal tissues [Abstract]
Year 2023
Journal/Proceedings Bioactive Materials
Reftype
DOI/URL URL DOI
Abstract
Periodontitis is a chronic inflammatory condition that often causes serious damage to tooth-supporting tissues. The limited successful outcomes of clinically available approaches underscore the need for therapeutics that cannot only provide structural guidance to cells but can also modulate the local immune response. Here, three-dimensional melt electrowritten (i.e., poly(ε-caprolactone)) scaffolds with tissue-specific attributes were engineered to guide differentiation of human-derived periodontal ligament stem cells (hPDLSCs) and mediate macrophage polarization. The investigated tissue-specific scaffold attributes comprised fiber morphology (aligned vs. random) and highly-ordered architectures with distinct strand spacings (small 250 μm and large 500 μm). Macrophages exhibited an elongated morphology in aligned and highly-ordered scaffolds, while maintaining their round-shape on randomly-oriented fibrous scaffolds. Expressions of periostin and IL-10 were more pronounced on the aligned and highly-ordered scaffolds. While hPDLSCs on the scaffolds with 500 μm strand spacing show higher expression of osteogenic marker (Runx2) over 21 days, cells on randomly-oriented fibrous scaffolds showed upregulation of M1 markers. In an orthotopic mandibular fenestration defect model, findings revealed that the tissue-specific scaffolds (i.e., aligned fibers for periodontal ligament and highly-ordered 500 μm strand spacing fluorinated calcium phosphate [F/CaP]-coated fibers for bone) could enhance the mimicking of regeneration of natural periodontal tissues.
AUTHOR Nothdurfter, Daniel and Ploner, Christian and Coraça-Huber, Débora C. and Wilflingseder, Doris and Müller, Thomas and Hermann, Martin and Hagenbuchner, Judith and Ausserlechner, Michael J.
Title 3D bioprinted, vascularized neuroblastoma tumor environment in fluidic chip devices for precision medicine drug testing [Abstract]
Year 2022
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Neuroblastoma is an extracranial solid tumor which develops in early childhood and still has a poor prognosis. One strategy to increase cure rates is the identification of patient-specific drug responses in tissue models that mimic the interaction between patient cancer cells and tumor environment. We therefore developed a perfused and micro-vascularized tumor-environment model that is directly bioprinted into custom-manufactured fluidic chips. A gelatin-methacrylate/fibrin-based matrix containing multiple cell types mimics the tumor-microenvironment that promotes spontaneous micro-vessel formation by embedded endothelial cells. We demonstrate that both, adipocyte- and iPSC-derived mesenchymal stem cells can guide this process. Bioprinted channels are coated with endothelial cells post printing to form a dense vessel - tissue barrier. The tissue model thereby mimics structure and function of human soft tissue with endothelial cell-coated larger vessels for perfusion and micro-vessel networks within the hydrogel-matrix. Patient-derived neuroblastoma spheroids are added to the matrix during the printing process and grown for more than two weeks. We demonstrate that micro-vessels are attracted by and grow into tumor spheroids and that neuroblastoma cells invade the tumor-environment as soon as the spheroids disrupt. In summary, we describe the first bioprinted, micro-vascularized neuroblastoma – tumor-environment model directly printed into fluidic chips and a novel medium-throughput biofabrication platform suitable for studying tumor angiogenesis and metastasis in precision medicine approaches in future.
AUTHOR Terpstra, Margo L. and Li, Jinyu and Mensinga, Anneloes and de Ruijter, Myl{`{e}}ne and van Rijen, Mattie H. P. and Androulidakis, Charalampos and Galiotis, Costas and Papantoniou, Ioannis and Matsusaki, Michiya and Malda, Jos and Levato, Riccardo
Title Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs [Abstract]
Year 2022
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Microvasculature is essential for the exchange of gas and nutrient for most tissues in our body. Some tissue structures such as the meniscus presents spatially confined blood vessels adjacent to non-vascularized regions. In biofabrication, mimicking the spatial distribution of such vascular components is paramount, as capillary ingrowth into non-vascularized tissues can lead to tissue matrix alterations and subsequent pathology. Multi-material three-dimensional (3D) bioprinting strategies have the potential to resolve anisotropic tissue features, although building complex constructs comprising stable vascularized and non-vascularized regions remains a major challenge to date. In this study, we developed endothelial cell-laden pro- and anti-angiogenic bioinks, supplemented with bioactive matrix-derived microfibers (MFs) that were created from type I collagen sponges (col-1) and cartilage decellularized extracellular matrix (CdECM), respectively. Human umbilical vein endothelial cell (HUVEC)-driven capillary networks started to form 2 d after bioprinting. Supplementing cartilage-derived MFs to endothelial-cell laden bioinks reduced the total length of neo-microvessels by 29%, and the number of microvessel junctions by 37% after 14 d, compared to bioinks with pro-angiogenic col-1 MFs. As a proof of concept, the bioinks were bioprinted into an anatomical meniscus shape with a biomimetic vascularized outer and non-vascularized inner region, using a gellan gum microgel suspension bath. These 3D meniscus-like constructs were cultured up to 14 d, with in the outer zone the HUVEC-, mural cell-, and col-1 MF-laden pro-angiogenic bioink, and in the inner zone a meniscus progenitor cell (MPC)- and CdECM MF-laden anti-angiogenic bioink, revealing successful spatial confinement of the nascent vascular network only in the outer zone. Further, to co-facilitate both microvessel formation and MPC-derived matrix formation, we formulated cell culture medium conditions with a temporal switch. Overall, this study provides a new strategy that could be applied to develop zonal biomimetic meniscal constructs. Moreover, the use of ECM-derived MFs to promote or inhibit capillary networks opens new possibilities for the biofabrication of tissues with anisotropic microvascular distribution. These have potential for many applications including in vitro models of vascular-to-avascular tissue interfaces, cancer progression, and for testing anti-angiogenic therapies.
AUTHOR Dufour, A. and Gallostra, X. Barceló and O'Keeffe, C. and Eichholz, K. and Von Euw, S. and Garcia, O. and Kelly, D. J.
Title Integrating melt electrowriting and inkjet bioprinting for engineering structurally organized articular cartilage [Abstract]
Year 2022
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Successful cartilage engineering requires the generation of biological grafts mimicking the structure, composition and mechanical behaviour of the native tissue. Here melt electrowriting (MEW) was used to produce arrays of polymeric structures whose function was to orient the growth of cellular aggregates spontaneously generated within these structures, and to provide tensile reinforcement to the resulting tissues. Inkjet printing was used to deposit defined numbers of cells into MEW structures, which self-assembled into an organized array of spheroids within hours, ultimately generating a hybrid tissue that was hyaline-like in composition. Structurally, the engineered cartilage mimicked the histotypical organization observed in skeletally immature synovial joints. This biofabrication framework was then used to generate scaled-up (50 mm × 50 mm) cartilage implants containing over 3,500 cellular aggregates in under 15 min. After 8 weeks in culture, a 50-fold increase in the compressive stiffness of these MEW reinforced tissues were observed, while the tensile properties were still dominated by the polymer network, resulting in a composite construct demonstrating tension-compression nonlinearity mimetic of the native tissue. Helium ion microscopy further demonstrated the development of an arcading collagen network within the engineered tissue. This hybrid bioprinting strategy provides a versatile and scalable approach to engineer cartilage biomimetic grafts for biological joint resurfacing.
AUTHOR D'Agostino, Stefania and Rimann, Markus and Gamba, Piergiorgio and Perilongo, Giorgio and Pozzobon, Michela and Raghunath, Michael
Title Macromolecular crowding tuned extracellular matrix deposition in a bioprinted human rhabdomyosarcoma model [Abstract]
Year 2022
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
The role of the extracellular matrix (ECM) in tumor recurrence and metastasis has been gaining attention. Indeed, not only cellular, but also structural proteins influence migratory and invasive capacity of tumor cells, including growth and resistance to drugs. Therefore, new in vitro tumor models that entail improved ECM formation and deposition are needed. Here, we are developed three-dimensional (3D) models of pediatric soft tissue sarcoma (Rhabdomyosarcoma [RMS]) with the two major subgroups, the embryonal (ERMS) and the alveolar (ARMS) form. We applied macromolecular crowding (MMC) technology to monolayer cultures, spheroids, and 3D bioprinted constructs. In all culture models, exposure to MMC significantly increased ECM deposition. Interestingly, bioprinted constructs showed a collagen and fibronectin matrix architecture that was comparable to that of tumor xenografts. Furthermore, the bioprinted model not only showed tumor cell growth inside the structure but also displayed cell clusters leaving the edges of the bioprinted construct, probably emulating a metastatic mechanism. ARMS and ERMS cells reacted differently in the bioprinted structure. Indeed, the characteristic metastatic behavior was much more pronounced in the more aggressive ARMS subtype. This promising approach opens new avenues for studying RMS microenvironment and creating a platform for cancer drug testing including the native tumor ECM.
AUTHOR Daghrery, Arwa and Ferreira, Jessica A. and de Souza Araújo, Isaac J. and Clarkson, Brian H. and Eckert, George J. and Bhaduri, Sarit B. and Malda, Jos and Bottino, Marco C.
Title A Highly Ordered, Nanostructured Fluorinated CaP-Coated Melt Electrowritten Scaffold for Periodontal Tissue Regeneration [Abstract]
Year 2021
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Periodontitis is a chronic inflammatory, bacteria-triggered disorder affecting nearly half of American adults. Although some level of tissue regeneration is realized, its low success in complex cases demands superior strategies to amplify regenerative capacity. Herein, highly ordered scaffolds are engineered via Melt ElectroWriting (MEW), and the effects of strand spacing, as well as the presence of a nanostructured fluorinated calcium phosphate (F/CaP) coating on the adhesion/proliferation, and osteogenic differentiation of human-derived periodontal ligament stem cells, are investigated. Upon initial cell-scaffold interaction screening aimed at defining the most suitable design, MEW poly(ε-caprolactone) scaffolds with 500 µm strand spacing are chosen. Following an alkali treatment, scaffolds are immersed in a pre-established solution to allow for coating formation. The presence of a nanostructured F/CaP coating leads to a marked upregulation of osteogenic genes and attenuated bacterial growth. In vivo findings confirm that the F/CaP-coated scaffolds are biocompatible and lead to periodontal regeneration when implanted in a rat mandibular periodontal fenestration defect model. In aggregate, it is considered that this work can contribute to the development of personalized scaffolds capable of enabling tissue-specific differentiation of progenitor cells, and thus guide simultaneous and coordinated regeneration of soft and hard periodontal tissues, while providing antimicrobial protection.
AUTHOR Bouwmeester, Manon C. and Bernal, Paulina N. and Oosterhoff, Loes A. and van Wolferen, Monique E. and Lehmann, Vivian and Vermaas, Monique and Buchholz, Maj-Britt and Peiffer, Quentin C. and Malda, Jos and van der Laan, Luc J. W. and Kramer, Nynke I. and Schneeberger, Kerstin and Levato, Riccardo and Spee, Bart
Title Bioprinting of Human Liver-Derived Epithelial Organoids for Toxicity Studies [Abstract]
Year 2021
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI
Abstract
Abstract There is a need for long-lived hepatic in vitro models to better predict drug induced liver injury (DILI). Human liver-derived epithelial organoids are a promising cell source for advanced in vitro models. Here, organoid technology is combined with biofabrication techniques, which holds great potential for the design of in vitro models with complex and customizable architectures. Here, porous constructs with human hepatocyte-like cells derived from organoids are generated using extrusion-based printing technology. Cell viability of bioprinted organoids remains stable for up to ten days (88–107% cell viability compared to the day of printing). The expression of hepatic markers, transporters, and phase I enzymes increased compared to undifferentiated controls, and is comparable to non-printed controls. Exposure to acetaminophen, a well-known hepatotoxic compound, decreases cell viability of bioprinted liver organoids to 21–51% (p < 0.05) compared to the start of exposure, and elevated levels of damage marker miR-122 are observed in the culture medium, indicating the potential use of the bioprinted constructs for toxicity testing. In conclusion, human liver-derived epithelial organoids can be combined with a biofabrication approach, thereby paving the way to create perfusable, complex constructs which can be used as toxicology- and disease-models.
AUTHOR Ng, Wei Long and Ayi, Teck Choon and Liu, Yi-Chun and Sing, Swee Leong and Yeong, Wai Yee and Tan, Boon-Huan
Title Fabrication and Characterization of 3D Bioprinted Triple-layered Human Alveolar Lung Models [Abstract]
Year 2021
Journal/Proceedings International journal of bioprinting
Reftype
DOI/URL URL
Abstract
The global prevalence of respiratory diseases caused by infectious pathogens has resulted in an increased demand for realistic in-vitro alveolar lung models to serve as suitable disease models. This demand has resulted in the fabrication of numerous two-dimensional (2D) and three-dimensional (3D) in-vitro alveolar lung models. The ability to fabricate these 3D in-vitro alveolar lung models in an automated manner with high repeatability and reliability is important for potential scalable production. In this study, we reported the fabrication of human triple-layered alveolar lung models comprising of human lung epithelial cells, human endothelial cells, and human lung fibroblasts using the drop-on-demand (DOD) 3D bioprinting technique. The polyvinylpyrrolidone-based bio-inks and the use of a 300 mm nozzle diameter improved the repeatability of the bioprinting process by achieving consistent cell output over time using different human alveolar lung cells. The 3D bioprinted human triple-layered alveolar lung models were able to maintain cell viability with relative similar proliferation profile over time as compared to non-printed cells. This DOD 3D bioprinting platform offers an attractive tool for highly repeatable and scalable fabrication of 3D in-vitro human alveolar lung models.
AUTHOR Alave Reyes-Furrer, Angela and De Andrade, Sonia and Bachmann, Dominic and Jeker, Heidi and Steinmann, Martin and Accart, Nathalie and Dunbar, Andrew and Rausch, Martin and Bono, Epifania and Rimann, Markus and Keller, Hansjoerg
Title Matrigel 3D bioprinting of contractile human skeletal muscle models recapitulating exercise and pharmacological responses [Abstract]
Year 2021
Journal/Proceedings Communications Biology
Reftype Alave Reyes-Furrer2021
DOI/URL DOI
Abstract
A key to enhance the low translatability of preclinical drug discovery are in vitro human three-dimensional (3D) microphysiological systems (MPS). Here, we show a new method for automated engineering of 3D human skeletal muscle models in microplates and functional compound screening to address the lack of muscle wasting disease medication. To this end, we adapted our recently described 24-well plate 3D bioprinting platform with a printhead cooling system to allow microvalve-based drop-on-demand printing of cell-laden Matrigel containing primary human muscle precursor cells. Mini skeletal muscle models develop within a week exhibiting contractile, striated myofibers aligned between two attachment posts. As an in vitro exercise model, repeated high impact stimulation of contractions for 3 h by a custom-made electrical pulse stimulation (EPS) system for 24-well plates induced interleukin-6 myokine expression and Akt hypertrophy pathway activation. Furthermore, the known muscle stimulators caffeine and Tirasemtiv acutely increase EPS-induced contractile force of the models. This validated new human muscle MPS will benefit development of drugs against muscle wasting diseases. Moreover, our Matrigel 3D bioprinting platform will allow engineering of non-self-organizing complex human 3D MPS.
AUTHOR Asulin, Masha and Michael, Idan and Shapira, Assaf and Dvir, Tal
Title One-Step 3D Printing of Heart Patches with Built-In Electronics for Performance Regulation [Abstract]
Year 2021
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Three dimensional (3D) printing of heart patches usually provides the ability to precisely control cell location in 3D space. Here, one-step 3D printing of cardiac patches with built-in soft and stretchable electronics is reported. The tissue is simultaneously printed using three distinct bioinks for the cells, for the conducting parts of the electronics and for the dielectric components. It is shown that the hybrid system can withstand continuous physical deformations as those taking place in the contracting myocardium. The electronic patch is flexible, stretchable, and soft, and the electrodes within the printed patch are able to monitor the function of the engineered tissue by providing extracellular potentials. Furthermore, the system allowed controlling tissue function by providing electrical stimulation for pacing. It is envisioned that such transplantable patches may regain heart contractility and allow the physician to monitor the implant function as well as to efficiently intervene from afar when needed.
AUTHOR Madiedo-Podvrsan, Sabrina and Belaïdi, Jean-Philippe and Desbouis, Stephanie and Simonetti, Lucie and Ben-Khalifa, Youcef and Soeur, Jérémie and Rielland, Maïté
Title Utilization of patterned bioprinting for heterogeneous and physiologically representative reconstructed epidermal skin models [Abstract]
Year 2021
Journal/Proceedings Scientific Reports
Reftype Madiedo-Podvrsan2021
DOI/URL DOI
Abstract
Organotypic skin tissue models have decades of use for basic research applications, the treatment of burns, and for efficacy/safety evaluation studies. The complex and heterogeneous nature of native human skin however creates difficulties for the construction of physiologically comparable organotypic models. Within the present study, we utilized bioprinting technology for the controlled deposition of separate keratinocyte subpopulations to create a reconstructed epidermis with two distinct halves in a single insert, each comprised of a different keratinocyte sub-population, in order to better model heterogonous skin and reduce inter-sample variability. As an initial proof-of-concept, we created a patterned epidermal skin model using GPF positive and negative keratinocyte subpopulations, both printed into 2 halves of a reconstructed skin insert, demonstrating the feasibility of this approach. We then demonstrated the physiological relevance of this bioprinting technique by generating a heterogeneous model comprised of dual keratinocyte population with either normal or low filaggrin expression. The resultant model exhibited a well-organized epidermal structure with each half possessing the phenotypic characteristics of its constituent cells, indicative of a successful and stable tissue reconstruction. This patterned skin model aims to mimic the edge of lesions as seen in atopic dermatitis or ichthyosis vulgaris, while the use of two populations within a single insert allows for paired statistics in evaluation studies, likely increasing study statistical power and reducing the number of models required per study. This is the first report of human patterned epidermal model using a predefined bioprinted designs, and demonstrates the relevance of bioprinting to faithfully reproduce human skin microanatomy.
AUTHOR Kajtez, Janko and Buchmann, Sebastian and Vasudevan, Shashank and Birtele, Marcella and Rocchetti, Stefano and Pless, Christian Jonathan and Heiskanen, Arto and Barker, Roger A. and Martínez-Serrano, Alberto and Parmar, Malin and Lind, Johan Ulrik and Emnéus, Jenny
Title 3D-Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices [Abstract]
Year 2020
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Compartmentalized microfluidic platforms are an invaluable tool in neuroscience research. However, harnessing the full potential of this technology remains hindered by the lack of a simple fabrication approach for the creation of intricate device architectures with high-aspect ratio features. Here, a hybrid additive manufacturing approach is presented for the fabrication of open-well compartmentalized neural devices that provides larger freedom of device design, removes the need for manual postprocessing, and allows an increase in the biocompatibility of the system. Suitability of the method for multimaterial integration allows to tailor the device architecture for the long-term maintenance of healthy human stem-cell derived neurons and astrocytes, spanning at least 40 days. Leveraging fast-prototyping capabilities at both micro and macroscale, a proof-of-principle human in vitro model of the nigrostriatal pathway is created. By presenting a route for novel materials and unique architectures in microfluidic systems, the method provides new possibilities in biological research beyond neuroscience applications.
AUTHOR Browning, James R. and Derr, Paige and Derr, Kristy and Doudican, Nicole and Michael, Sam and Lish, Samantha R. and Taylor, Nicholas A. and Krueger, James G. and Ferrer, Marc and Carucci, John A. and Gareau, Daniel S.
Title A 3D biofabricated cutaneous squamous cell carcinoma tissue model with multi-channel confocal microscopy imaging biomarkers to quantify antitumor effects of chemotherapeutics in tissue [Abstract]
Year 2020
Journal/Proceedings Oncotarget; Vol 11, No 27
Reftype
DOI/URL URL
Abstract
// James R. Browning 1 , Paige Derr 2 , Kristy Derr 2 , Nicole Doudican 3 , Sam Michael 2 , Samantha R. Lish 1 , Nicholas A. Taylor 3 , James G. Krueger 1 , Marc Ferrer 2 , John A. Carucci 3 and Daniel S. Gareau 1 1 Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA 2 National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA 3 The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA Correspondence to: Daniel S. Gareau, email: dgareau@rockefeller.edu Keywords: squamous cell carcinoma; screening; 3D printing; in vitro model; confocal microscopy Received: January 05, 2020     Accepted: April 03, 2020     Published: July 07, 2020 ABSTRACT Cutaneous squamous cell carcinoma (cSCC) causes approximately 10,000 deaths annually in the U. S. Current therapies are largely ineffective against metastatic and locally advanced cSCC. There is a need to identify novel, effective, and less toxic small molecule cSCC therapeutics. We developed a 3-dimensional bioprinted skin (3DBPS) model of cSCC tumors together with a microscopy assay to test chemotherapeutic effects in tissue. The full thickness SCC tissue model was validated using hematoxylin and eosin (H&E) and immunohistochemical histological staining, confocal microscopy, and cDNA microarray analysis. A nondestructive, 3D fluorescence confocal imaging assay with tdTomato-labeled A431 SCC and ZsGreen-labeled keratinocytes was developed to test efficacy and general toxicity of chemotherapeutics. Fluorescence-derived imaging biomarkers indicated that 50% of cancer cells were killed in the tissue after 1?M 5-Fluorouracil 48-hour treatment, compared to a baseline of 12% for untreated controls. The imaging biomarkers also showed that normal keratinocytes were less affected by treatment (11% killed) than the untreated tissue, which had no significant killing effect. Data showed that 5-Fluorouracil selectively killed cSCC cells more than keratinocytes. Our 3DBPS assay platform provides cellular-level measurement of cell viability and can be adapted to achieve nondestructive high-throughput screening (HTS) in bio-fabricated tissues.
AUTHOR Monferrer, Ezequiel and Martín-Vañó, Susana and Carretero, Aitor and García-Lizarribar, Andrea and Burgos-Panadero, Rebeca and Navarro, Samuel and Samitier, Josep and Noguera, Rosa
Title A three-dimensional bioprinted model to evaluate the effect of stiffness on neuroblastoma cell cluster dynamics and behavior [Abstract]
Year 2020
Journal/Proceedings Scientific Reports
Reftype Monferrer2020
DOI/URL DOI
Abstract
Three-dimensional (3D) bioprinted culture systems allow to accurately control microenvironment components and analyze their effects at cellular and tissue levels. The main objective of this study was to identify, quantify and localize the effects of physical-chemical communication signals between tumor cells and the surrounding biomaterial stiffness over time, defining how aggressiveness increases in SK-N-BE(2) neuroblastoma (NB) cell line. Biomimetic hydrogels with SK-N-BE(2) cells, methacrylated gelatin and increasing concentrations of methacrylated alginate (AlgMA 0%, 1% and 2%) were used. Young’s modulus was used to define the stiffness of bioprinted hydrogels and NB tumors. Stained sections of paraffin-embedded hydrogels were digitally quantified. Human NB and 1% AlgMA hydrogels presented similar Young´s modulus mean, and orthotopic NB mice tumors were equally similar to 0% and 1% AlgMA hydrogels. Porosity increased over time; cell cluster density decreased over time and with stiffness, and cell cluster occupancy generally increased with time and decreased with stiffness. In addition, cell proliferation, mRNA metabolism and antiapoptotic activity advanced over time and with stiffness. Together, this rheological, optical and digital data show the potential of the 3D in vitro cell model described herein to infer how intercellular space stiffness patterns drive the clinical behavior associated with NB patients.
AUTHOR Benmeridja, Lara and De Moor, Lise and De Maere, Elisabeth and Vanlauwe, Florian and Ryx, Michelle and Tytgat, Liesbeth and Vercruysse, Chris and Dubruel, Peter and Van Vlierberghe, Sandra and Blondeel, Phillip and Declercq, Heidi
Title High-throughput fabrication of vascularized adipose microtissues for 3D bioprinting [Abstract]
Year 2020
Journal/Proceedings Journal of Tissue Engineering and Regenerative Medicine
Reftype
DOI/URL DOI
Abstract
Abstract For patients with soft tissue defects, repair with autologous in vitro engineered adipose tissue could be a promising alternative to current surgical therapies. A volume-persistent engineered adipose tissue construct under in vivo conditions can only be achieved by early vascularization after transplantation. The combination of 3D bioprinting technology with self-assembling microvascularized units as building blocks can potentially answer the need for a microvascular network. In the present study, co-culture spheroids combining adipose-derived stem cells (ASC) and human umbilical vein endothelial cells (HUVEC) were created with an ideal geometry for bioprinting. When applying the favourable seeding technique and condition, compact viable spheroids were obtained, demonstrating high adipogenic differentiation and capillary-like network formation after 7 and 14 days of culture, as shown by live/dead analysis, immunohistochemistry and RT-qPCR. Moreover, we were able to successfully 3D bioprint the encapsulated spheroids, resulting in compact viable spheroids presenting capillary-like structures, lipid droplets and spheroid outgrowth after 14 days of culture. This is the first study that generates viable high-throughput (pre-)vascularized adipose microtissues as building blocks for bioprinting applications using a novel ASC/HUVEC co-culture spheroid model, which enables both adipogenic differentiation while simultaneously supporting the formation of prevascular-like structures within engineered tissues in vitro.
AUTHOR Dubey, Nileshkumar and Ferreira, Jessica A. and Daghrery, Arwa and Aytac, Zeynep and Malda, Jos and Bhaduri, Sarit B. and Bottino, Marco C.
Title Highly Tunable Bioactive Fiber-Reinforced Hydrogel for Guided Bone Regeneration [Abstract]
Year 2020
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
One of the most damaging pathologies that affects the health of both soft and hard tissues around the tooth is periodontitis. Clinically, periodontal tissue destruction has been managed by an integrated approach involving elimination of injured tissues followed by regenerative strategies with bone substitutes and/or barrier membranes. Regrettably, a barrier membrane with predictable mechanical integrity and multifunctional therapeutic features has yet to be established. Herein, we report a fiber-reinforced hydrogel with unprecedented tunability in terms of mechanical competence and therapeutic features by integration of highly porous poly(ε-caprolactone) fibrous mesh(es) with well-controlled 3D architecture into bioactive amorphous magnesium phosphate-laden gelatin methacryloyl hydrogels. The presence of amorphous magnesium phosphate and PCL mesh in the hydrogel can control the mechanical properties and improve the osteogenic ability, opening a tremendous opportunity in guided bone regeneration (GBR). Results demonstrate that the presence of PCL meshes fabricated via melt electrowriting can delay hydrogel degradation preventing soft tissue invasion and providing the mechanical barrier to allow time for slower migrating progenitor cells to participate in bone regeneration due to their ability to differentiate into bone-forming cells. Altogether, our approach offers a platform technology for the development of the next-generation of GBR membranes with tunable mechanical and therapeutic properties to amplify bone regeneration in compromised sites.
AUTHOR Peiffer, Quentin C. and de Ruijter, Mylène and van Duijn, Joost and Crottet, Denis and Dominic, Ernst and Malda, Jos and Castilho, Miguel
Title Melt electrowriting onto anatomically relevant biodegradable substrates: Resurfacing a diarthrodial joint [Abstract]
Year 2020
Journal/Proceedings Materials & Design
Reftype
DOI/URL URL DOI
Abstract
Three-dimensional printed hydrogel constructs with well-organized melt electrowritten (MEW) fibre-reinforcing scaffolds have been demonstrated as a promising regenerative approach to treat small cartilage defects. Here, we investige how to translate the fabrication of small fibre-reinforced structures on flat surfaces to anatomically relevant structures. In particular, the accurate deposition of MEW-fibres onto curved surfaces of conductive and non-conductive regenerative biomaterials is studied. This study reveals that clinically relevant materials with low conductivities are compatible with resurfacing with organized MEW fibres. Importantly, accurate patterning on non-flat surfaces was successfully shown, provided that a constant electrical field strength and an electrical force normal to the substrate material is maintained. Furthermore, the application of resurfacing the geometry of the medial human femoral condyle is confirmed by the fabrication of a personalised osteochondral implant. The implant composed of an articular cartilage-resident chondroprogenitor cells (ACPCs)-laden hydrogel reinforced with a well-organized MEW scaffold retained its personalised shape, improved its compressive properties and supported neocartilage formation after 28 days in vitro culture. Overall, this study establishes the groundwork for translating MEW from planar and non-resorbable material substrates to anatomically relevant geometries and regenerative materials that the regenerative medicine field aims to create.
AUTHOR Wei, Zhengxi and Liu, Xue and Ooka, Masato and Zhang, Li and Song, Min Jae and Huang, Ruili and Kleinstreuer, Nicole C. and Simeonov, Anton and Xia, Menghang and Ferrer, Marc
Title Two-Dimensional Cellular and Three-Dimensional Bio-Printed Skin Models to Screen Topical-Use Compounds for Irritation Potential [Abstract]
Year 2020
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
Assessing skin irritation potential is critical for the safety evaluation of topical drugs and other consumer products such as cosmetics. The use of advanced cellular models, as an alternative to replace animal testing in the safety evaluation for both consumer products and ingredients, is already mandated by law in the European Union (EU) and other countries. However, there has not yet been a large-scale comparison of the effects of topical-use compounds in different cellular skin models. This study assesses the irritation potential of topical-use compounds in different cellular models of the skin that are compatible with high throughput screening (HTS) platforms. A set of 451 topical-use compounds were first tested for cytotoxic effects using two-dimensional (2D) monolayer models of primary neonatal keratinocytes and immortalized human keratinocytes. Forty-six toxic compounds identified from the initial screen with the monolayer culture systems were further tested for skin irritation potential on reconstructed human epidermis (RhE) and full thickness skin (FTS) three-dimensional (3D) tissue model constructs. Skin irritation potential of the compounds was assessed by measuring tissue viability, trans-epithelial electrical resistance (TEER), and secretion of cytokines interleukin 1 alpha (IL-1α) and interleukin 18 (IL-18). Among known irritants, high concentrations of methyl violet and methylrosaniline decreased viability, lowered TEER, and increased IL-1α secretion in both RhE and FTS models, consistent with irritant properties. However, at low concentrations, these two compounds increased IL-18 secretion without affecting levels of secreted IL-1α, and did not reduce tissue viability and TEER, in either RhE or FTS models. This result suggests that at low concentrations, methyl violet and methylrosaniline have an allergic potential without causing irritation. Using both HTS-compatible 2D cellular and 3D tissue skin models, together with irritation relevant activity endpoints, we obtained data to help assess the irritation effects of topical-use compounds and identify potential dermal hazards.
AUTHOR Noor, Nadav and Shapira, Assaf and Edri, Reuven and Gal, Idan and Wertheim, Lior and Dvir, Tal
Title 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts [Abstract]
Year 2019
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Generation of thick vascularized tissues that fully match the patient still remains an unmet challenge in cardiac tissue engineering. Here, a simple approach to 3D-print thick, vascularized, and perfusable cardiac patches that completely match the immunological, cellular, biochemical, and anatomical properties of the patient is reported. To this end, a biopsy of an omental tissue is taken from patients. While the cells are reprogrammed to become pluripotent stem cells, and differentiated to cardiomyocytes and endothelial cells, the extracellular matrix is processed into a personalized hydrogel. Following, the two cell types are separately combined with hydrogels to form bioinks for the parenchymal cardiac tissue and blood vessels. The ability to print functional vascularized patches according to the patient's anatomy is demonstrated. Blood vessel architecture is further improved by mathematical modeling of oxygen transfer. The structure and function of the patches are studied in vitro, and cardiac cell morphology is assessed after transplantation, revealing elongated cardiomyocytes with massive actinin striation. Finally, as a proof of concept, cellularized human hearts with a natural architecture are printed. These results demonstrate the potential of the approach for engineering personalized tissues and organs, or for drug screening in an appropriate anatomical structure and patient-specific biochemical microenvironment.
AUTHOR Daly, Andrew C. and Kelly, Daniel J.
Title Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers [Abstract]
Year 2019
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Successful tissue engineering requires the generation of human scale implants that mimic the structure, composition and mechanical properties of native tissues. Here, we report a novel biofabrication strategy that enables the engineering of structurally organised tissues by guiding the growth of cellular spheroids within arrays of 3D printed polymeric microchambers. With the goal of engineering stratified articular cartilage, inkjet bioprinting was used to deposit defined numbers of mesenchymal stromal cells (MSCs) and chondrocytes into pre-printed microchambers. These jetted cell suspensions rapidly underwent condensation within the hydrophobic microchambers, leading to the formation of organised arrays of cellular spheroids. The microchambers were also designed to provide boundary conditions to these spheroids, guiding their growth and eventual fusion, leading to the development of stratified cartilage tissue with a depth-dependant collagen fiber architecture that mimicked the structure of native articular cartilage. Furthermore, the composition and biomechanical properties of the bioprinted cartilage was also comparable to the native tissue. Using multi-tool biofabrication, we were also able to engineer anatomically accurate, human scale, osteochondral templates by printing this microchamber system on top of a hypertrophic cartilage region designed to support endochondral bone formation and then maintaining the entire construct in long-term bioreactor culture to enhance tissue development. This bioprinting strategy provides a versatile and scalable approach to engineer structurally organised cartilage tissues for joint resurfacing applications.
AUTHOR Derr, Kristy and Zou, Jinyun and Luo, Keren and Song, Min Jae and Sittampalam, G. Sitta and Zhou, Chao and Michael, Samuel and Ferrer, Marc and Derr, Paige
Title Fully 3D Bioprinted Skin Equivalent Constructs with Validated Morphology and Barrier Function [Abstract]
Year 2019
Journal/Proceedings Tissue Engineering Part C: Methods
Reftype
DOI/URL DOI
Abstract
Development of high throughput, reproducible, three-dimensional bioprinted skin equivalents that are morphologically and functionally comparable to native skin tissue is advancing research in skin diseases, and providing a physiologically relevant platform for the development of therapeutics, transplants for regenerative medicine, and testing of skin products like cosmetics. Current protocols for the production of engineered skin rafts are limited in their ability to control three dimensional geometry of the structure and contraction leading to variability of skin function between constructs. Here we describe a method for the biofabrication of skin equivalents that are fully bioprinted using an open market bioprinter, made with commercially available primary cells and natural hydrogels. The unique hydrogel formulation allows for the production of a human-like skin equivalent with minimal lateral tissue contraction in a multiwell plate format, thus making them suitable for high throughput bioprinting in a single print with fast print and relatively short incubation times. The morphology and barrier function of the fully three-dimensional bioprinted skin equivalents are validated by immunohistochemistry staining, optical coherence tomography, and permeation assays.
AUTHOR Gonzalez-Fernandez, T. and Rathan, S. and Hobbs, C. and Pitacco, P. and Freeman, F. E. and Cunniffe, G. M. and Dunne, N. J. and McCarthy, H. O. and Nicolosi, V. and O'Brien, F. J. and Kelly, D. J.
Title Pore-forming bioinks to enable Spatio-temporally defined gene delivery in bioprinted tissues [Abstract]
Year 2019
Journal/Proceedings Journal of Controlled Release
Reftype
DOI/URL URL DOI
Abstract
The regeneration of complex tissues and organs remains a major clinical challenge. With a view towards bioprinting such tissues, we developed a new class of pore-forming bioink to spatially and temporally control the presentation of therapeutic genes within bioprinted tissues. By blending sacrificial and stable hydrogels, we were able to produce bioinks whose porosity increased with time following printing. When combined with amphipathic peptide-based plasmid DNA delivery, these bioinks supported enhanced non-viral gene transfer to stem cells in vitro. By modulating the porosity of these bioinks, it was possible to direct either rapid and transient (pore-forming bioinks), or slower and more sustained (solid bioinks) transfection of host or transplanted cells in vivo. To demonstrate the utility of these bioinks for the bioprinting of spatially complex tissues, they were next used to zonally position stem cells and plasmids encoding for either osteogenic (BMP2) or chondrogenic (combination of TGF-β3, BMP2 and SOX9) genes within networks of 3D printed thermoplastic fibers to produce mechanically reinforced, gene activated constructs. In vivo, these bioprinted tissues supported the development of a vascularised, bony tissue overlaid by a layer of stable cartilage. When combined with multiple-tool biofabrication strategies, these gene activated bioinks can enable the bioprinting of a wide range of spatially complex tissues.
AUTHOR Laternser, Sandra and Keller, Hansjoerg and Leupin, Olivier and Rausch, Martin and Graf-Hausner, Ursula and Rimann, Markus
Title A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues [Abstract]
Year 2018
Journal/Proceedings SLAS TECHNOLOGY: Translating Life Sciences Innovation
Reftype
DOI/URL DOI
Abstract
Two-dimensional (2D) cell cultures do not reflect the in vivo situation, and thus it is important to develop predictive three-dimensional (3D) in vitro models with enhanced reliability and robustness for drug screening applications. Treatments against muscle-related diseases are becoming more prominent due to the growth of the aging population worldwide. In this study, we describe a novel drug screening platform with automated production of 3D musculoskeletal-tendon-like tissues. With 3D bioprinting, alternating layers of photo-polymerized gelatin-methacryloyl-based bioink and cell suspension tissue models were produced in a dumbbell shape onto novel postholder cell culture inserts in 24-well plates. Monocultures of human primary skeletal muscle cells and rat tenocytes were printed around and between the posts. The cells showed high viability in culture and good tissue differentiation, based on marker gene and protein expressions. Different printing patterns of bioink and cells were explored and calcium signaling with Fluo4-loaded cells while electrically stimulated was shown. Finally, controlled co-printing of tenocytes and myoblasts around and between the posts, respectively, was demonstrated followed by co-culture and co-differentiation. This screening platform combining 3D bioprinting with a novel microplate represents a promising tool to address musculoskeletal diseases.
AUTHOR de Ruijter, Mylène and Ribeiro, Alexandre and Dokter, Inge and Castilho, Miguel and Malda, Jos
Title Simultaneous Micropatterning of Fibrous Meshes and Bioinks for the Fabrication of Living Tissue Constructs [Abstract]
Year 2018
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Fabrication of biomimetic tissues holds much promise for the regeneration of cells or organs that are lost or damaged due to injury or disease. To enable the generation of complex, multicellular tissues on demand, the ability to design and incorporate different materials and cell types needs to be improved. Two techniques are combined: extrusion-based bioprinting, which enables printing of cell-encapsulated hydrogels; and melt electrowriting (MEW), which enables fabrication of aligned (sub)-micrometer fibers into a single-step biofabrication process. Composite structures generated by infusion of MEW fiber structures with hydrogels have resulted in mechanically and biologically competent constructs; however, their preparation involves a two-step fabrication procedure that limits freedom of design of microfiber architectures and the use of multiple materials and cell types. How convergence of MEW and extrusion-based bioprinting allows fabrication of mechanically stable constructs with the spatial distributions of different cell types without compromising cell viability and chondrogenic differentiation of mesenchymal stromal cells is demonstrated for the first time. Moreover, this converged printing approach improves freedom of design of the MEW fibers, enabling 3D fiber deposition. This is an important step toward biofabrication of voluminous and complex hierarchical structures that can better resemble the characteristics of functional biological tissues.
AUTHOR Cunniffe, Gráinne and Gonzalez-Fernandez, Tomas and Daly, Andrew and Nelson Sathy, Binulal and Jeon, Oju and Alsberg, Eben and J. Kelly, Daniel
Title Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering [Abstract]
Year 2017
Journal/Proceedings Tissue Engineering Part A
Reftype
DOI/URL DOI
Abstract
Regeneration of complex bone defects remains a significant clinical challenge. Multi-tool biofabrication has permitted the combination of various biomaterials to create multifaceted composites with tailorable mechanical properties and spatially controlled biological function. In this study we sought to use bioprinting to engineer nonviral gene activated constructs reinforced by polymeric micro-filaments. A gene activated bioink was developed using RGD-g-irradiated alginate and nano-hydroxyapatite (nHA) complexed to plasmid DNA (pDNA). This ink was combined with bonemarrow-derived mesenchymal stemcells (MSCs) and then co-printed with a polycaprolactone supporting mesh to provide mechanical stability to the construct. Reporter genes were first used to demonstrate successful cell transfection using this system, with sustained expression of the transgene detected over 14 days postbioprinting. Delivery of a combination of therapeutic genes encoding for bone morphogenic protein and transforming growth factor promoted robust osteogenesis of encapsulated MSCs in vitro, with enhanced levels of matrix deposition and mineralization observed following the incorporation of therapeutic pDNA. Gene activated MSC-laden constructs were then implanted subcutaneously, directly postfabrication, and were found to support superior levels of vascularization andmineralization compared to cell-free controls. These results validate the use of a gene activated bioink to impart biological functionality to three-dimensional bioprinted constructs.
AUTHOR Theo Desigaux and Leo Comperat and Nathalie Dusserre and Marie-Laure Stachowicz and Malou Lea and Jean-William Dupuy and Anthony Vial and Michael Molinari and Jean-Christophe Fricain and François Paris and Hugo Oliveira
Title 3D bioprinted breast cancer model reveals stroma-mediated modulation of extracellular matrix and radiosensitivity [Abstract]
Year 2024
Journal/Proceedings Bioactive Materials
Reftype
DOI/URL URL DOI
Abstract
Deciphering breast cancer treatment resistance remains hindered by the lack of models that can successfully capture the four-dimensional dynamics of the tumor microenvironment. Here, we show that microextrusion bioprinting can reproducibly generate distinct cancer and stromal compartments integrating cells relevant to human pathology. Our findings unveil the functional maturation of this millimeter-sized model, showcasing the development of a hypoxic cancer core and an increased surface proliferation. Maturation was also driven by the presence of cancer-associated fibroblasts (CAF) that induced elevated microvascular-like structures complexity. Such modulation was concomitant to extracellular matrix remodeling, with high levels of collagen and matricellular proteins deposition by CAF, simultaneously increasing tumor stiffness and recapitulating breast cancer fibrotic development. Importantly, our bioprinted model faithfully reproduced response to treatment, further modulated by CAF. Notably, CAF played a protective role for cancer cells against radiotherapy, facilitating increased paracrine communications. This model holds promise as a platform to decipher interactions within the microenvironment and evaluate stroma-targeted drugs in a context relevant to human pathology.
AUTHOR Vázquez-Aristizabal, Paula and Henriksen-Lacey, Malou and García-Astrain, Clara and Jimenez de Aberasturi, Dorleta and Langer, Judith and Epelde, Claudia and Litti, Lucio and Liz-Marzán, Luis M. and Izeta, Ander
Title Biofabrication and Monitoring of a 3D Printed Skin Model for Melanoma [Abstract]
Year 2024
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract There is an unmet need for in vitro cancer models that emulate the complexity of human tissues. 3D-printed solid tumor micromodels based on decellularized extracellular matrices (dECMs) recreate the biomolecule-rich matrix of native tissue. Herein a 3D in vitro metastatic melanoma model that is amenable for drug screening purposes and recapitulates features of both the tumor and the skin microenvironment is described. Epidermal, basement membrane, and dermal biocompatible inks are prepared by means of combined chemical, mechanical, and enzymatic processes. Bioink printability is confirmed by rheological assessment and bioprinting, and bioinks are subsequently combined with melanoma cells and dermal fibroblasts to build complex 3D melanoma models. Cells are tracked by confocal microscopy and surface-enhanced Raman spectroscopy (SERS) mapping. Printed dECMs and cell tracking allow modeling of the initial steps of metastatic disease, and may be used to better understand melanoma cell behavior and response to drugs.
AUTHOR Xavier Barceló and Kian Eichholz and Inês Gonçalves and Gabriela S Kronemberger and Alexandre Dufour and Orquidea Garcia and Daniel J Kelly
Title Bioprinting of scaled-up meniscal grafts by spatially patterning phenotypically distinct meniscus progenitor cells within melt electrowritten scaffolds [Abstract]
Year 2023
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Meniscus injuries are a common problem in orthopedic medicine and are associated with a significantly increased risk of developing osteoarthritis. While developments have been made in the field of meniscus regeneration, the engineering of cell-laden constructs that mimic the complex structure, composition and biomechanics of the native tissue remains a significant challenge. This can be linked to the use of cells that are not phenotypically representative of the different zones of the meniscus, and an inability to direct the spatial organization of engineered meniscal tissues. In this study we investigated the potential of zone-specific meniscus progenitor cells (MPCs) to generate functional meniscal tissue following their deposition into melt electrowritten (MEW) scaffolds. We first confirmed that fibronectin selected MPCs from the inner and outer regions of the meniscus maintain their differentiation capacity with prolonged monolayer expansion, opening their use within advanced biofabrication strategies. By depositing MPCs within MEW scaffolds with elongated pore shapes, which functioned as physical boundaries to direct cell growth and extracellular matrix production, we were able to bioprint anisotropic fibrocartilaginous tissues with preferentially aligned collagen networks. Furthermore, by using MPCs isolated from the inner (iMPCs) and outer (oMPCs) zone of the meniscus, we were able to bioprint phenotypically distinct constructs mimicking aspects of the native tissue. An iterative MEW process was then implemented to print scaffolds with a similar wedged-shaped profile to that of the native meniscus, into which we deposited iMPCs and oMPCs in a spatially controlled manner. This process allowed us to engineer sulfated glycosaminoglycan and collagen rich constructs mimicking the geometry of the meniscus, with MPCs generating a more fibrocartilage-like tissue compared to the mesenchymal stromal/stem cells. Taken together, these results demonstrate how the convergence of emerging biofabrication platforms with tissue-specific progenitor cells can enable the engineering of complex tissues such as the meniscus.
AUTHOR Yao, Y. and Raymond, J. E. and Kauffmann, F. and Maekawa, S. and Sugai, J. V. and Lahann, J. and Giannobile, W. V.
Title Multicompartmental Scaffolds for Coordinated Periodontal Tissue Engineering [Abstract]
Year 2023
Journal/Proceedings Journal of Dental Research
Reftype
DOI/URL DOI
Abstract
Successful periodontal repair and regeneration requires the coordinated responses from soft and hard tissues as well as the soft tissue–to–bone interfaces. Inspired by the hierarchical structure of native periodontal tissues, tissue engineering technology provides unique opportunities to coordinate multiple cell types into scaffolds that mimic the natural periodontal structure in vitro. In this study, we designed and fabricated highly ordered multicompartmental scaffolds by melt electrowriting, an advanced 3-dimensional (3D) printing technique. This strategy attempted to mimic the characteristic periodontal microenvironment through multicompartmental constructs comprising 3 tissue-specific regions: 1) a bone compartment with dense mesh structure, 2) a ligament compartment mimicking the highly aligned periodontal ligaments (PDLs), and 3) a transition region that bridges the bone and ligament, a critical feature that differentiates this system from mono- or bicompartmental alternatives. The multicompartmental constructs successfully achieved coordinated proliferation and differentiation of multiple cell types in vitro within short time, including both ligamentous- and bone-derived cells. Long-term 3D coculture of primary human osteoblasts and PDL fibroblasts led to a mineral gradient from calcified to uncalcified regions with PDL-like insertions within the transition region, an effect that is challenging to achieve with mono- or bicompartmental platforms. This process effectively recapitulates the key feature of interfacial tissues in periodontium. Collectively, this tissue-engineered approach offers a fundament for engineering periodontal tissue constructs with characteristic 3D microenvironments similar to native tissues. This multicompartmental 3D printing approach is also highly compatible with the design of next-generation scaffolds, with both highly adjustable compartmentalization properties and patient-specific shapes, for multitissue engineering in complex periodontal defects.
AUTHOR Silberman, Eric and Oved, Hadas and Namestnikov, Michael and Shapira, Assaf and Dvir, Tal
Title Post-Maturation Reinforcement of 3d-Printed Vascularized Cardiac Tissues [Abstract]
Year 2023
Journal/Proceedings Advanced Materials
Reftype
DOI/URL DOI
Abstract
Abstract Despite advances in biomaterials engineering, a large gap remains between the weak mechanical properties that can be achieved with natural materials and the strength of synthetic materials. Here, we present a method for reinforcing an engineered cardiac tissue fabricated from differentiated iPSCs and an ECM-based hydrogel in a manner that is fully biocompatible. The reinforcement occurs as a post-fabrication step, which allows for the use of 3D printing technology to generate thick, fully cellularized, and vascularized cardiac tissues. After tissue assembly and during the maturation process in a soft hydrogel, a small, tissue-penetrating reinforcer is deployed, leading to a significant increase in the tissue's mechanical properties. The tissue's robustness is demonstrated by injecting the tissue in a simulated minimally invasive procedure and showing that the tissue is functional and undamaged at the nano-, micro-, and macro-scales. This article is protected by copyright. All rights reserved
AUTHOR Ainsworth, Madison J. and Lotz, Oliver and Gilmour, Aaron and Zhang, Anyu and Chen, Michael J. and McKenzie, David R. and Bilek, Marcela M. M. and Malda, Jos and Akhavan, Behnam and Castilho, Miguel
Title Covalent Protein Immobilization on 3D-Printed Microfiber Meshes for Guided Cartilage Regeneration [Abstract]
Year 2022
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract Current biomaterial-based strategies explored to treat articular cartilage defects have failed to provide adequate physico-chemical cues in order to guide functional tissue regeneration. Here, it is hypothesized that atmospheric-pressure plasma (APPJ) treatment and melt electrowriting (MEW) will produce microfiber support structures with covalently-immobilized transforming growth factor beta-1 (TGFβ1) that can stimulate the generation of functional cartilage tissue. The effect of APPJ operational speeds to activate MEW polycaprolactone meshes for immobilization of TGFβ1 is first investigated and chondrogenic differentiation and neo-cartilage production are assessed in vitro. All APPJ speeds test enhanced hydrophilicity of the meshes, with the slow treatment speed having significantly less CC/CH and more COOH than the untreated meshes. APPJ treatment increases TGFβ1 loading efficiency. Additionally, in vitro experiments highlight that APPJ-based TGFβ1 attachment to the scaffolds is more advantageous than direct supplementation within the medium. After 28 days of culture, the group with immobilized TGFβ1 has significantly increased compressive modulus (more than threefold) and higher glycosaminoglycan production (more than fivefold) than when TGFβ1 is supplied through the medium. These results demonstrate that APPJ activation allows reagent-free, covalent immobilization of TGFβ1 on microfiber meshes and, importantly, that the biofunctionalized meshes can stimulate neo-cartilage matrix formation. This opens new perspectives for guided tissue regeneration.
AUTHOR Park, Hae Sang and Lee, Ji Seung and Kim, Chang-Beom and Lee, Kwang-Ho and Hong, In-Sun and Jung, Harry and Lee, Hanna and Lee, Young Jin and Ajiteru, Olatunji and Sultan, Md Tipu and Lee, Ok Joo and Kim, Soon Hee and Park, Chan Hum
Title Fluidic integrated 3D bioprinting system to sustain cell viability towards larynx fabrication [Abstract]
Year 2022
Journal/Proceedings Bioengineering & Translational Medicine
Reftype
DOI/URL DOI
Abstract
Abstract Herein, we report the first study to create a three-dimensional (3D) bioprinted artificial larynx for whole-laryngeal replacement. Our 3D bio-printed larynx was generated using extrusion-based 3D bioprinter with rabbit's chondrocyte-laden gelatin methacryloyl (GelMA)/glycidyl-methacrylated hyaluronic acid (GMHA) hybrid bioink. We used a polycaprolactone (PCL) outer framework incorporated with pores to achieve the structural strength of printed constructs, as well as to provide a suitable microenvironment to support printed cells. Notably, we established a novel fluidics supply (FS) system that simultaneously supplies basal medium together with a 3D bioprinting process, thereby improving cell survival during the printing process. Our results showed that the FS system enhanced post-printing cell viability, which enabled the generation of a large-scale cell-laden artificial laryngeal framework. Additionally, the incorporation of the PCL outer framework with pores and inner hydrogel provides structural stability and sufficient nutrient/oxygen transport. An animal study confirmed that the transplanted 3D bio-larynx successfully maintained the airway. With further development, our new strategy holds great potential for fabricating human-scale larynxes with in vivo-like biological functions for laryngectomy patients.
AUTHOR Roopesh, Ramesh Pai and Muthusamy, Senthilkumar and Velayudhan, Shiny and Sabareeswaran, Arumugham and Anil Kumar, Pallickaveedu RajanAsari
Title High-throughput production of liver parenchymal microtissues and enrichment of organ-specific functions in gelatin methacrylamide microenvironment [Abstract]
Year 2022
Journal/Proceedings Biotechnology and Bioengineering
Reftype
DOI/URL DOI
Abstract
Abstract Liver parenchymal microtissues (LPMTs) are three-dimensional (3D) aggregates of hepatocytes that recapitulate in vivo-like cellular assembly. They are considered as a valuable model to study drug metabolism, disease biology, and serve as ideal building blocks for liver tissue engineering. However, their integration into the mainstream drug screening process has been hindered due to the lack of simple, rapid techniques to produce a large number of uniform microtissues and preserve their structural–functional integrity over the long term. Here, we present a high-throughput methodology to produce LPMTs in a novel, economic, and reusable Hanging-drop Culture Chamber (HdCC). A drop-on-demand bioprinting approach was optimized to generate droplets of HepG2 cell suspension on a polyethylene terephthalate substrate. The substrates carrying droplets were placed inside a novel HdCC and incubated to obtain 1600 LPMTs having a size of 200–300 μm. Tissue size, cell viability, cellular arrangement and polarity, and insulin-mediated glucose uptake by LPMTs were analyzed. The microtissues were viable and exhibited an active response to insulin stimulation. Cells within the microtissue reorganized to form hepatic plate-like structures and expressed apical (Multidrug Resistance Protein 2 [MRP2]) and epithelial (Zonula Occludens 1 [ZO1]) markers. Further to maintain the structural integrity and enhance the functional capabilities, LPMTs were sandwiched within gelatin methacrylamide (GelMA) hydrogel and the liver-specific functions were monitored for 2 weeks. The results showed that the 3D structure of LPMTs in GelMA sandwich was maintained while the albumin secretion, urea synthesis, and cytochrome P450 activity were enhanced compared with LPMTs in suspension. In conclusion, this study presents a novel culture chamber for mass production of microtissues and a method for enhancing organ-specific functions of LPMTs in vitro.
AUTHOR Dusserre, Nathalie and Stachowicz, Marie-Laure and Medina, Chantal and Henri, Baptiste and Fricain, Jean-Christophe and Paris, François and Oliveira, Hugo
Title Microvalve bioprinting as a biofabrication tool to decipher tumor and endothelial cell crosstalk: Application to a simplified glioblastoma model [Abstract]
Year 2021
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Bioprinting technologies are powerful new bioengineering tools that can spatially reproduce multiple microenvironmental cues in a highly controlled, tunable, and precise manner. In this study, microvalve bioprinting technology was successfully used to print in close proximity endothelial and tumor cells at higher concentrations than previously thought possible, while preserving their viability. We propose that the resulting multicellular models, bioprinted in a controlled extracellular matrix microenvironment, are well-suited to study endothelial and cancer cell crosstalk within a cancer niche. As proof of concept, microvalve bioprinting was applied to the bioengineering of a simplified glioblastoma model in which biological processes involved in tumor expansion, such as tumor cell invasion patterns, cell proliferation, and senescence could be easily visualized and quantified. In this model, U251 glioblastoma cells and primary human umbilical vein endothelial cells (HUVECs) exhibited good printability and high viability after printing. U251 cells formed physiologically relevant clusters and invasion margins, while HUVECs generated vascular-like networks when primary fibroblasts were added to the model. An oxidative stress mimicking the one encountered within a tumor microenvironment during radiotherapy or genotoxic chemotherapy was shown to both diminish endothelial cells proliferation and to increase their senescence. Results also suggested that stressed glioblastoma cells may alter normal endothelial cell proliferation but not impact their senescence. This data demonstrates the potential of microvalve bioprinting to fabricate in vitro models that can help decipher endothelial and tumor cell crosstalk, within controlled and modulable microenvironments, and can then be used to address critical questions in the context of cancer recurrence.
AUTHOR Freeman, Fiona E. and Pitacco, Pierluca and van Dommelen, Lieke H. A. and Nulty, Jessica and Browe, David C. and Shin, Jung-Youn and Alsberg, Eben and Kelly, Daniel J.
Title 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration [Abstract]
Year 2020
Journal/Proceedings Science Advances
Reftype
DOI/URL URL DOI
Abstract
Therapeutic growth factor delivery typically requires supraphysiological dosages, which can cause undesirable off-target effects. The aim of this study was to 3D bioprint implants containing spatiotemporally defined patterns of growth factors optimized for coupled angiogenesis and osteogenesis. Using nanoparticle functionalized bioinks, it was possible to print implants with distinct growth factor patterns and release profiles spanning from days to weeks. The extent of angiogenesis in vivo depended on the spatial presentation of vascular endothelial growth factor (VEGF). Higher levels of vessel invasion were observed in implants containing a spatial gradient of VEGF compared to those homogenously loaded with the same total amount of protein. Printed implants containing a gradient of VEGF, coupled with spatially defined BMP-2 localization and release kinetics, accelerated large bone defect healing with little heterotopic bone formation. This demonstrates the potential of growth factor printing, a putative point of care therapy, for tightly controlled tissue regeneration.
AUTHOR Lee, Ji Seung and Park, Hae Sang and Jung, Harry and Lee, Hanna and Hong, Heesun and Lee, Young Jin and Suh, Ye Ji and Lee, Ok Joo and Kim, Soon Hee and Park, Chan Hum
Title 3D-printable photocurable bioink for cartilage regeneration of tonsil-derived mesenchymal stem cells [Abstract]
Year 2020
Journal/Proceedings Additive Manufacturing
Reftype
DOI/URL URL DOI
Abstract
Cartilage regeneration is challenging because of the poor intrinsic self-repair capacity of avascular tissue. Three-dimensional (3D) bioprinting has gained significant attention in the field of tissue engineering and is a promising technology to overcome current difficulties in cartilage regeneration. Although bioink is an essential component of bioprinting technology, several challenges remain in satisfying different requirements for ideal bioink, including biocompatibility and printability based on specific biological requirements. Gelatin and hyaluronic acid (HA) have been shown to be ideal biomimetic hydrogel sources for cartilage regeneration. However, controlling their structure, mechanical properties, biocompatibility, and degradation rate for cartilage repair remains a challenge. Here, we show a photocurable bioink created by hybridization of gelatin methacryloyl (GelMA) and glycidyl-methacrylated HA (GMHA) for material extrusion 3D bioprinting in cartilage regeneration. GelMA and GMHA were mixed in various ratios, and the mixture of 7% GelMA and 5% GMHA bioink (G7H5) demonstrated the most reliable mechanical properties, rheological properties, and printability. This G7H5 bioink allowed us to build a highly complex larynx structure, including the hyoid bone, thyroid cartilage, cricoid cartilage, arytenoid cartilage, and cervical trachea. This bioink also provided an excellent microenvironment for chondrogenesis of tonsil-derived mesenchymal stem cells (TMSCs) in vitro and in vivo. In summary, this study presents the ideal formulation of GelMA/GMHA hybrid bioink to generate a well-suited photocurable bioink for cartilage regeneration of TMSCs using a material extrusion bioprinter, and could be applied to cartilage tissue engineering.
AUTHOR Liu, Xue and Michael, Samuel and Bharti, Kapil and Ferrer, Marc and Song, Min Jae
Title A biofabricated vascularized skin model of atopic dermatitis for preclinical studies [Abstract]
Year 2020
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Three-dimensional (3D) biofabrication techniques enable the production of multicellular tissue models as assay platforms for drug screening. The increased cellular and physiological complexity in these 3D tissue models should recapitulate the relevant biological environment found in the body. Here we describe the use of 3D bioprinting techniques to fabricate skin equivalent tissues of varying physiological complexity, including human epidermis, non-vascularized and vascularized full-thickness skin tissue equivalents, in a multi-well platform to enable drug screening. Human keratinocytes, fibroblasts, and pericytes, and induced pluripotent stem cell (iPSC)-derived endothelial cells were used in the biofabrication process to produce the varying complexity. The skin equivalents exhibit the correct structural markers of dermis and epidermis stratification, with physiological functions of the skin barrier. The robustness, versatility and reproducibility of the biofabrication techniques are further highlighted by the generation of atopic dermatitis (AD)-disease like tissues. These AD models demonstrate several clinical hallmarks of the disease, including: (i) spongiosis and hyperplasia; (ii) early and terminal expression of differentiation proteins; and (iii) increases in levels of pro-inflammatory cytokines. We show the pre-clinical relevance of the biofabricated AD tissue models to correct disease phenotype by testing the effects of dexamethasone, an anti-inflammatory corticosteroid, and three Janus Kinase inhibitors from clinical trials for AD. This study demonstrates the development of a versatile and reproducible bioprinting approach to create human skin equivalents with a range of cellular complexity for disease modelling. In addition, we establish several assay readouts that are quantifiable, robust, AD relevant, and can be scaled up for compound screening. The results show that the cellular complexity of the tissues develops a more physiologically relevant AD disease model. Thus, the skin models in this study offer an in vitro approach for the rapid understanding of pathological mechanisms, and testing for efficacy of action and toxic effects of drugs.
AUTHOR Colle, Julien and Blondeel, Phillip and De Bruyne, Axelle and Bochar, Silke and Tytgat, Liesbeth and Vercruysse, Chris and Van Vlierberghe, Sandra and Dubruel, Peter and Declercq, Heidi
Title Bioprinting predifferentiated adipose-derived mesenchymal stem cell spheroids with methacrylated gelatin ink for adipose tissue engineering [Abstract]
Year 2020
Journal/Proceedings Journal of Materials Science: Materials in Medicine
Reftype Colle2020
DOI/URL DOI
Abstract
The increasing number of mastectomies results in a greater demand for breast reconstruction characterized by simplicity and a low complication profile. Reconstructive surgeons are investigating tissue engineering (TE) strategies to overcome the current surgical drawbacks. 3D bioprinting is the rising technique for the fabrication of large tissue constructs which provides a potential solution for unmet clinical needs in breast reconstruction building on decades of experience in autologous fat grafting, adipose-derived mesenchymal stem cell (ASC) biology and TE. A scaffold was bioprinted using encapsulated ASC spheroids in methacrylated gelatin ink (GelMA). Uniform ASC spheroids with an ideal geometry and diameter for bioprinting were formed, using a high-throughput non-adhesive agarose microwell system. ASC spheroids in adipogenic differentiation medium (ADM) were evaluated through live/dead staining, histology (HE, Oil Red O), TEM and RT-qPCR. Viable spheroids were obtained for up to 14 days post-printing and showed multilocular microvacuoles and successful differentiation toward mature adipocytes shown by gene expression analysis. Moreover, spheroids were able to assemble at random in GelMA, creating a macrotissue. Combining the advantage of microtissues to self-assemble and the controlled organization by bioprinting technologies, these ASC spheroids can be useful as building blocks for the engineering of soft tissue implants.
AUTHOR Daly, Andrew C. and Pitacco, Pierluca and Nulty, Jessica and Cunniffe, Gráinne M. and Kelly, Daniel J.
Title 3D printed microchannel networks to direct vascularisation during endochondral bone repair [Abstract]
Year 2018
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Bone tissue engineering strategies that recapitulate the developmental process of endochondral ossification offer a promising route to bone repair. Clinical translation of such endochondral tissue engineering strategies will require overcoming a number of challenges, including the engineering of large and often anatomically complex cartilage grafts, as well as the persistence of core regions of avascular cartilage following their implantation into large bone defects. Here 3D printing technology is utilized to develop a versatile and scalable approach to guide vascularisation during endochondral bone repair. First, a sacrificial pluronic ink was used to 3D print interconnected microchannel networks in a mesenchymal stem cell (MSC) laden gelatin-methacryloyl (GelMA) hydrogel. These constructs (with and without microchannels) were next chondrogenically primed in vitro and then implanted into critically sized femoral bone defects in rats. The solid and microchanneled cartilage templates enhanced bone repair compared to untreated controls, with the solid cartilage templates (without microchannels) supporting the highest levels of total bone formation. However, the inclusion of 3D printed microchannels was found to promote osteoclast/immune cell invasion, hydrogel degradation, and vascularisation following implantation. In addition, the endochondral bone tissue engineering strategy was found to support comparable levels of bone healing to BMP-2 delivery, whilst promoting lower levels of heterotopic bone formation, with the microchanneled templates supporting the lowest levels of heterotopic bone formation. Taken together, these results demonstrate that 3D printed hypertrophic cartilage grafts represent a promising approach for the repair of complex bone fractures, particularly for larger defects where vascularisation will be a key challenge.
AUTHOR Ng, Wei Long and Qi, Jovina Tan Zhi and Yeong, Wai Yee and Naing, May Win
Title Proof-of-concept: 3D bioprinting of pigmented human skin constructs [Abstract]
Year 2018
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Three-dimensional (3D) pigmented human skin constructs have been fabricated using a 3D bioprinting approach. The 3D pigmented human skin constructs are obtained from using three different types of skin cells (keratinocytes, melanocytes and fibroblasts from three different skin donors) and they exhibit similar constitutive pigmentation (pale pigmentation) as the skin donors. A two-step drop-on-demand bioprinting strategy facilitates the deposition of cell droplets to emulate the epidermal melanin units (pre-defined patterning of keratinocytes and melanocytes at the desired positions) and manipulation of the microenvironment to fabricate 3D biomimetic hierarchical porous structures found in native skin tissue. The 3D bioprinted pigmented skin constructs are compared to the pigmented skin constructs fabricated by conventional a manual-casting approach; in-depth characterization of both the 3D pigmented skin constructs has indicated that the 3D bioprinted skin constructs have a higher degree of resemblance to native skin tissue in term of the presence of well-developed stratified epidermal layers and the presence of a continuous layer of basement membrane proteins as compared to the manually-cast samples. The 3D bioprinting approach facilitates the development of 3D in vitro pigmented human skin constructs for potential toxicology testing and fundamental cell biology research.
AUTHOR Padilla-Lopategui, Soraya and Ligorio, Cosimo and Bu, Wenhuan and Yin, Chengcheng and Laurenza, Domenico and Redondo, Carlos and Owen, Robert and Sun, Hongchen and Rose, Felicity R.A.J. and Iskratsch, Thomas and Mata, Alvaro
Title Biocooperative Regenerative Materials by Harnessing Blood-Clotting and Peptide Self-Assembly [Abstract]
Year 2024
Journal/Proceedings Advanced Materials
Reftype
DOI/URL DOI
Abstract
Abstract The immune system has evolved to heal small ruptures and fractures with remarkable efficacy through regulation of the regenerative hematoma (RH); a rich and dynamic environment that coordinates numerous molecular and cellular processes to achieve complete repair. Here, a biocooperative approach that harnesses endogenous molecules and natural healing to engineer personalized regenerative materials is presented. Peptide amphiphiles (PAs) are co-assembled with blood components during coagulation to engineer a living material that exhibits key compositional and structural properties of the RH. By exploiting non-selective and selective PA-blood interactions, the material can be immediately manipulated, mechanically-tuned, and 3D printed. The material preserves normal platelet behavior, generates and provides a continuous source of growth factors, and promotes in vitro growth of mesenchymal stromal cells, endothelial cells, and fibroblasts. Furthermore, using a personalized autologous approach to convert whole blood into PA-blood gel implants, bone regeneration is shown in a critical-sized rat calvarial defect. This study provides proof-of-concept for a biocooperative approach that goes beyond biomimicry by using mechanisms that Nature has evolved to heal as tools to engineer accessible, personalized, and regenerative biomaterials that can be readily formed at point of use.
AUTHOR Wu, Dongwei and Pang, Shumin and Berg, Johanna and Mei, Yikun and Ali, Ahmed S. M. and Röhrs, Viola and Tolksdorf, Beatrice and Hagenbuchner, Judith and Ausserlechner, Michael J. and Deubzer, Hedwig E. and Gurlo, Aleksander and Kurreck, Jens
Title Bioprinting of Perfusable Vascularized Organ Models for Drug Development via Sacrificial-Free Direct Ink Writing [Abstract]
Year 2024
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract 3D bioprinting enables the fabrication of human organ models that can be used for various fields of biomedical research, including oncology and infection biology. An important challenge, however, remains the generation of vascularized, perfusable 3D models that closely simulate natural physiology. Here, a novel direct ink writing (DIW) approach is described that can produce vascularized organ models without using sacrificial materials during fabrication. The high resolution of the method allows the one-step generation of various sophisticated hollow geometries. This sacrificial-free DIW (SF-DIW) approach is used to fabricate hepatic metastasis models of various cancer types and different formats for investigating the cytostatic activity of anti-cancer drugs. To this end, the models are incorporated into a newly developed perfusion system with integrated micropumps and an agar casting step that improves the physiological features of the bioprinted tissues. It is shown that the hepatic environment of the tumor models is capable of activating a prodrug, which inhibits breast cancer growth. This versatile SF-DIW approach is able to fabricate complicated perfusable constructs or microfluidic chips in a straightforward and cost-efficient manner. It can also be easily adapted to other cell types for generating vascularized organ tissues or cancer models that may support the development of new therapeutics.
AUTHOR Biswas, Arpan and Apsite, Indra and Rosenfeldt, Sabine and Bite, Ivita and Vitola, Virginija and Ionov, Leonid
Title Modular photoorigami-based 4D manufacturing of vascular junction elements [Abstract]
Year 2024
Journal/Proceedings J. Mater. Chem. B
Reftype
DOI/URL DOI
Abstract
Four-dimensional (4D) printing{,} combining three-dimensional (3D) printing with time-dependent stimuli-responsive shape transformation{,} eliminates the limitations of the conventional 3D printing technique for the fabrication of complex hollow constructs. However{,} existing 4D printing techniques have limitations in terms of the shapes that can be created using a single shape-changing object. In this paper{,} we report an advanced 4D fabrication approach for vascular junctions{,} particularly T-junctions{,} using the 4D printing technique based on coordinated sequential folding of two or more specially designed shape-changing elements. In our approach{,} the T-junction is split into two components{,} and each component is 4D printed using different synthesized shape memory polyurethanes and their nanohybrids{,} which have been synthesized with varying hard segment contents and by incorporating different weight percentages of photo-responsive copper sulfide-polyvinyl pyrrolidone nanoparticles. The formation of a T-junction is demonstrated by assigning different shape memory behaviors to each component of the T-junction. A cell culture study with human umbilical vein endothelial cells reveals that the cells proliferate over time{,} and almost 90% of cells remain viable on day 7. Finally{,} the formation of the T-junction in the presence of near-infrared light has been demonstrated after seeding the endothelial cells on the programmed flat surface of the two components and fluorescence microscopy at day 3 and 7 reveals that the cells adhered well and continue to proliferate over time. Hence{,} the proposed alternative approach has huge potential and can be used to fabricate vascular junctions in the future.
AUTHOR Aliyazdi, Samy and Frisch, Sarah and Hidalgo, Alberto and Frank, Nicolas and Krug, Daniel and Müller, Rolf and Schaefer, Ulrich F. and Vogt, Thomas and Loretz, Brigitta and Lehr, Claus-Michael
Title 3D bioprinting of E. coli MG1655 biofilms on human lung epithelial cells for building complex in vitro infection models [Abstract]
Year 2023
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Biofilm-associated infections are causing over half a million deaths each year, raising the requirement for innovative therapeutic approaches. For developing novel therapeutics against bacterial biofilm infections, complex in vitro models that allow to study drug effects on both pathogens and host cells as well as their interaction under controlled, physiologically relevant conditions appear as highly desirable. Nonetheless, building such models is quite challenging because (1) rapid bacterial growth and release of virulence factors may lead to premature host cell death and (2) maintaining the biofilm status under suitable co-culture requires a highly controlled environment. To approach that problem, we chose 3D bioprinting. However, printing living bacterial biofilms in defined shapes on human cell models, requires bioinks with very specific properties. Hence, this work aims to develop a 3D bioprinting biofilm method to build robust in vitro infection models. Based on rheology, printability and bacterial growth, a bioink containing 3% gelatin and 1% alginate in Luria-Bertani-medium was found optimal for Escherichia coli MG1655 biofilms. Biofilm properties were maintained after printing, as shown visually via microscopy techniques as well as in antibiotic susceptibility assays. Metabolic profile analysis of bioprinted biofilms showed high similarity to native biofilms. After printing on human bronchial epithelial cells (Calu-3), the shape of printed biofilms was maintained even after dissolution of non-crosslinked bioink, while no cytotoxicity was observed over 24 h. Therefore, the approach presented here may provide a platform for building complex in vitro infection models comprising bacterial biofilms and human host cells.
AUTHOR Dominika Zielinska and Philipp Fisch and Ueli Moehrlen and Sergio Finkielsztein and Thomas Linder and Marcy Zenobi-Wong and Thomas Biedermann and Agnes S. Klar
Title Combining bioengineered human skin with bioprinted cartilage for ear reconstruction [Abstract]
Year 2023
Journal/Proceedings Science Advances
Reftype
DOI/URL DOI
Abstract
Microtia is a congenital disorder that manifests as a malformation of the external ear leading to psychosocial problems in affected children. Here, we present a tissue-engineered treatment approach based on a bioprinted autologous auricular cartilage construct (EarCartilage) combined with a bioengineered human pigmented and prevascularized dermo-epidermal skin substitute (EarSkin) tested in immunocompromised rats. We confirmed that human-engineered blood capillaries of EarSkin connected to the recipient’s vasculature within 1 week, enabling rapid blood perfusion and epidermal maturation. Bioengineered EarSkin displayed a stratified epidermis containing mature keratinocytes and melanocytes. The latter resided within the basal layer of the epidermis and efficiently restored the skin color. Further, in vivo tests demonstrated favorable mechanical stability of EarCartilage along with enhanced extracellular matrix deposition. In conclusion, EarCartilage combined with EarSkin represents a novel approach for the treatment of microtia with the potential to circumvent existing limitations and improve the aesthetic outcome of microtia reconstruction. A therapy for microtia patients utilizes bioprinted auricular cartilage combined with a tissue-engineered skin graft.
AUTHOR Huang, Boyang and Wang, Yaxin and Vyas, Cian and Bartolo, Paulo
Title Crystal Growth of 3D Poly(ε-caprolactone) Based Bone Scaffolds and Its Effects on the Physical Properties and Cellular Interactions [Abstract]
Year 2022
Journal/Proceedings Advanced Science
Reftype
DOI/URL URL DOI
Abstract
Abstract Extrusion additive manufacturing is widely used to fabricate polymer-based 3D bone scaffolds. However, the insight views of crystal growths, scaffold features and eventually cell-scaffold interactions are still unknown. In this work, melt and solvent extrusion additive manufacturing techniques are used to produce scaffolds considering highly analogous printing conditions. Results show that the scaffolds produced by these two techniques present distinct physiochemical properties, with melt-printed scaffolds showing stronger mechanical properties and solvent-printed scaffolds showing rougher surface, higher degradation rate, and faster stress relaxation. These differences are attributed to the two different crystal growth kinetics, temperature-induced crystallization (TIC) and strain-induced crystallization (SIC), forming large/integrated spherulite-like and a small/fragmented lamella-like crystal regions respectively. The stiffer substrate of melt-printed scaffolds contributes to higher ratio of nuclear Yes-associated protein (YAP) allocation, favoring cell proliferation and differentiation. Faster relaxation and degradation of solvent-printed scaffolds result in dynamic surface, contributing to an early-stage faster osteogenesis differentiation.
AUTHOR Kajtez, Janko and Wesseler, Milan Finn and Birtele, Marcella and Khorasgani, Farinaz Riyahi and Rylander Ottosson, Daniella and Heiskanen, Arto and Kamperman, Tom and Leijten, Jeroen and Martínez-Serrano, Alberto and Larsen, Niels B. and Angelini, Thomas E. and Parmar, Malin and Lind, Johan U. and Emnéus, Jenny
Title Embedded 3D Printing in Self-Healing Annealable Composites for Precise Patterning of Functionally Mature Human Neural Constructs [Abstract]
Year 2022
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Human in vitro models of neural tissue with tunable microenvironment and defined spatial arrangement are needed to facilitate studies of brain development and disease. Towards this end, embedded printing inside granular gels holds great promise as it allows precise patterning of extremely soft tissue constructs. However, granular printing support formulations are restricted to only a handful of materials. Therefore, there has been a need for novel materials that take advantage of versatile biomimicry of bulk hydrogels while providing high-fidelity support for embedded printing akin to granular gels. To address this need, Authors present a modular platform for bioengineering of neuronal networks via direct embedded 3D printing of human stem cells inside Self-Healing Annealable Particle-Extracellular matrix (SHAPE) composites. SHAPE composites consist of soft microgels immersed in viscous extracellular-matrix solution to enable precise and programmable patterning of human stem cells and consequent generation mature subtype-specific neurons that extend projections into the volume of the annealed support. The developed approach further allows multi-ink deposition, live spatial and temporal monitoring of oxygen levels, as well as creation of vascular-like channels. Due to its modularity and versatility, SHAPE biomanufacturing toolbox has potential to be used in applications beyond functional modeling of mechanically sensitive neural constructs.
AUTHOR Kessel, Benjamin and Lee, Mihyun and Bonato, Angela and Tinguely, Yann and Tosoratti, Enrico and Zenobi-Wong, Marcy
Title 3D Bioprinting of Macroporous Materials Based on Entangled Hydrogel Microstrands [Abstract]
Year 2020
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Hydrogels are excellent mimetics of mammalian extracellular matrices and have found widespread use in tissue engineering. Nanoporosity of monolithic bulk hydrogels, however, limits mass transport of key biomolecules. Microgels used in 3D bioprinting achieve both custom shape and vastly improved permissivity to an array of cell functions, however spherical-microbead-based bioinks are challenging to upscale, are inherently isotropic, and require secondary crosslinking. Here, bioinks based on high-aspect-ratio hydrogel microstrands are introduced to overcome these limitations. Pre-crosslinked, bulk hydrogels are deconstructed into microstrands by sizing through a grid with apertures of 40–100 µm. The microstrands are moldable and form a porous, entangled structure, stable in aqueous medium without further crosslinking. Entangled microstrands have rheological properties characteristic of excellent bioinks for extrusion bioprinting. Furthermore, individual microstrands align during extrusion and facilitate the alignment of myotubes. Cells can be placed either inside or outside the hydrogel phase with >90% viability. Chondrocytes co-printed with the microstrands deposit abundant extracellular matrix, resulting in a modulus increase from 2.7 to 780.2 kPa after 6 weeks of culture. This powerful approach to deconstruct bulk hydrogels into advanced bioinks is both scalable and versatile, representing an important toolbox for 3D bioprinting of architected hydrogels.
AUTHOR Azim, N. and Hart, C. and Sommerhage, F. and Aubin, M. and Hickman, J. J. and Rajaraman, S.
Title Precision Plating of Human Electrogenic Cells on Microelectrodes Enhanced With Precision Electrodeposited Nano-Porous Platinum for Cell-Based Biosensing Applications [Abstract]
Year 2019
Journal/Proceedings Journal of Microelectromechanical Systems
Reftype
DOI/URL URL DOI
Abstract
Microelectrode Arrays are established platforms for biosensing applications; however, limitations in electrode impedance and cell-electrode coupling still exist. In this paper, the SNR of 25 μm diameter gold (Au) microelectrodes was improved by decreasing the impedance with precision electrodeposition. SEM determined that N-P Pt. microelectrodes had nanoporous structures that filled the insulation cylinders. EIS, CV, and RMS noise measurements concluded that the optimized electrodeposition of N-P Pt. led to a lowered impedance of 18.36 kΩ ± 2.6 kΩ at 1 kHz, a larger double layer capacitance of 73 nF, and lowered RMS noise of 2.08±0.16 μV as compared to the values for Au of 159 kΩ ± 28 kΩ at 1 kHz, 17nF, and 3.14 ± 0.42 μV, respectively. Human motoneurons and human cardiomyocytes were cultured on N-P Pt. devices to assess their biocompatibility and signal quality. In order to improve the cell-electrode coupling, a precision plating technique was used. Both cell types were electrically active on devices for up to 10 weeks, demonstrated improved SNR, and expected responses to precision chemical and electrical stimulation. The modification of Au microelectrodes with nanomaterials in combination with precision culturing of human cell types provides cost effective, highly sensitive, well coupled and relevant biosensing platforms for medical and pharmaceutical research.
AUTHOR Schaffner, Manuel and R{"u}hs, Patrick A. and Coulter, Fergal and Kilcher, Samuel and Studart, Andr{'e} R.
Title 3D printing of bacteria into functional complex materials [Abstract]
Year 2017
Journal/Proceedings Science Advances
Reftype
DOI/URL URL DOI
Abstract
Despite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of {textquotedblleft}living materials{textquotedblright} capable of degrading pollutants and of producing medically relevant bacterial cellulose. With this versatile bacteria-printing platform, complex materials displaying spatially specific compositions, geometry, and properties not accessed by standard technologies can be assembled from bottom up for new biotechnological and biomedical applications.
AUTHOR González-Callejo, Patricia and García-Astrain, Clara and Herrero-Ruiz, Ada and Henriksen-Lacey, Malou and Seras-Franzoso, Joaquín and Abasolo, Ibane and Liz-Marzán, Luis M.
Title 3D Bioprinted Tumor-Stroma Models of Triple-Negative Breast Cancer Stem Cells for Preclinical Targeted Therapy Evaluation [Abstract]
Year 2024
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
Abstract
Breast cancer stem cells (CSCs) play a pivotal role in therapy resistance and tumor relapse, emphasizing the need for reliable in vitro models that recapitulate the complexity of the CSC tumor microenvironment to accelerate drug discovery. We present a bioprinted breast CSC tumor-stroma model incorporating triple-negative breast CSCs (TNB-CSCs) and stromal cells (human breast fibroblasts), within a breast-derived decellularized extracellular matrix bioink. Comparison of molecular signatures in this model with different clinical subtypes of bioprinted tumor-stroma models unveils a unique molecular profile for artificial CSC tumor models. We additionally demonstrate that the model can recapitulate the invasive potential of TNB-CSC. Surface-enhanced Raman scattering imaging allowed us to monitor the invasive potential of tumor cells in deep z-axis planes, thereby overcoming the depth-imaging limitations of confocal fluorescence microscopy. As a proof-of-concept application, we conducted high-throughput drug testing analysis to assess the efficacy of CSC-targeted therapy in combination with conventional chemotherapeutic compounds. The results highlight the usefulness of tumor-stroma models as a promising drug-screening platform, providing insights into therapeutic efficacy against CSC populations resistant to conventional therapies.
AUTHOR S R Moxon and Z McMurran and M J Kibble and M Domingos and J E Gough and S M Richardson
Title 3D bioprinting of an intervertebral disc tissue analogue with a highly aligned annulus fibrosus via suspended layer additive manufacture [Abstract]
Year 2024
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Intervertebral disc (IVD) function is achieved through integration of its two component regions: the nucleus pulposus (NP) and the annulus fibrosus (AF). The NP is soft (0.3–5 kPa), gelatinous and populated by spherical NP cells in a polysaccharide-rich extracellular matrix (ECM). The AF is much stiffer (∼100 kPa) and contains layers of elongated AF cells in an aligned, fibrous ECM. Degeneration of the disc is a common problem with age being a major risk factor. Progression of IVD degeneration leads to chronic pain and can result in permanent disability. The development of therapeutic solutions for IVD degeneration is impaired by a lack of in vitro models of the disc that are capable of replicating the fundamental structure and biology of the tissue. This study aims to investigate if a newly developed suspended hydrogel bioprinting system (termed SLAM) could be employed to fabricate IVD analogues with integrated structural and compositional features similar to native tissue. Bioprinted IVD analogues were fabricated to recapitulate structural, morphological and biological components present in the native tissue. The constructs replicated key structural components of native tissue with the presence of a central, polysaccharide-rich NP surrounded by organised, aligned collagen fibres in the AF. Cell tracking, actin and matrix staining demonstrated that embedded NP and AF cells exhibited morphologies and phenotypes analogous to what is observed in vivo with elongated, aligned AF cells and spherical NP cells that deposited HA into the surrounding environment. Critically, it was also observed that the NP and AF regions contained a defined cellular and material interface and segregated regions of the two cell types, thus mimicking the highly regulated structure of the IVD.
AUTHOR Olate-Moya, Felipe and Rubí-Sans, Gerard and Engel, Elisabeth and Mateos-Timoneda, Miguel Ángel and Palza, Humberto
Title 3D Bioprinting of Biomimetic Alginate/Gelatin/Chondroitin Sulfate Hydrogel Nanocomposites for Intrinsically Chondrogenic Differentiation of Human Mesenchymal Stem Cells [Abstract]
Year 2024
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
Abstract
3D-printed hydrogel scaffolds biomimicking the extracellular matrix (ECM) are key in cartilage tissue engineering as they can enhance the chondrogenic differentiation of mesenchymal stem cells (MSCs) through the presence of active nanoparticles such as graphene oxide (GO). Here, biomimetic hydrogels were developed by cross-linking alginate, gelatin, and chondroitin sulfate biopolymers in the presence of GO as a bioactive filler, with excellent processability for developing bioactive 3D printed scaffolds and for the bioprinting process. A novel bioink based on our hydrogel with embedded human MSCs presented a cell survival rate near 100% after the 3D bioprinting process. The effects of processing and filler concentration on cell differentiation were further quantitatively evaluated. The nanocomposited hydrogels render high MSC proliferation and viability, exhibiting intrinsic chondroinductive capacity without any exogenous factor when used to print scaffolds or bioprint constructs. The bioactivity depended on the GO concentration, with the best performance at 0.1 mg mL-1. These results were explained by the rational combination of the three biopolymers, with GO nanoparticles having carboxylate and sulfate groups in their structures, therefore, biomimicking the highly negatively charged ECM of cartilage. The bioactivity of this biomaterial and its good processability for 3D printing scaffolds and 3D bioprinting techniques open up a new approach to developing novel biomimetic materials for cartilage repair.
AUTHOR Qin Lihao and Liu Tingting and Zhang Jiawei and Bai Yifei and Tang Zheyu and Li Jingyan and Xue Tongqing and Jia Zhongzhi
Title 3D bioprinting of Salvianolic acid B-sodium alginate-gelatin skin scaffolds promotes diabetic wound repair via antioxidant, anti-inflammatory, and proangiogenic effects [Abstract]
Year 2024
Journal/Proceedings Biomedicine & Pharmacotherapy
Reftype
DOI/URL URL DOI
Abstract
In patients with diabetic wounds, wound healing is impaired due to the presence of persistent oxidative stress, an altered inflammatory response, and impaired angiogenesis and epithelization. Salvianolic acid B (SAB), which is derived from the Chinese medicinal plant Salvia miltiorrhiza, has been found to exhibit antioxidant, anti-inflammatory, and proangiogenic effects. Previous studies have used 3D bioprinting technology incorporating sodium alginate (SA) and gelatin (Gel) as basic biomaterials to successfully produce artificial skin. In the current study, 3D bioprinting technology was used to incorporate SAB into SA-Gel to form a novel SAB-SA-Gel composite porous scaffold. The morphological characteristics, physicochemical characteristics, biocompatibility, and SAB release profile of the SAB-SA-Gel scaffolds were evaluated in vitro. In addition, the antioxidant, anti-inflammatory, and proangiogenic abilities of the SAB-SA-Gel scaffolds were evaluated in cells and in a rat model. Analysis demonstrated that 1.0 wt% (the percentage of SAB in the total weight of the solution containing SA and Gel) SAB-SA-Gel scaffolds had strong antioxidant, anti-inflammatory, and proangiogenic properties both in cells and in the rat model. The 1.0% SAB-SA-Gel scaffold reduced the expression of tumor necrosis factor-α, interleukin-6, and interluekin-1β and increased the expression of transforming growth factor-β. In addition, this scaffold removed excessive reactive oxygen species by increasing the expression of superoxide dismutase, thereby protecting fibroblasts from injury. The scaffold increased the expression of vascular endothelial growth factor and platelet/endothelial cell adhesion molecule-1, accelerated granulation tissue regeneration and collagen deposition, and promoted wound healing. These findings suggest that this innovative scaffold may have promise as a simple and efficient approach to managing diabetic wound repair.
AUTHOR Kerneis, Fabienne and Bognar, Ernest and Stanbery, Laura and Moon, Seongjun and Kim, Do Hoon and Deng, Yuxuan and Hughes, Elliot and Chun, Tae-Hwa and Tharp, Darron and Zupanc, Heidi and Jay, Chris and Walter, Adam and Nemunaitis, John and Lahann, Joerg
Title 3D engineered scaffold for large-scale Vigil immunotherapy production [Abstract]
Year 2024
Journal/Proceedings Scientific Reports
Reftype Kerneis2024
DOI/URL DOI
Abstract
Previously, we reported successful cellular expansion of a murine colorectal carcinoma cell line (CT-26) using a three-dimensional (3D) engineered extracellular matrix (EECM) fibrillar scaffold structure. CCL-247 were grown over a limited time period of 8 days on 3D EECM or tissue culture polystyrene (TCPS). Cells were then assayed for growth, electroporation efficiency and Vigil manufacturing release criteria. Using EECM scaffolds, we report an expansion of CCL-247 (HCT116), a colorectal carcinoma cell line, from a starting concentration of 2.45 × 105 cells to 1.9 × 106 cells per scaffold. Following expansion, 3D EECM-derived cells were assessed based on clinical release criteria of the Vigil manufacturing process utilized for Phase IIb trial operation with the FDA. 3D EECM-derived cells passed all Vigil manufacturing release criteria including cytokine expression. Here, we demonstrate successful Vigil product manufacture achieving the specifications necessary for the clinical trial product release of Vigil treatment. Our results confirm that 3D EECM can be utilized for the expansion of human cancer cell CCL-247, justifying further clinical development involving human tissue sample manufacturing including core needle biopsy and minimal ascites samples.
AUTHOR Dutto, Alessandro and Bianda, Eleonora and Melo, Joshua G. and Saraw, Zoubeir and Tervoort, Elena and Studart, André R.
Title 3D Printing and Biocementation of Hierarchical Porous Ceramics [Abstract]
Year 2024
Journal/Proceedings Advanced Materials Technologies
Reftype
DOI/URL DOI
Abstract
Abstract Ceramics with controlled porosity are used as bio-scaffolds, insulators, electrodes and lightweight materials. While their high surface area and low weight are attractive functionalities, such porous ceramics often suffer from poor mechanical properties and need energy-intensive, high-temperature sintering for manufacturing. The present work reports a low-temperature approach for the manufacturing of mechanically efficient porous ceramics. The process relies on the 3D printing of inks loaded with ceramic hollow spheres, which are biocemented by the precipitation of calcium carbonate induced by ureolytic bacteria. Electron microscopy, thermogravimetric analysis and mechanical tests are performed to study the kinetics of the biocementation process and its effect on the calcification and mechanical properties of extruded and printed samples. Hierarchical porous ceramics with a grid-like architecture and filament sizes in the order of one millimeter are effectively biocemented at ambient temperature after 2 days of calcification. The calcified structures display higher mechanical efficiency than previously reported monoliths of comparable porosity, thus demonstrating the potential of 3D printing and bacteria-driven biocementation for the low-temperature fabrication of hierarchical porous ceramics.
AUTHOR Pérez Del Río, Eduardo and Rey-Vinolas, Sergi and Santos, Fabião and Castellote-Borrell, Miquel and Merlina, Francesca and Veciana, Jaume and Ratera, Imma and Mateos-Timoneda, Miguel A. and Engel, Elisabeth and Guasch, Judith
Title 3D Printing as a Strategy to Scale-Up Biohybrid Hydrogels for T Cell Manufacture [Abstract]
Year 2024
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
Abstract
The emergence of cellular immunotherapy treatments is introducing more efficient strategies to combat cancer as well as autoimmune and infectious diseases. However, the cellular manufacturing procedures associated with these therapies remain costly and time-consuming, thus limiting their applicability. Recently, lymph-node-inspired PEG-heparin hydrogels have been demonstrated to improve primary human T cell culture at the laboratory scale. To go one step further in their clinical applicability, we assessed their scalability, which was successfully achieved by 3D printing. Thus, we were able to improve primary human T cell infiltration in the biohybrid PEG-heparin hydrogels, as well as increase nutrient, waste, and gas transport, resulting in higher primary human T cell proliferation rates while maintaining the phenotype. Thus, we moved one step further toward meeting the requirements needed to improve the manufacture of the cellular products used in cellular immunotherapies.
AUTHOR Koeck, Kim Sarah and Trossmann, Vanessa Tanja and Scheibel, Thomas
Title 3D-Printed and Recombinant Spider Silk Particle Reinforced Collagen Composite Scaffolds for Soft Tissue Engineering [Abstract]
Year 2024
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract Collagen is one main component of the extracellular matrix (ECM) in natural tissues and is, therefore, well suited as a biomaterial for tissue engineering. In this study, a method is presented to 3D-bioprint collagen into a precipitation bath comprising recombinantly produced spider silk protein eADF4(C16) yielding a composite with excellent mechanical properties. The spider silk precipitation bath induced assembly of the collagen into fibrils, and subsequent addition of potassium phosphate buffer lead to the formation of silk particles and stabilization of the collagen fibrils. The produced collagen-silk composite scaffolds show an internal structure of homogeneously distributed and interacting collagen fibrils and spider silk particles with significantly better mechanical properties compared to plain collagen scaffolds. Further, enzymatic degradation assays of the scaffolds over a 7-day period show higher stability of the collagen-silk scaffolds compared to plain collagen scaffolds in the presence of wound proteases. Using the spider silk variant eADF4(C16-RGD) further increases compressive stress and elastic modulus compared to that of the unmodified variant. Finally, it is shown that the unique collagen-spider silk composite scaffolds comprising the cell-binding domains of collagen and the RGD sequence in the spider silk variant represent a promising material for soft tissue regeneration.
AUTHOR Weng, Yiping and Yuan, Xiuchen and Fan, Shijie and Duan, Weihao and Tan, Yadong and Zhou, Ruikai and Wu, Jingbin and Shen, Yifei and Zhang, Zhonghua and Xu, Hua
Title 3D-Printed Biomimetic Hydroxyapatite Composite Scaffold Loaded with Curculigoside for Rat Cranial Defect Repair [Abstract]
Year 2024
Journal/Proceedings ACS Omega
Reftype
DOI/URL DOI
Abstract
The treatment of various large bone defects has remained a challenge for orthopedic surgeons for a long time. Recent research indicates that curculigoside (CUR) extracted from the curculigo plant exerts a positive influence on bone formation, contributing to fracture healing. In this study, we employed emulsification/solvent evaporation techniques to successfully fabricate poly(ε-caprolactone) nanoparticles loaded with curculigoside (CUR@PM). Subsequently, using three-dimensional (3D) printing technology, we successfully developed a bioinspired composite scaffold named HA/GEL/SA/CUR@PM (HGSC), chemically cross-linked with calcium chloride, to ensure scaffold stability. Further characterization of the scaffold’s physical and chemical properties revealed uniform pore size, good hydrophilicity, and appropriate mechanical properties while achieving sustained drug release for up to 12 days. In vitro experiments demonstrated the nontoxicity, good biocompatibility, and cell proliferative properties of HGSC. Through alkaline phosphatase (ALP) staining, Alizarin Red S (ARS) staining, cell migration assays, tube formation assays, and detection of angiogenic and osteogenic gene proteins, we confirmed the HGSC composite scaffold’s significant angiogenic and osteoinductive capabilities. Eight weeks postimplantation in rat cranial defects, Micro-computed tomography (CT) and histological observations revealed pronounced angiogenesis and new bone growth in areas treated with the HGSC composite scaffold. These findings underscore the scaffold’s exceptional angiogenic and osteogenic properties, providing a solid theoretical basis for clinical bone repair and demonstrating its potential in promoting vascularization and bone regeneration.
AUTHOR Meng, Duo and Hou, Yanhao and Kurniawan, Darwin and Weng, Ren-Jie and Chiang, Wei-Hung and Wang, Weiguang
Title 3D-Printed Graphene and Graphene Quantum Dot-Reinforced Polycaprolactone Scaffolds for Bone-Tissue Engineering [Abstract]
Year 2024
Journal/Proceedings ACS Appl. Nano Mater.
Reftype
DOI/URL DOI
Abstract
The regeneration of large-scale bone loss due to accidents, trauma, diseases, or tumor resection is still a critical clinical challenge. With the development of additive manufacturing technology and advanced biomaterials, 3D-printed biocompatible synthetic polymer scaffolds have been widely studied for their key roles in supporting bone tissue regeneration. Scaffold aims to provide mechanical properties that match the host bone as well as biological activities that can effectively promote cell proliferation and differentiation, ultimately facilitating bone tissue regeneration. Due to its unique biocompatibility and biodegradability, polycaprolactone (PCL) becomes one of the dominant synthetic polymeric materials considered for scaffold fabrication. However, using PCL alone presents insufficient mechanical properties; thus, different functional fillers have been added to modulate both the mechanical and biological performance of fabricated scaffolds. Among all functional fillers, carbon nanomaterials, particularly graphene (G), have shown an emerging trend. Graphene quantum dots (GQD), a member of the graphene family, are regarded as an ideal next-generation functional filler for scaffold fabrication. It presents high solubility in water, controllable dose-dependent cytotoxicity similar to that of G, and unique biological properties benefiting from smaller sizes. Current research using GQD for tissue engineering applications is limited, and the systemic comparison between G and GQD at different concentrations is also missing. This study, for the first time, evaluates and compares the impact of incorporating G and GQD into PCL bone tissue engineering scaffolds from surface, thermal, mechanical, and biological perspectives. Results suggested that the addition of both materials under 5 wt % significantly improved both the mechanical and biological performance of PCL scaffolds. Under 3 wt %, PCL/GQD scaffolds presented better compressive strength while maintaining the same level of biological performance compared with PCL/G scaffolds, revealing the strong potential for future in vivo studies and bone tissue regeneration applications.
AUTHOR Shangsi Chen, Yue Wang, Junzhi Li, Haoran Su, Ming-Fung Francis Siu, Shenglong Tan
Title 3D-printed Mg-substituted hydroxyapatite/ gelatin methacryloyl hydrogels encapsulated with PDA@DOX particles for bone tumor therapy and bone tissue regeneration
Year 2024
Journal/Proceedings IJB
Reftype
DOI/URL DOI
AUTHOR Li, Jianfeng and Hietel, Benjamin and Brunk, Michael G. K. and Reimers, Armin and Willems, Christian and Groth, Thomas and Cynis, Holger and Adelung, Rainer and Schütt, Fabian and Sacher, Wesley D. and Poon, Joyce K. S.
Title 3D-printed microstructured alginate scaffolds for neural tissue engineering [Abstract]
Year 2024
Journal/Proceedings Trends in Biotechnology
Reftype
DOI/URL DOI
Abstract
Tetrapod-shaped ZnO (t-ZnO) microparticles create interconnected channels and textured surfaces in 3D-printed microstructured alginate (M-Alg) scaffolds.Primary mouse cortical neurons cultured on the M-Alg scaffolds demonstrate enhanced adhesion and maturation, with formation of extensive 3D neural projections, indicating the potential of this scaffold design for advanced neural tissue engineering applications.
AUTHOR Yu-Tsung Shih and Kun-Chih Cheng and Yi-Ju Ko and Chia-Yu Lin and Mei-Cun Wang and Chih-I Lee and Pei-Ling Lee and Rong Qi and Jeng-Jiann Chiu and Shan-hui Hsu
Title 3D-Printed Proangiogenic Patches of Photo-Crosslinked Gelatin and Polyurethane Hydrogels Laden with Vascular Cells for Treating Vascular Ischemic Diseases [Abstract]
Year 2024
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
ABSTRACT Engineering vascularized tissues remains a promising approach for treating ischemic cardiovascular diseases. The availability of 3D-bioprinted vascular grafts that induce therapeutic angiogenesis can help avoid necrosis and excision of ischemic tissues. Here, using a combination of living cells and biodegradable hydrogels, we fabricated 3D-printed biocompatible proangiogenic patches from endothelial cell-laden photo-crosslinked gelatin (EC-PCG) bioink and smooth muscle cell-encapsulated polyurethane (SMC-PU) bioink. Implantation of 3D-bioprinted proangiogenic patches in a mouse model showed that EC-PCG served as an angiogenic capillary bed, whereas patterned SMC-PU increased the density of microvessels. Moreover, the assembled patterns between EC-PCG and SMC-PU induced the geometrically guided generation of microvessels with blood perfusion. In a rodent model of hindlimb ischemia, the vascular patches rescued blood flow to distal tissues, prevented toe/foot necrosis, promoted muscle remodeling, and increased the capillary density, thereby improving the heat-escape behavior of ischemic animals. Thus, our 3D-printed vascular cell-laden bioinks constitute efficient and scalable biomaterials that facilitate the engineering of vascular patches capable of directing therapeutic angiogenesis for treating ischemic vascular diseases.
AUTHOR García-Astrain, Clara and Henriksen-Lacey, Malou and Lenzi, Elisa and Renero-Lecuna, Carlos and Langer, Judith and Piñeiro, Paula and Molina-Martínez, Beatriz and Plou, Javier and Jimenez de Aberasturi, Dorleta and Liz-Marzán, Luis M.
Title A Scaffold-Assisted 3D Cancer Cell Model for Surface-Enhanced Raman Scattering-Based Real-Time Sensing and Imaging [Abstract]
Year 2024
Journal/Proceedings ACS Nano
Reftype
DOI/URL DOI
Abstract
Despite recent advances in the development of scaffold-based three-dimensional (3D) cell models, challenges persist in imaging and monitoring cell behavior within these complex structures due to their heterogeneous cell distribution and geometries. Incorporating sensors into 3D scaffolds provides a potential solution for real-time, in situ sensing and imaging of biological processes such as cell growth and disease development. We introduce a 3D printed hydrogel-based scaffold capable of supporting both surface-enhanced Raman scattering (SERS) biosensing and imaging of 3D breast cancer cell models. The scaffold incorporates plasmonic nanoparticles and SERS tags, for sensing and imaging, respectively. We demonstrate the scaffold’s adaptability and modularity in supporting breast cancer spheroids, thereby enabling spatial and temporal monitoring of tumor evolution.
AUTHOR Sousa, Joana P.M. and Deus, Inês A. and Monteiro, Cátia F. and Custódio, Catarina A. and Gil, João and Papadimitriou, Lina and Ranella, Anthi and Stratakis, Emmanuel and Mano, João F. and Marques, Paula A.A.P.
Title Amniotic Membrane-Derived Multichannel Hydrogels for Neural Tissue Repair [Abstract]
Year 2024
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract In the pursuit of advancing neural tissue regeneration, biomaterial scaffolds have emerged as promising candidates, offering potential solutions for nerve disruptions. Among these scaffolds, multichannel hydrogels, characterized by meticulously designed micrometer-scale channels, stand out as instrumental tools for guiding axonal growth and facilitating cellular interactions. This study explores the innovative application of human amniotic membranes modified with methacryloyl domains (AMMA) in neural stem cell (NSC) culture. AMMA hydrogels, possessing a tailored softness resembling the physiological environment, are prepared in the format of multichannel scaffolds to simulate native-like microarchitecture of nerve tracts. Preliminary experiments on AMMA hydrogel films showcase their potential for neural applications, demonstrating robust adhesion, proliferation, and differentiation of NSCs without the need for additional coatings. Transitioning into the 3D realm, the multichannel architecture fosters intricate neuronal networks guiding neurite extension longitudinally. Furthermore, the presence of synaptic vesicles within the cellular arrays suggests the establishment of functional synaptic connections, underscoring the physiological relevance of the developed neuronal networks. This work contributes to the ongoing efforts to find ethical, clinically translatable, and functionally relevant approaches for regenerative neuroscience.
AUTHOR Qinghua Wu and Ruikang Xue and Yimu Zhao and Kaitlyn Ramsay and Erika Yan Wang and Houman Savoji and Teodor Veres and Sarah H. Cartmell and Milica Radisic
Title Automated fabrication of a scalable heart-on-a-chip device by 3D printing of thermoplastic elastomer nanocomposite and hot embossing [Abstract]
Year 2024
Journal/Proceedings Bioactive Materials
Reftype
DOI/URL URL DOI
Abstract
The successful translation of organ-on-a-chip devices requires the development of an automated workflow for device fabrication, which is challenged by the need for precise deposition of multiple classes of materials in micro-meter scaled configurations. Many current heart-on-a-chip devices are produced manually, requiring the expertise and dexterity of skilled operators. Here, we devised an automated and scalable fabrication method to engineer a Biowire II multiwell platform to generate human iPSC-derived cardiac tissues. This high-throughput heart-on-a-chip platform incorporated fluorescent nanocomposite microwires as force sensors, produced from quantum dots and thermoplastic elastomer, and 3D printed on top of a polystyrene tissue culture base patterned by hot embossing. An array of built-in carbon electrodes was embedded in a single step into the base, flanking the microwells on both sides. The facile and rapid 3D printing approach efficiently and seamlessly scaled up the Biowire II system from an 8-well chip to a 24-well and a 96-well format, resulting in an increase of platform fabrication efficiency by 17,5000–69,000% per well. The device's compatibility with long-term electrical stimulation in each well facilitated the targeted generation of mature human iPSC-derived cardiac tissues, evident through a positive force-frequency relationship, post-rest potentiation, and well-aligned sarcomeric apparatus. This system's ease of use and its capacity to gauge drug responses in matured cardiac tissue make it a powerful and reliable platform for rapid preclinical drug screening and development.
AUTHOR Claudia Paindelli and Vanessa Parietti and Sergio Barrios and Peter Shepherd and Tianhong Pan and Wei-Lien Wang and Robert L. Satcher and Christopher J. Logothetis and Nora Navone and Matthew T. Campbell and Antonios G. Mikos and Eleonora Dondossola
Title Bone mimetic environments support engineering, propagation, and analysis of therapeutic response of patient-derived cells, ex vivo and in vivo [Abstract]
Year 2024
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
Bone metastases are the most common milestone in the lethal progression of prostate cancer and prominent in a substantial portion of renal malignancies. Interactions between cancer and bone host cells have emerged as drivers of both disease progression and therapeutic resistance. To best understand these central host-epithelial cell interactions, biologically relevant preclinical models are required. To achieve this goal, we here established and characterized tissue-engineered bone mimetic environments (BME) capable of supporting the growth of patient-derived xenograft (PDX) cells, ex vivo and in vivo. The BME consisted of a polycaprolactone (PCL) scaffold colonized by human mesenchymal stem cells (hMSCs) differentiated into osteoblasts. PDX-derived cells were isolated from bone metastatic prostate or renal tumors, engineered to express GFP or luciferase and seeded onto the BMEs. BMEs supported the growth and therapy response of PDX-derived cells, ex vivo. Additionally, BMEs survived after in vivo implantation and further sustained the growth of PDX-derived cells, their serial transplant, and their application to study the response to treatment. Taken together, this demonstrates the utility of BMEs in combination with patient-derived cells, both ex vivo and in vivo. Statement of significance Our tissue-engineered BME supported the growth of patient-derived cells and proved useful to monitor the therapy response, both ex vivo and in vivo. This approach has the potential to enable co-clinical strategies to monitor bone metastatic tumor progression and therapy response, including identification and prioritization of new targets for patient treatment.
AUTHOR D. {Van der Heide} and L.P. Hatt and E. {Della Bella} and A. Hangartner and W.A. Lackington and H. Yuan and F. {De Groot-Barrère} and M.J. Stoddart and M. D'Este
Title Characterization and biological evaluation of 3D printed composite ink consisting of collagen, hyaluronic acid and calcium phosphate for bone regeneration [Abstract]
Year 2024
Journal/Proceedings Carbohydrate Polymer Technologies and Applications
Reftype
DOI/URL URL DOI
Abstract
In large bone defects the self-healing capacity is insufficient, and the current standard treatment, autologous bone grafting, has severe disadvantages such as limited availability and donor site morbidity. Alternatively, clinically available bone graft substitutes lack spatial control over scaffold architecture to anatomically match complicated bone defects. Therefore, the aim in this study was to develop a 3D printable composite biomaterial-ink to promote healing of large bone defects. The composite biomaterial-ink consisted of an organic biopolymer matrix with tyramine modified hyaluronic acid (THA) and collagen type I (Col) mixed with osteoinductive calcium phosphate particles (CaP). The biopolymer was combined with 0, 10, 20 and 30 % of either 45–63 µm or 45–106 µm CaP. µCT imaging showed a homogeneous distribution of CaP in the THA-Col hydrogel and all composites were 3D printable. In vitro cell activity assays revealed no indirect cytotoxicity using L929 cells and high cell cytocompatibility using human mesenchymal stromal cells (hMSCs). Additionally, all composites supported in vitro osteogenic differentiation of hMSCs. This study highlights the development of a 3D printable composite biomaterial-ink using CaP and THA-Col hydrogel that holds significant potential to be used as patient-specific bone graft substitute for the regeneration of large bone defects. Statement of significance This paper introduces a 3D printable composite biomaterial-ink made of osteoinductive calcium phosphate particles combined with matrix biopolymers collagen and hyaluronic acid, which was chemically modified to introduce shear thinning and shape fixation properties for 3D printing. The chemical modification only involves a small percentage of functional groups, preserving hyaluronan's biological properties. We demonstrated printability, the homogeneous distribution of the mineral phase, cytocompatibility and that the composites support osteogenesis of primary human mesenchymal stromal cells from multiple donors. The printability of the composite biomaterial-ink allows the creation of patient-specific implants with controlled geometry on porosity. This study contributes towards engineering personalized implants for replacing autologous bone grafting in all clinical situations where the bone self-healing capacity is insufficient.
AUTHOR Celia Ximenes-Carballo and Sergi Rey-Viñolas and Barbara Blanco-Fernandez and Soledad Pérez-Amodio and Elisabeth Engel and Oscar Castano
Title Combining three-dimensionality and CaP glass-PLA composites: Towards an efficient vascularization in bone tissue healing [Abstract]
Year 2024
Journal/Proceedings Biomaterials Advances
Reftype
DOI/URL URL DOI
Abstract
Bone regeneration often fails due to implants/grafts lacking vascular supply, causing necrotic tissue and poor integration. Microsurgical techniques are used to overcome this issue, allowing the graft to anastomose. These techniques have limitations, including severe patient morbidity and current research focuses on stimulating angiogenesis in situ using growth factors, presenting limitations, such as a lack of control and increased costs. Non-biological stimuli are necessary to promote angiogenesis for successful bone constructs. Recent studies have reported that bioactive glass dissolution products, such as calcium-releasing nanoparticles, stimulate hMSCs to promote angiogenesis and new vasculature. Moreover, the effect of 3D microporosity has also been reported to be important for vascularisation in vivo. Therefore, we used room-temperature extrusion 3D printing with polylactic acid (PLA) and calcium phosphate (CaP) based glass scaffolds, focusing on geometry and solvent displacement for scaffold recovery. Combining both methods enabled reproducible control of 3D structure, porosity, and surface topography. Scaffolds maintained calcium ion release at physiological levels and supported human mesenchymal stem cell proliferation. Scaffolds stimulated the secretion of vascular endothelial growth factor (VEGF) after 3 days of culture. Subcutaneous implantation in vivo indicated good scaffold integration and blood vessel infiltration as early as one week after. PLA-CaP scaffolds showed increased vessel maturation 4 weeks after implantation without vascular regression. Results show PLA/CaP-based glass scaffolds, made via controlled 3D printing, support angiogenesis and vessel maturation, promising improved vascularization for bone regeneration.
AUTHOR Viola, Martina and Ainsworth, Madison J. and Mihajlovic, Marko and Cedillo-Servin, Gerardo and van Steenbergen, Mies J. and van Rijen, Mattie and de Ruijter, Mylène and Castilho, Miguel and Malda, Jos and Vermonden, Tina
Title Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructs [Abstract]
Year 2024
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
Abstract
Hydrogels are ideal materials to encapsulate cells, making them suitable for applications in tissue engineering and regenerative medicine. However, they generally do not possess adequate mechanical strength to functionally replace human tissues, and therefore they often need to be combined with reinforcing structures. While the interaction at the interface between the hydrogel and reinforcing structure is imperative for mechanical function and subsequent biological performance, this interaction is often overlooked. Melt electrowriting enables the production of reinforcing microscale fibers that can be effectively integrated with hydrogels. Yet, studies on the interaction between these micrometer scale fibers and hydrogels are limited. Here, we explored the influence of covalent interfacial interactions between reinforcing structures and silk fibroin methacryloyl hydrogels (silkMA) on the mechanical properties of the construct and cartilage-specific matrix production in vitro. For this, melt electrowritten fibers of a thermoplastic polymer blend (poly(hydroxymethylglycolide-co-ε-caprolactone):poly(ε-caprolactone) (pHMGCL:PCL)) were compared to those of the respective methacrylated polymer blend pMHMGCL:PCL as reinforcing structures. Photopolymerization of the methacrylate groups, present in both silkMA and pMHMGCL, was used to generate hybrid materials. Covalent bonding between the pMHMGCL:PCL blend and silkMA hydrogels resulted in an elastic response to the application of torque. In addition, an improved resistance was observed to compression (∼3-fold) and traction (∼40-55%) by the scaffolds with covalent links at the interface compared to those without these interactions. Biologically, both types of scaffolds (pHMGCL:PCL and pMHMGCL:PCL) showed similar levels of viability and metabolic activity, also compared to frequently used PCL. Moreover, articular cartilage progenitor cells embedded within the reinforced silkMA hydrogel were able to form a cartilage-like matrix after 28 days of in vitro culture. This study shows that hybrid cartilage constructs can be engineered with tunable mechanical properties by grafting silkMA hydrogels covalently to pMHMGCL:PCL blend microfibers at the interface.
AUTHOR Salar Amoli, Mehdi and Anand, Resmi and EzEldeen, Mostafa and Geris, Liesbet and Jacobs, Reinhilde and Bloemen, Veerle
Title Development of 3D Printed pNIPAM-Chitosan Scaffolds for Dentoalveolar Tissue Engineering [Abstract]
Year 2024
Journal/Proceedings Gels
Reftype
DOI/URL URL DOI
Abstract
While available treatments have addressed a variety of complications in the dentoalveolar region, associated challenges have resulted in exploration of tissue engineering techniques. Often, scaffold biomaterials with specific properties are required for such strategies to be successful, development of which is an active area of research. This study focuses on the development of a copolymer of poly (N-isopropylacrylamide) (pNIPAM) and chitosan, used for 3D printing of scaffolds for dentoalveolar regeneration. The synthesized material was characterized by Fourier transform infrared spectroscopy, and the possibility of printing was evaluated through various printability tests. The rate of degradation and swelling was analyzed through gravimetry, and surface morphology was characterized by scanning electron microscopy. Viability of dental pulp stem cells seeded on the scaffolds was evaluated by live/dead analysis and DNA quantification. The results demonstrated successful copolymerization, and three formulations among various synthesized formulations were successfully 3D printed. Up to 35% degradability was confirmed within 7 days, and a maximum swelling of approximately 1200% was achieved. Furthermore, initial assessment of cell viability demonstrated biocompatibility of the developed scaffolds. While further studies are required to achieve the tissue engineering goals, the present results tend to indicate that the proposed hydrogel might be a valid candidate for scaffold fabrication serving dentoalveolar tissue engineering through 3D printing.
AUTHOR Dominguez-Alfaro, Antonio and Casado, Nerea and Fernandez, Maxence and Garcia-Esnaola, Andrea and Calvo, Javier and Mantione, Daniele and Calvo, Maria Reyes and Cortajarena, Aitziber L.
Title Engineering Proteins for PEDOT Dispersions: A New Horizon for Highly Mixed Ionic-Electronic Biocompatible Conducting Materials [Abstract]
Year 2024
Journal/Proceedings Small
Reftype
DOI/URL DOI
Abstract
Abstract Poly (3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonate (PSS) is the most used conducting polymer from energy to biomedical applications. Despite its exceptional properties, there is a need for developing new materials that can improve some of its inherent limitations, e.g., biocompatibility. In this context, doping PEDOT is propose with a robust recombinant protein with tunable properties, the consensus tetratricopeptide repeated protein (CTPR). The doping consists of an oxidative polymerization, where the PEDOT chains are stabilized by the negative charges of the CTPR protein. CTPR proteins are evaluated with three different lengths (3, 10, and 20 identical CTPR units) and optimized varied synthetic conditions. These findings revealed higher doping rate and oxidized state of the PEDOT chains when doped with the smallest scaffold (CTPR3). These PEDOT:CTPR hybrids possess ionic and electronic conductivity. Notably, PEDOT:CTPR3 displayed an electronic conductivity of 0.016 S cm−1, higher than any other reported protein-doped PEDOT. This result places PEDOT:CTPR3 at the level of PEDOT-biopolymer hybrids, and brings it closer in performance to PEDOT:PSS gold standard. Furthermore, PEDOT:CTPR3 dispersion is successfully optimized for inkjet printing, preserving its electroactivity properties after printing. This approach opens the door to the use of these novel hybrids for bioelectronics.
AUTHOR Seyyed Vahid Niknezhad and Mehdi Mehrali and Farinaz Riyahi Khorasgani and Reza Heidari and Firoz Babu Kadumudi and Nasim Golafshan and Miguel Castilho and Cristian Pablo Pennisi and Masoud Hasany and Mohammadjavad Jahanshahi and Mohammad Mehrali and Younes Ghasemi and Negar Azarpira and Thomas L. Andresen and Alireza Dolatshahi-Pirouz
Title Enhancing volumetric muscle loss (VML) recovery in a rat model using super durable hydrogels derived from bacteria [Abstract]
Year 2024
Journal/Proceedings Bioactive Materials
Reftype
DOI/URL URL DOI
Abstract
Bacteria can be programmed to deliver natural materials with defined biological and mechanical properties for controlling cell growth and differentiation. Here, we present an elastic, resilient and bioactive polysaccharide derived from the extracellular matrix of Pantoea sp. BCCS 001. Specifically, it was methacrylated to generate a new photo crosslinkable hydrogel that we coined Pantoan Methacrylate or put simply PAMA. We have used it for the first time as a tissue engineering hydrogel to treat VML injuries in rats. The crosslinked PAMA hydrogel was super elastic with a recovery nearing 100 %, while mimicking the mechanical stiffness of native muscle. After inclusion of thiolated gelatin via a Michaelis reaction with acrylate groups on PAMA we could also guide muscle progenitor cells into fused and aligned tubes – something reminiscent of mature muscle cells. These results were complemented by sarcomeric alpha-actinin immunostaining studies. Importantly, the implanted hydrogels exhibited almost 2-fold more muscle formation and 50 % less fibrous tissue formation compared to untreated rat groups. In vivo inflammation and toxicity assays likewise gave rise to positive results confirming the biocompatibility of this new biomaterial system. Overall, our results demonstrate that programmable polysaccharides derived from bacteria can be used to further advance the field of tissue engineering. In greater detail, they could in the foreseeable future be used in practical therapies against VML.
AUTHOR R. Kripamol and Shiny Velayudhan and P.R. {Anil Kumar}
Title Evaluation of allylated gelatin as a bioink supporting spontaneous spheroid formation of HepG2 cells [Abstract]
Year 2024
Journal/Proceedings International Journal of Biological Macromolecules
Reftype
DOI/URL URL DOI
Abstract
The spheroid culture system has gained significant attention as an effective in vitro model to mimic the in vivo microenvironment. Even though numerous studies were focused on developing spheroids, the structural organization of encapsulated cells within hydrogels remains a challenge. Allylated gelatin or GelAGE is used as a bioink due to its excellent physicochemical properties. In this study, GelAGE was evaluated for its capacity to induce spontaneous spheroid formation in encapsulated HepG2 cells. GelAGE was synthesized and characterized using 1HNMR spectroscopy and ninhydrin assay. Then the physicochemical and biological attributes of GelAGE hydrogel was examined. The results demonstrate that GelAGE has remarkable ability to induce the encapsulated cells to self-organize into spheroids.
AUTHOR Gvaramia, David and Fisch, Philipp and Flégeau, Killian and Huber, Lena and Kern, Johann and Jakob, Yvonne and Hirsch, Daniela and Rotter, Nicole
Title Evaluation of Bioprinted Autologous Cartilage Grafts in an Immunocompetent Rabbit Model [Abstract]
Year 2024
Journal/Proceedings Advanced Therapeutics
Reftype
DOI/URL DOI
Abstract
Abstract The gold standard of auricular reconstruction involves manual graft assembly from autologous costal cartilage. The intervention may require multiple surgical procedures and lead to donor-site morbidity, while the outcome is highly dependent on individual surgical skills. A tissue engineering approach provides the means to produce cartilage grafts of a defined shape from autologous chondrocytes. The use of autologous cells minimizes the risk of host immune response; however, factors such as biomaterial compatibility and in vitro maturation of the tissue-engineered (TE) cartilage may influence the engraftment and shape-stability of TE implants. Here, this work tests the biocompatibility of bioprinted autologous cartilage constructs in a rabbit model. The TE cartilage is produced by embedding autologous auricular chondrocytes into hyaluronan transglutaminase (HATG) based bioink, previously shown to support chondrogenesis in human auricular chondrocytes in vitro and in immunocompromised xenotransplantation models in vivo. A drastic softening and loss of cartilage markers, such as sulfated glycosaminoglycans (GAGs) and collagen type II are observed. Furthermore, fibrous encapsulation and partial degradation of the transplanted constructs are indicative of a strong host immune response to the autologous TE cartilage. The current study thus illustrates the crucial importance of immunocompetent autologous animal models for the evaluation of TE cartilage function and compatibility.
AUTHOR Li, Huihua and Chen, Shangsi and Dissanayaka, Waruna Lakmal and Wang, Min
Title Gelatin Methacryloyl/Sodium Alginate/Cellulose Nanocrystal Inks and 3D Printing for Dental Tissue Engineering Applications [Abstract]
Year 2024
Journal/Proceedings ACS Omega
Reftype
DOI/URL DOI
Abstract
In tissue engineering, developing suitable printing inks for fabricating hydrogel scaffolds via 3D printing is of high importance and requires extensive investigation. Currently, gelatin methacryloyl (GelMA)-based inks have been widely used for the construction of 3D-printed hydrogel scaffolds and cell-scaffold constructs for human tissue regeneration. However, many studies have shown that GelMA inks at low polymer concentrations had poor printability, and printed structures exhibited inadequate fidelity. In the current study, new viscoelastic inks composed of gelatin methacryloyl (GelMA), sodium alginate (Alg), and cellulose nanocrystal (CNC) were formulated and investigated, with CNC being used to improve the printability of inks and the fidelity of printed hydrogel structures and Alg being used to form ionically cross-linking polymer networks to enhance the mechanical strength of printed hydrogel structures. Rheological results showed that GelMA/Alg/CNC inks with different Alg-to-CNC ratios possessed good shear-thinning behavior, indicating that GelMA/Alg/CNC inks were suitable for 3D printing. The quantitative evaluation of printability and fidelity showed that a high concentration of CNC improved the printability of GelMA/Alg/CNC inks and concurrently promoted the fidelity of printed GelMA/Alg/CNC hydrogels. On the other hand, compression tests showed that a high concentration of Alg could enhance the mechanical strength of GelMA/Alg/CNC hydrogels due to the increase in cross-link density. Furthermore, GelMA/Alg/CNC hydrogels exhibited good biocompatibility and could promote the proliferation of human dental pulp stem cells (hDPSCs), suggesting their great potential in dental tissue engineering.
AUTHOR Gaglio, Cesare Gabriele and Baruffaldi, Désireé and Pirri, Candido Fabrizio and Napione, Lucia and Frascella, Francesca
Title GelMA synthesis and sources comparison for 3D multimaterial bioprinting [Abstract]
Year 2024
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
Gelatin Methacryloyl (GelMA) is one of the most used biomaterials for a wide range of applications, such as drug delivery, disease modeling and tissue regeneration. GelMA is obtained from gelatin, which can be derived from different sources (e.g., bovine skin, and porcine skin), through substitution of reactive amine and hydroxyl groups with methacrylic anhydride (MAA). The degree of functionalization (DoF) can be tuned by varying the MAA amount used; thus, different protocols, with different reaction efficiency, have been developed, using various alkaline buffers (e.g., phosphate-buffered saline, DPBS, or carbonate-bicarbonate solution). Obviously, DoF modulation has an impact on the final GelMA properties, so a deep investigation on the features of the obtained hydrogel must be carried on. The purpose of this study is to investigate how different gelatin sources and synthesis methods affect GelMA properties, as literature lacks direct and systematic comparisons between these parameters, especially between synthesis methods. The final aim is to facilitate the choice of the source or synthesis method according to the needs of the desired application. Hence, chemical and physical properties of GelMA formulations were assessed, determining the DoFs, mechanical and viscoelastic properties by rheological analysis, water absorption by swelling capacity and enzymatic degradation rates. Biological tests with lung adenocarcinoma cells (A549) were performed. Moreover, since 3D bioprinting is a rapidly evolving technology thanks to the possibility of precise deposition of cell-laden biomaterials (bioinks) to mimic the 3D structures of several tissues, the potential of different GelMA formulations as bioinks have been tested with a multi-material approach, revealing its printability and versatility in various applications.
AUTHOR Bannerman, Dawn and Pascual-Gil, Simon and Wu, Qinghua and Fernandes, Ian and Zhao, Yimu and Wagner, Karl T. and Okhovatian, Sargol and Landau, Shira and Rafatian, Naimeh and Bodenstein, David F. and Wang, Ying and Nash, Trevor R. and Vunjak-Novakovic, Gordana and Keller, Gordon and Epelman, Slava and Radisic, Milica
Title Heart-on-a-Chip Model of Epicardial–Myocardial Interaction in Ischemia Reperfusion Injury [Abstract]
Year 2024
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Epicardial cells (EPIs) form the outer layer of the heart and play an important role in development and disease. Current heart-on-a-chip platforms still do not fully mimic the native cardiac environment due to the absence of relevant cell types, such as EPIs. Here, using the Biowire II platform, engineered cardiac tissues with an epicardial outer layer and inner myocardial structure are constructed, and an image analysis approach is developed to track the EPI cell migration in a beating myocardial environment. Functional properties of EPI cardiac tissues improve over two weeks in culture. In conditions mimicking ischemia reperfusion injury (IRI), the EPI cardiac tissues experience less cell death and a lower impact on functional properties. EPI cell coverage is significantly reduced and more diffuse under normoxic conditions compared to the post-IRI conditions. Upon IRI, migration of EPI cells into the cardiac tissue interior is observed, with contributions to alpha smooth muscle actin positive cell population. Altogether, a novel heart-on-a-chip model is designed to incorporate EPIs through a formation process that mimics cardiac development, and this work demonstrates that EPI cardiac tissues respond to injury differently than epicardium-free controls, highlighting the importance of including EPIs in heart-on-a-chip constructs that aim to accurately mimic the cardiac environment.
AUTHOR Ji Seung Lee and Harry Jung and Olatunji Ajiteru and Ok Joo Lee and Soon Hee Kim and Hae Sang Park and Chan Hum Park
Title Hybrid 3D bioprinting for advanced tissue-engineered trachea: merging fused deposition modeling (FDM) and top–down digital light processing (DLP) [Abstract]
Year 2024
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
In this present study, we introduce an innovative hybrid 3D bioprinting methodology that integrates fused deposition modeling (FDM) with top–down digital light processing (DLP) for the fabrication of an artificial trachea. Initially, polycaprolactone (PCL) was incorporated using an FDM 3D printer to provide essential mechanical support, replicating the structure of tracheal cartilage. Subsequently, a chondrocyte-laden glycidyl methacrylated silk fibroin hydrogel was introduced via top–down DLP into the PCL scaffold (PCL-Sil scaffold). The mechanical evaluation of PCL-Sil scaffolds showed that they have greater flexibility than PCL scaffolds, with a higher deformation rate (PCL-Sil scaffolds: 140.9% ± 5.37% vs. PCL scaffolds: 124.3% ± 6.25%) and ability to withstand more force before fracturing (3.860 ± 0.140 N for PCL-Sil scaffolds vs. 2.502 ± 0.126 N for PCL scaffolds, ***P < 0.001). Both types of scaffolds showed similar axial compressive strengths (PCL-Sil scaffolds: 4.276 ± 0.127 MPa vs. PCL scaffolds: 4.291 ± 0.135 MPa). Additionally, PCL-Sil scaffolds supported fibroblast proliferation, indicating good biocompatibility. In vivo testing of PCL-Sil scaffolds in a partial tracheal defect rabbit model demonstrated effective tissue regeneration. The scaffolds were pre-cultured in the omentum for two weeks to promote vascularization before transplantation. Eight weeks after transplantation into the animal, bronchoscopy and histological analysis confirmed that the omentum-cultured PCL-Sil scaffolds facilitated rapid tissue regeneration and maintained the luminal diameter at the anastomosis site without signs of stenosis or inflammation. Validation study to assess the feasibility of our hybrid 3D bioprinting technique showed that structures, not only the trachea but also the vertebral bone-disc and trachea-lung complex, were successfully printed.
AUTHOR Janssen, Jasmijn and Chirico, Nino and Ainsworth, Madison J. and Cedillo-Servin, Gerardo and Viola, Martina and Dokter, Inge and Vermonden, Tina and Doevendans, Pieter A. and Serra, Margarida and Voets, Ilja K. and Malda, Jos and Castilho, Miguel and van Laake, Linda W. and Sluijter, Joost P. G. and Sampaio-Pinto, Vasco and van Mil, Alain
Title Hypothermic and cryogenic preservation of cardiac tissue-engineered constructs [Abstract]
Year 2024
Journal/Proceedings Biomater. Sci.
Reftype
DOI/URL DOI
Abstract
Cardiac tissue engineering (cTE) has already advanced towards the first clinical trials{,} investigating safety and feasibility of cTE construct transplantation in failing hearts. However{,} the lack of well-established preservation methods poses a hindrance to further scalability{,} commercialization{,} and transportation{,} thereby reducing their clinical implementation. In this study{,} hypothermic preservation (4 °C) and two methods for cryopreservation (i.e.{,} a slow and fast cooling approach to −196 °C and −150 °C{,} respectively) were investigated as potential solutions to extend the cTE construct implantation window. The cTE model used consisted of human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts embedded in a natural-derived hydrogel and supported by a polymeric melt electrowritten hexagonal scaffold. Constructs{,} composed of cardiomyocytes of different maturity{,} were preserved for three days{,} using several commercially available preservation protocols and solutions. Cardiomyocyte viability{,} function (beat rate and calcium handling){,} and metabolic activity were investigated after rewarming. Our observations show that cardiomyocytes’ age did not influence post-rewarming viability{,} however{,} it influenced construct function. Hypothermic preservation with HypoThermosol® ensured cardiomyocyte viability and function. Furthermore{,} fast freezing outperformed slow freezing{,} but both viability and function were severely reduced after rewarming. In conclusion{,} whereas long-term preservation remains a challenge{,} hypothermic preservation with HypoThermosol® represents a promising solution for cTE construct short-term preservation and potential transportation{,} aiding in off-the-shelf availability{,} ultimately increasing their clinical applicability.
AUTHOR Hou, Yanhao and Wang, Weiguang and Bartolo, Paulo
Title In vitro investigations on the effects of graphene and graphene oxide on polycaprolactone bone tissue engineering scaffolds [Abstract]
Year 2024
Journal/Proceedings Bio-Design and Manufacturing
Reftype Hou2024
DOI/URL DOI
Abstract
Polycaprolactone (PCL) scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field. Due to the intrinsic limitations of PCL, carbon nanomaterials are often investigated to reinforce the PCL scaffolds. Despite several studies that have been conducted on carbon nanomaterials, such as graphene (G) and graphene oxide (GO), certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds. This paper addresses this limitation by investigating both the nonbiological (element composition, surface, degradation, and thermal and mechanical properties) and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications. Results showed that the incorporation of G and GO increased surface properties (reduced modulus and wettability), material crystallinity, crystallization temperature, and degradation rate. However, the variations in compressive modulus, strength, surface hardness, and cell metabolic activity strongly depended on the type of reinforcement. Finally, a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight, fiber diameter, porosity, and mechanical properties as functions of degradation time and carbon nanomaterial concentrations. The results presented in this paper enable the design of three-dimensional (3D) bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers.
AUTHOR Daphne van der Heide and Luan Phelipe Hatt and Sylvie Wirth and Maria E Pirera and Angela R Armiento and Martin J Stoddart
Title In vitro osteogenesis of hMSCs on collagen membranes embedded within LEGO®-inspired 3D printed PCL constructs for mandibular bone repair [Abstract]
Year 2024
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
The field of bone tissue engineering aims to develop an effective and aesthetical bone graft substitute capable of repairing large mandibular defects. However, graft failure resulting from necrosis and insufficient integration with native tissue due to lack of oxygen and nutrient transportation remains a concern. To overcome these drawbacks, this study aims to develop a 3D printed polycaprolactone layered construct with a LEGO®-inspired interlocking mechanism enabling spatial distribution of biological components. To highlight its in vitro osteogenic potential, human mesenchymal stromal cells are cultured onto Bio-Gide® Compressed collagen (Col) membranes, which are embedded within the layered construct for 28 d. The osteogenic response is assessed through the measurement of proliferation, relevant markers for osteogenesis including alkaline phosphatase (ALP) activity, expression of transcriptional genes (SP7, RUNX2/SOX9) as well matrix-related genes (COL1A1, ALPL IBSP, SPP1), osteoprotegerin secretion. In vitro osteogenic differentiation results showed increased levels of these osteogenic markers, indicating the layered construct’s potential to support osteogenesis. In this study, a novel workflow of 3D printing a patient-specific LEGO®-inspired layered construct that can spatially deliver biological elements was successfully demonstrated. These layered constructs have the potential to be employed as a bone tissue engineering strategy, with particular focus on the repair of large mandibular defects.
AUTHOR Madadian, Elias and Ravanbakhsh, Hossein and Touani Kameni, Francesco and Rahimnejad, Maedeh and Lerouge, Sophie and Ahmadi, Ali
Title In-Foam Bioprinting: An Embedded Bioprinting Technique with Self-Removable Support Bath [Abstract]
Year 2024
Journal/Proceedings Small Science
Reftype
DOI/URL DOI
Abstract
The emergence of embedded three-dimensional (3D) bioprinting has revolutionized the biofabrication of free-form constructs out of low-viscosity and slow-crosslinking hydrogels. Using gel-based support baths has limitations including lack of proper oxygenation and nutrition and complications with bath removal. Herein, a novel-embedded 3D bioprinting technique is developed with an albumin foam support bath as a promising substitute. The proposed technique, in-foam bioprinting, offers excellent printability and convenience in bath removal while providing cells with easy access to oxygen and nutrients. The foam-based support bath is characterized through foam stability and rheological tests. The bubble size in the foam is measured to study the change in the structure of the bath due to the coalescence of the bubbles over time. Free-form structures are successfully 3D printed with thermoresponsive chitosan-based bioinks to demonstrate the capability of the in-foam bioprinting technique. The viability of bioprinted fibroblast L929 cells is studied over a seven-day period, showing high cell viability of over 97%, which is attributed to the abundance of oxygen and nutrition in the foam support bath. Importantly, in-foam bioprinting is beneficial for biofabricating large samples with a long printing time without jeopardizing cell viability.
AUTHOR Dubey, Nileshkumar; Rahimnejad, Maedeh; Benton Swanson, W.;Xu, Jinping; de Ruijter, Mylène; Malda, Jos; Squarize, Rogerio, C.H.; Castilho, Miguel; Bottino, Marco C.
Title Integration of Melt Electrowritten Polymeric Scaffolds and Bioprinting for Epithelial Healing via Localized Periostin Delivery [Abstract]
Year 2024
Journal/Proceedings
Reftype
DOI/URL DOI
Abstract
ACS Macro Lett. 0.0:959-965
AUTHOR Surman, František and Asadikorayem, Maryam and Weber, Patrick and Weber, Daniel and Zenobi-Wong, Marcy
Title Ionically annealed zwitterionic microgels for bioprinting of cartilaginous constructs [Abstract]
Year 2024
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Foreign body response (FBR) is a pervasive problem for biomaterials used in tissue engineering. Zwitterionic hydrogels have emerged as an effective solution to this problem, due to their ultra-low fouling properties, which enable them to effectively inhibit FBR in vivo. However, no versatile zwitterionic bioink that allows for high resolution extrusion bioprinting of tissue implants has thus far been reported. In this work, we introduce a simple, novel method for producing zwitterionic microgel bioink, using alginate methacrylate (AlgMA) as crosslinker and mechanical fragmentation as a microgel fabrication method. Photocrosslinked hydrogels made of zwitterionic carboxybetaine acrylamide (CBAA) and sulfobetaine methacrylate (SBMA) are mechanically fragmented through meshes with aperture diameters of 50 and 90 µm to produce microgel bioink. The bioinks made with both microgel sizes showed excellent rheological properties and were used for high-resolution printing of objects with overhanging features without requiring a support structure or support bath. The AlgMA crosslinker has a dual role, allowing also for both primary photocrosslinking of the bulk hydrogel as well as secondary ionic crosslinking of produced microgels, to quickly stabilize the printed construct in a calcium bath and to produce a microporous scaffold. Scaffolds showed ~20% porosity, and they supported viability and chondrogenesis of encapsulated human primary chondrocytes. Finally, a meniscus model was bioprinted, to demonstrate the bioink’s versatility at printing large, cell-laden constructs which are stable for further in vitro culture to support tissue maturation. This easy and scalable strategy of producing zwitterionic microgel bioink for high resolution extrusion bioprinting allows for direct cell encapsulation in a microporous scaffold and has potential for in vivo biocompatibility due to the zwitterionic nature of the bioink.
AUTHOR Weiguang Wang and Yihe Huang and Yanhao Hou and Duo Meng and Kewen Pan and Paulo Bartolo and Lin Li
Title Laser-induced fabrication of doped-graphene based on collagen for bone tissue engineering scaffold applications [Abstract]
Year 2024
Journal/Proceedings CIRP Annals
Reftype
DOI/URL URL DOI
Abstract
Electro-active scaffolds play an important role in bone tissue engineering applications, serving as physical substrates for cell proliferation and osteogenic differentiation, ultimately realizing new bone regeneration. This paper discusses a novel strategy to synthesize graphene through laser-induced surface doping, using bone collagen as the carbon source, serving as a key functional filler to be combined with biocompatible, biodegradable poly(ε-caprolactone) (PCL), for the fabrication of the next generation electro-active bone tissue engineering scaffolds. Scaffolds are fabricated through material-extrusion additive manufacturing. The developed graphene is proven to present a significant enhancement effect on surface and mechanical properties over the conventional graphene material.
AUTHOR Wu, D.; Pang, S.; Röhrs, V.; Berg, J., Ali, A.S.M.; Mei, Y.; Ziersch, M., Tolksdorf, B.; Kurreck, J.
Title Man vs. machine: Automated bioink mixing device improves reliability and reproducibility of bioprinting results compared to human operators
Year 2024
Journal/Proceedings IJB
Reftype
DOI/URL DOI
AUTHOR Chen, Shangsi and Tan, Shenglong and Zheng, Liwu and Wang, Min
Title Multilayered Shape-Morphing Scaffolds with a Hierarchical Structure for Uterine Tissue Regeneration [Abstract]
Year 2024
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
Abstract
Owing to dysfunction of the uterus, millions of couples around the world suffer from infertility. Different from conventional treatments, tissue engineering provides a new and promising approach to deal with difficult problems such as human tissue or organ failure. Adopting scaffold-based tissue engineering, three-dimensional (3D) porous scaffolds in combination with stem cells and appropriate biomolecules may be constructed for uterine tissue regeneration. In this study, a hierarchical tissue engineering scaffold, which mimicked the uterine tissue structure and functions, was designed, and the biomimicking scaffolds were then successfully fabricated using solvent casting, layer-by-layer assembly, and 3D bioprinting techniques. For the multilayered, hierarchical structured scaffolds, poly(l-lactide-co-trimethylene carbonate) (PLLA-co-TMC, “PLATMC” in short) and poly(lactic acid-co-glycolic acid) (PLGA) blends were first used to fabricate the shape-morphing layer of the scaffolds, which was to mimic the function of myometrium in uterine tissue. The PLATMC/PLGA polymer blend scaffolds were highly stretchable. Subsequently, after etching of the PLATMC/PLGA surface and employing estradiol (E2), polydopamine (PDA), and hyaluronic acid (HA), PDA@E2/HA multilayer films were formed on PLATMC/PLGA scaffolds to build an intelligent delivery platform to enable controlled and sustained release of E2. The PDA@E2/HA multilayer films also improved the biological performance of the scaffold. Finally, a layer of bone marrow-derived mesenchymal stem cell (BMSC)-laden hydrogel [which was a blend of gelatin methacryloyl (GelMA) and gelatin (Gel)] was 3D printed on the PDA@E2/HA multilayer films of the scaffold, thereby completing the construction of the hierarchical scaffold. BMSCs in the GelMA/Gel hydrogel layer exhibited excellent cell viability and could spread and be released eventually upon biodegradation of the GelMA/Gel hydrogel. It was shown that the hierarchically structured scaffolds could evolve from the initial flat shape into the tubular structure completely in an aqueous environment at 37 °C, fulfilling the requirement for curved scaffolds for uterine tissue engineering. The biomimicking scaffolds with a hierarchical structure and curved shape, high stretchability, and controlled and sustained E2 release appear to be very promising for uterine tissue regeneration.
AUTHOR Nicolas, Touya and Ségolène, Reiss and Thierry, Rouillon and Maeva, Dutilleul and Joelle, Veziers and Arnaud, Pare and Ludmila, Brasset and Pierre, Weiss and Pierre, Corre and Baptiste, Charbonnier
Title Multiparametric influence of 3D-printed organo-mineral scaffolds on bone regeneration [Abstract]
Year 2024
Journal/Proceedings Scientific Reports
Reftype Nicolas2024
DOI/URL DOI
Abstract
The development of synthetic bone substitutes that equal or exceed the efficacy of autologous graft remains challenging. In this study, a rat calvarial defect model was used as a reference to investigate the influence of composition and architecture of 3D-printed cement, with or without bioactives, on tissue regeneration. Printable cement pastes were formulated by combining hyaluronic acid and cement precursors. Cementitious scaffolds were printed with 3 different patterns. After 7 weeks of implantation with or without bone marrow, multiparametric qualitative and quantitative assessments were performed using µCT, SEM, and histology. None of the set-up strategies was as efficient as autologous cancellous bone graft to repair calvarial defects. Nonetheless, the presence of scaffold improved the skull vault closure, particularly when the scaffold was soaked in total bone marrow before implantation. No significant effect of scaffold macro-architecture was observed on tissue mineralization. Magnesium phosphate-based scaffolds (MgP) seemed to induce higher bone formation than their calcium-phosphate-based counterparts. They also displayed a quicker biodegradation and sparse remaining material was found after 7 weeks of implantation. Although further improvements are required to reach clinical settings, this study demonstrated the potential of organo-mineral cements for bone regeneration and highlighted the peculiar properties of MgP-based cements.
AUTHOR de Leeuw, Anke M. and Graf, Reto and Lim, Pei Jin and Zhang, Jianhua and Schädli, Gian Nutal and Peterhans, Sheila and Rohrbach, Marianne and Giunta, Cecilia and Rüger, Matthias and Rubert, Marina and Müller, Ralph
Title Physiological cell bioprinting density in human bone-derived cell-laden scaffolds enhances matrix mineralization rate and stiffness under dynamic loading [Abstract]
Year 2024
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
Human organotypic bone models are an emerging technology that replicate bone physiology and mechanobiology for comprehensive in vitro experimentation over prolonged periods of time. Recently, we introduced a mineralized bone model based on 3D bioprinted cell-laden alginate-gelatin-graphene oxide hydrogels cultured under dynamic loading using commercially available human mesenchymal stem cells. In the present study, we created cell-laden scaffolds from primary human osteoblasts isolated from surgical waste material and investigated the effects of a previously reported optimal cell printing density (5 × 106 cells/mL bioink) vs. a higher physiological cell density (10 × 106 cells/mL bioink). We studied mineral formation, scaffold stiffness, and cell morphology over a 10-week period to determine culture conditions for primary human bone cells in this microenvironment. For analysis, the human bone-derived cell-laden scaffolds underwent multiscale assessment at specific timepoints. High cell viability was observed in both groups after bioprinting (>90%) and after 2 weeks of daily mechanical loading (>85%). Bioprinting at a higher cell density resulted in faster mineral formation rates, higher mineral densities and remarkably a 10-fold increase in stiffness compared to a modest 2-fold increase in the lower printing density group. In addition, physiological cell bioprinting densities positively impacted cell spreading and formation of dendritic interconnections. We conclude that our methodology of processing patient-specific human bone cells, subsequent biofabrication and dynamic culturing reliably affords mineralized cell-laden scaffolds. In the future, in vitro systems based on patient-derived cells could be applied to study the individual phenotype of bone disorders such as osteogenesis imperfecta and aid clinical decision making.
AUTHOR Wang, Qilong and Liu, Kai and Cao, Xia and Rong, Wanjin and Shi, Wenwan and Yu, Qintong and Deng, Wenwen and Yu, Jiangnan and Xu, Ximing
Title Plant-derived exosomes extracted from Lycium barbarum L. loaded with isoliquiritigenin to promote spinal cord injury repair based on 3D printed bionic scaffold [Abstract]
Year 2024
Journal/Proceedings Bioengineering & Translational Medicine
Reftype
DOI/URL DOI
Abstract
Abstract Plant-derived exosomes (PEs) possess an array of therapeutic properties, including antitumor, antiviral, and anti-inflammatory capabilities. They are also implicated in defensive responses to pathogenic attacks. Spinal cord injuries (SCIs) regeneration represents a global medical challenge, with appropriate research concentration on three pivotal domains: neural regeneration promotion, inflammation inhibition, and innovation and application of regenerative scaffolds. Unfortunately, the utilization of PE in SCI therapy remains unexplored. Herein, we isolated PE from the traditional Chinese medicinal herb, Lycium barbarum L. and discovered their inflammatory inhibition and neuronal differentiation promotion capabilities. Compared with exosomes derived from ectomesenchymal stem cells (EMSCs), PE demonstrated a substantial enhancement in neural differentiation. We encapsulated isoliquiritigenin (ISL)-loaded plant-derived exosomes (ISL@PE) from L. barbarum L. within a 3D-printed bionic scaffold. The intricate construct modulated the inflammatory response following SCI, facilitating the restoration of damaged axons and culminating in ameliorated neurological function. This pioneering investigation proposes a novel potential route for insoluble drug delivery via plant exosomes, as well as SCI repair. The institutional animal care and use committee number is UJS-IACUC-2020121602.
AUTHOR Hamidzada, Homaira and Pascual-Gil, Simon and Wu, Qinghua and Kent, Gregory M. and Massé, Stéphane and Kantores, Crystal and Kuzmanov, Uros and Gomez-Garcia, M. Juliana and Rafatian, Naimeh and Gorman, Renée A. and Wauchop, Marianne and Chen, Wenliang and Landau, Shira and Subha, Tasnia and Atkins, Michael H. and Zhao, Yimu and Beroncal, Erika and Fernandes, Ian and Nanthakumar, Jared and Vohra, Shabana and Wang, Erika Y. and Valdman Sadikov, Tamilla and Razani, Babak and McGaha, Tracy L. and Andreazza, Ana C. and Gramolini, Anthony and Backx, Peter H. and Nanthakumar, Kumaraswamy and Laflamme, Michael A. and Keller, Gordon and Radisic, Milica and Epelman, Slava
Title Primitive macrophages induce sarcomeric maturation and functional enhancement of developing human cardiac microtissues via efferocytic pathways [Abstract]
Year 2024
Journal/Proceedings Nature Cardiovascular Research
Reftype Hamidzada2024
DOI/URL DOI
Abstract
Yolk sac macrophages are the first to seed the developing heart; however, owing to a lack of accessible tissue, there is no understanding of their roles in human heart development and function. In this study, we bridge this gap by differentiating human embryonic stem (hES) cells into primitive LYVE1+ macrophages (hESC-macrophages) that stably engraft within contractile cardiac microtissues composed of hESC-cardiomyocytes and fibroblasts. Engraftment induces a human fetal cardiac macrophage gene program enriched in efferocytic pathways. Functionally, hESC-macrophages trigger cardiomyocyte sarcomeric protein maturation, enhance contractile force and improve relaxation kinetics. Mechanistically, hESC-macrophages engage in phosphatidylserine-dependent ingestion of apoptotic cardiomyocyte cargo, which reduces microtissue stress, leading hESC-cardiomyocytes to more closely resemble early human fetal ventricular cardiomyocytes, both transcriptionally and metabolically. Inhibiting hESC-macrophage efferocytosis impairs sarcomeric protein maturation and reduces cardiac microtissue function. Together, macrophage-engineered human cardiac microtissues represent a considerably improved model for human heart development and reveal a major beneficial role for human primitive macrophages in enhancing early cardiac tissue function.
AUTHOR Ruchika and Neha Bhardwaj and Sudesh Kumar Yadav and Ankit Saneja
Title Recent advances in 3D bioprinting for cancer research: From precision models to personalized therapies [Abstract]
Year 2024
Journal/Proceedings Drug Discovery Today
Reftype
DOI/URL URL DOI
Abstract
Cancer remains one of the most devastating diseases, necessitating innovative and precise therapeutic solutions. The emergence of 3D bioprinting has revolutionized the platform of cancer therapy by offering bespoke solutions for drug screening, tumor modeling, and personalized medicine. The utilization of 3D bioprinting enables the fabrication of complex tumor models that closely mimic the in vivo microenvironment, facilitating more accurate drug testing and personalized treatment strategies. Moreover, 3D bioprinting also provides a platform for the development of implantable scaffolds as a therapeutic solution to cancer. In this review, we highlight the application of 3D bioprinting for cancer therapy along with current advancements in cancer 3D model development with recent case studies.
AUTHOR Shijie Fan and Yadong Tan and Xiuchen Yuan and Chun Liu and Xiaoyu Wu and Ting Dai and Su Ni and Jiafeng Wang and Yiping Weng and Hongbin Zhao
Title Regulation of the immune microenvironment by pioglitazone-loaded polylactic glycolic acid nanosphere composite scaffolds to promote vascularization and bone regeneration [Abstract]
Year 2024
Journal/Proceedings Journal of Tissue Engineering
Reftype
DOI/URL DOI
Abstract
Osteogenesis is caused by multiple factors, and the inflammatory response, osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), regeneration of blood vessels, and other factors must be considered in bone tissue engineering. To effectively repair bone defect, it is important to decrease excessive inflammation, enhance the differentiation of mesenchymal stem cells into osteoblasts, and stimulate angiogenesis. Herein, nano-attapulgite (ATP), polyvinyl alcohol (PVA), and gelatin (GEL) scaffolds were produced using 3D printing technology and pioglitazone (PIO)-containing polylactic acid–glycolic acid (PLGA) nanospheres were added. In both in vitro and in vivo studies, material scaffolds with PIO-loaded polylactic acid–glycolic acid nanospheres could reduce the inflammatory response by encouraging macrophage polarization from M1 to M2 and promoting the osteogenic differentiation of BMSCs by activating the BMP2/Smad/RUNX2 signal pathway to repair bone defects. The vascularization of human umbilical vein endothelial cells (HUVECs) through the PI3K/AKT/HIF1-/VEGF pathway was also encouraged. In vivo research using PIO-containing PLGA nanospheres revealed massive collagen deposition in skin models. These findings indicate a potentially effective scaffold for bone healing, when PLGA nanospheres—which contain the drug PIO—are combined with ATP/PVA/GEL scaffolds.
AUTHOR Villata, Simona and Frascella, Francesca and Gaglio, Cesare Gabriele and Nastasi, Giuliana and Petretta, Mauro and Pirri, Candido Fabrizio and Baruffaldi, Désirée
Title Self-standing gelatin- methacryloyl 3D structure using Carbopol-embedded printing [Abstract]
Year 2024
Journal/Proceedings Journal of Polymer Science
Reftype
DOI/URL DOI
Abstract
Abstract Gelatin-methacryloyl (GelMA) hydrogel has gained huge success in the last decades thanks to its versatilities in many applications. Notably, one of them is 3D bioprinting, as GelMA physical-mechanical properties and biocompatibility of uncured formulation perfectly suit the requirements of a bioink. Nevertheless, before the photopolymerization, the hydrogel shows weak mechanical properties and long recovery time after stress application, which results in the inability to obtain complex and self-standing forms due to structure collapse. In this work, Carbopol ETD 2020 NF, dissolved in cell culture medium, was used as supporting bath to optimize GelMA bioprinting and overcome its stability limitations. The achieved results demonstrated the possibility of printing shapes containing hollows with lumens or non-planar surfaces, also by using nozzles with larger inner diameter, which reduced cell death during printing process, but were usually avoid because of low resolution. Moreover, constructs' extraction was easier when Carbopol solution was prepared in culture medium rather than in water, reducing sample handling. In conclusion, thanks to this supporting bath, it was possible to print cellularized scaffold, with channels that were then seeded, obtaining inner structure. Further, this Carbopol formulation could be considered an eligible candidate as a supporting bath to obtain GelMA 3D self-standing-shaped and vascularized scaffold.
AUTHOR J. {Anupama Sekar} and Shiny Velayudhan and M. Senthilkumar and P.R. {Anil Kumar}
Title Silymarin enriched gelatin methacrylamide bioink imparts hepatoprotectivity to 3D bioprinted liver construct against carbon tetrachloride induced toxicity [Abstract]
Year 2024
Journal/Proceedings European Journal of Pharmaceutics and Biopharmaceutics
Reftype
DOI/URL URL DOI
Abstract
Three-dimensional liver bioprinting is an emerging technology in the field of regenerative medicine that aids in the creation of functional tissue constructs that can be used as transplantable organ substitutes. During transplantation, the bioprinted donor liver must be protected from the oxidative stress environment created by various factors during the transplantation procedure, as well as from drug-induced damage from medications taken as part of the post-surgery medication regimen following the procedure. In this study, Silymarin, a flavonoid with the hepatoprotective properties were introduced into the GelMA bioink formulation to protect the bioprinted liver against hepatotoxicity. The concentration of silymarin to be added in GelMA was optimised, bioink properties were evaluated, and HepG2 cells were used to bioprint liver tissue. Carbon tetrachloride (CCl4) was used to induce hepatotoxicity in bioprinted liver, and the effect of this chemical on the metabolic activities of HepG2 cells was studied. The results showed that Silymarin helps with albumin synthesis and shields liver tissue from the damaging effects of CCl4. According to gene expression analysis, CCl4 treatment increased TNF-α and the antioxidant enzyme SOD expression in HepG2 cells while the presence of silymarin protected the bioprinted construct from CCl4-induced damage. Thus, the outcomes demonstrate that the addition of silymarin in GelMA formulation protects liver function in toxic environments.
AUTHOR Chun Liu and Su Ni and Xiaoyu Wu and Linxiang Zhang and Ting Dai and Aiqin Wang and Hongbin Zhao
Title Strontium-Modified porous attapulgite composite hydrogel scaffold with advanced angiogenic and osteogenic potential for bone defect repair [Abstract]
Year 2024
Journal/Proceedings Composites Part A: Applied Science and Manufacturing
Reftype
DOI/URL URL DOI
Abstract
Nano-attapulgite (nano-ATP) has shown potential in promoting mesenchymal stem cell (MSC) adhesion, growth and osteogenic gene expression. In this study, we investigated a 3D-bioprinted porous Sr-ATP (strontium-doped nano-ATP)/GelMA/chitosan composite hydrogel scaffold for bone regeneration. The experiment was divided into four groups based on the concentration of Sr-ATP: control (0%), 0.5%, 1.0% and 2.0%. The primary novelty of our research lies in the incorporation of Sr-ATP, which enhances the biological and mechanical properties of scaffolds. Additionally, we utilized a stable Pickering emulsion templating technique combined with 3D printing to fabricate the scaffold, ensuring a uniform and stable porous structure. The biological and mechanical properties of the scaffold were evaluated in vitro, and its potential to promote angiogenesis and osteogenesis was assessed in vivo using cranial defect model. Our results indicate that the scaffold presents a promising solution for bone formation in bone defects, demonstrating significant improvements in both angiogenesis and osteogenesis.
AUTHOR Stephanie M. Stanford and Tiffany P. Nguyen and Joseph Chang and Zixuan Zhao and G. Lavender Hackman and Eugenio Santelli and Colton M. Sanders and Madhusudhanarao Katiki and Eleonora Dondossola and Brooke L. Brauer and Michael A. Diaz and Yuan Zhan and Sterling H. Ramsey and Philip A. Watson and Banumathi Sankaran and Claudia Paindelli and Vanessa Parietti and Antonios G. Mikos and Alessia Lodi and Aditya Bagrodia and Andrew Elliott and Rana R. McKay and Ramachandran Murali and Stefano Tiziani and Arminja N. Kettenbach and Nunzio Bottini
Title Targeting prostate tumor low–molecular weight tyrosine phosphatase for oxidation-sensitizing therapy [Abstract]
Year 2024
Journal/Proceedings Science Advances
Reftype
DOI/URL DOI
Abstract
Protein tyrosine phosphatases (PTPs) play major roles in cancer and are emerging as therapeutic targets. Recent reports suggest low–molecular weight PTP (LMPTP)—encoded by the ACP1 gene—is overexpressed in prostate tumors. We found ACP1 up-regulated in human prostate tumors and ACP1 expression inversely correlated with overall survival. Using CRISPR-Cas9–generated LMPTP knockout C4-2B and MyC-CaP cells, we identified LMPTP as a critical promoter of prostate cancer (PCa) growth and bone metastasis. Through metabolomics, we found that LMPTP promotes PCa cell glutathione synthesis by dephosphorylating glutathione synthetase on inhibitory Tyr270. PCa cells lacking LMPTP showed reduced glutathione, enhanced activation of eukaryotic initiation factor 2–mediated stress response, and enhanced reactive oxygen species after exposure to taxane drugs. LMPTP inhibition slowed primary and bone metastatic prostate tumor growth in mice. These findings reveal a role for LMPTP as a critical promoter of PCa growth and metastasis and validate LMPTP inhibition as a therapeutic strategy for treating PCa through sensitization to oxidative stress. LMPTP inhibition sensitizes prostate tumors to oxidative stress.
AUTHOR Yanhao Hou and Weiguang Wang and Paulo Bartolo
Title The effect of graphene and graphene oxide induced reactive oxygen species on polycaprolactone scaffolds for bone cancer applications [Abstract]
Year 2024
Journal/Proceedings Materials Today Bio
Reftype
DOI/URL URL DOI
Abstract
Bone cancer remains a critical healthcare problem. Among current clinical treatments, tumour resection is the most common strategy. It is usually effective but may present several limitations such as multiple operations, long hospital time, and the potential recurrence caused by the incomplete removal of cancer cells. To address these limitations, three-dimensional (3D) scaffolds fabricated through additive manufacturing have been researched for both bone cancer treatment and post-treatment rehabilitation. Polycaprolactone (PCL)-based scaffolds play an important role in bone regeneration, serving as a physical substrate to fill the defect site, recruiting cells, and promoting cell proliferation and differentiation, ultimately leading to the regeneration of the bone tissue without multiple surgical applications. Multiple advanced materials have been incorporated during the fabrication process to improve certain functions and/or modulate biological performances. Graphene-based nanomaterials, particularly graphene (G) and graphene oxide (GO), have been investigated both in vitro and in vivo, significantly improving the scaffold's physical, chemical, and biological properties, which strongly depend on the material type and concentration. A unique targeted inhibition effect on cancer cells was also discovered. However, limited research has been conducted on utilising graphene-based nanomaterials for both bone regeneration and bone cancer treatment, and there is no systematic study into the material- and dose-dependent effects, as well as the working mechanism on 3D scaffolds to realise these functions. This paper addresses these limitations by designing and fabricating PCL-based scaffolds containing different concentrations of G and GO and assessing their biological behaviour correlating it to the reactive oxygen species (ROS) release level. Results suggest that the ROS release from the scaffolds is a dominant mechanism that affects the biological behaviour of the scaffolds. ROS release also contributes to the inhibition effect on bone cancer due to healthy cells and cancer cells responding differently to ROS, and the osteogenesis results also present a certain correlation with ROS. These observations revealed a new route for realising bone cancer treatment and subsequent new bone regeneration, using a single dual-functional 3D scaffold.
AUTHOR Huang, Benzhao and Li, Shishuo and Dai, Shimin and Lu, Xiaoqing and Wang, Peng and Li, Xiao and Zhao, Zhibo and Wang, Qian and Li, Ningbo and Wen, Jie and Liu, Yifang and Wang, Xin and Man, Zhentao and Li, Wei and Liu, Bing
Title Ti3C2Tx MXene-Decorated 3D-Printed Ceramic Scaffolds for Enhancing Osteogenesis by Spatiotemporally Orchestrating Inflammatory and Bone Repair Responses [Abstract]
Year 2024
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Inflammatory responses play a central role in coordinating biomaterial-mediated tissue regeneration. However, precise modulation of dynamic variations in microenvironmental inflammation post-implantation remains challenging. In this study, the traditional β-tricalcium phosphate-based scaffold is remodeled via ultrathin MXene-Ti3C2 decoration and Zn2+/Sr2+ ion-substitution, endowing the scaffold with excellent reactive oxygen species-scavenging ability, near-infrared responsivity, and enhanced mechanical properties. The induction of mild hyperthermia around the implant via periodic near-infrared irradiation facilitates spatiotemporal regulation of inflammatory cytokines secreted by a spectrum of macrophage phenotypes. The process initially amplifies the pro-inflammatory response, then accelerates M1-to-M2 macrophage polarization transition, yielding a satisfactory pattern of osteo-immunomodulation during the natural bone healing process. Later, sustained release of Zn2+/Sr2+ ions with gradual degradation of the 3D scaffold maintains the favorable reparative M2-dominated immunological microenvironment that supports new bone mineralization. Precise temporal immunoregulation of the bone healing process by the intelligent 3D scaffold enhances bone regeneration in a rat cranial defect model. This strategy paves the way for the application of β-tricalcium phosphate-based materials to guide the dynamic inflammatory and bone tissue responses toward a favorable outcome, making clinical treatment more predictable and durable. The findings also demonstrate that near-infrared irradiation-derived mild hyperthermia is a promising method of immunomodulation.
AUTHOR Hatt, Luan P and Wirth, Sylvie and Ristaniemi, Aapo and Ciric, Daniel J and Thompson, Keith and Eglin, David and Stoddart, Martin J and Armiento, Angela R
Title {Micro-porous PLGA/β-TCP/TPU scaffolds prepared by solvent-based 3D printing for bone tissue engineering purposes} [Abstract]
Year 2023
Journal/Proceedings Regenerative Biomaterials
Reftype
DOI/URL DOI
Abstract
{The 3D printing process of fused deposition modelling (FDM) is an attractive fabrication approach to create tissue engineered bone substitutes to regenerate large mandibular bone defects, but often lacks desired surface porosity for enhanced protein adsorption and cell adhesion. Solvent-based printing leads to the spontaneous formation of micropores on the scaffold’s surface upon solvent removal, without the need for further post processing. Our aim is to create and characterise porous scaffolds using a new formulation composed of mechanically stable poly(lactic-co-glycol acid) (PLGA) and osteoconductive β-tricalcium phosphate (β-TCP) with and without the addition of elastic thermoplastic polyurethane (TPU) prepared by solvent-based 3D-printing technique. Large scale regenerative scaffolds can be 3D-printed with adequate fidelity and show porosity at multiple levels analysed via micro-computer tomography, scanning electron microscopy and N2 sorption. Superior mechanical properties compared to a commercially available CaP ink are demonstrated in compression, bending, and screw pull out tests. Biological assessments including cell activity assay and live-dead staining prove the scaffold's cytocompatibility. Osteoconductive properties are demonstrated by performing an osteogenic differentiation assay with primary human bone marrow mesenchymal stromal cells. We propose a versatile fabrication process to create porous 3D-printed scaffolds with adequate mechanical stability and osteoconductivity, both important characteristics for segmental mandibular bone reconstruction.}
AUTHOR Patricia González-Callejo and Paula Vázquez-Aristizabal and Clara García-Astrain and Dorleta {Jimenez de Aberasturi} and Malou Henriksen-Lacey and Ander Izeta and Luis M. Liz-Marzán
Title 3D bioprinted breast tumor-stroma models for pre-clinical drug testing [Abstract]
Year 2023
Journal/Proceedings Materials Today Bio
Reftype
DOI/URL URL DOI
Abstract
The use of three-dimensional (3D) bioprinting has been proposed for the reproducible production of 3D disease models that can be used for high-throughput drug testing and personalized medicine. However, most such models insufficiently reproduce the features and environment of real tumors. We report the development of bioprinted in vitro 3D tumor models for breast cancer, which physically and biochemically mimic important aspects of the native tumor microenvironment, designed to study therapeutic efficacy. By combining a mix of breast decellularized extracellular matrix and methacrylated hyaluronic acid with tumor-derived cells and non-cancerous stromal cells of biological relevance to breast cancer, we show that biological signaling pathways involved in tumor progression can be replicated in a carefully designed tumor-stroma environment. Finally, we demonstrate proof-of-concept application of these models as a reproducible platform for investigating therapeutic responses to commonly used chemotherapeutic agents.
AUTHOR García-Lizarribar, Andrea and Villasante, Aranzazu and Lopez-Martin, Jose Antonio and Flandez, Marta and Soler-Vázquez, M. Carmen and Serra, Dolors and Herrero, Laura and Sagrera, Ana and Efeyan, Alejo and Samitier, Josep
Title 3D bioprinted functional skeletal muscle models have potential applications for studies of muscle wasting in cancer cachexia [Abstract]
Year 2023
Journal/Proceedings Biomaterials Advances
Reftype
DOI/URL URL DOI
Abstract
Acquired muscle diseases such as cancer cachexia are responsible for the poor prognosis of many patients suffering from cancer. In vitro models are needed to study the underlying mechanisms of those pathologies. Extrusion bioprinting is an emerging tool to emulate the aligned architecture of fibers while implementing additive manufacturing techniques in tissue engineering. However, designing bioinks that reconcile the rheological needs of bioprinting and the biological requirements of muscle tissue is a challenging matter. Here we formulate a biomaterial with dual crosslinking to modulate the physical properties of bioprinted models. We design 3D bioprinted muscle models that resemble the mechanical properties of native tissue and show improved proliferation and high maturation of differentiated myotubes suggesting that the GelMA-AlgMA-Fibrin biomaterial possesses myogenic properties. The electrical stimulation of the 3D model confirmed the contractile capability of the tissue and enhanced the formation of sarcomeres. Regarding the functionality of the models, they served as platforms to recapitulate skeletal muscle diseases such as muscle wasting produced by cancer cachexia. The genetic expression of 3D models demonstrated a better resemblance to the muscular biopsies of cachectic mouse models. Altogether, this biomaterial is aimed to fabricate manipulable skeletal muscle in vitro models in a non-costly, fast and feasible manner.
AUTHOR Simona Villata and Marta Canta and Désirée Baruffaldi and Ignazio Roppolo and Candido Fabrizio Pirri and Francesca Frascella
Title 3D bioprinted GelMA platform for the production of lung tumor spheroids [Abstract]
Year 2023
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
The study proposes a platform for the formation and culture of non-small cell lung cancer (NSCLC) spheroids, to obtain an in vitro model suitable for drug and therapy testing. To achieve that, traditional cell culture is compared to methacrylated gelatin (GelMA) 3D bioprinting, in order to explore not only the potential of the matrix itself, but also the impact of different architectures on spheroid formation. Starting from a systematic analysis, where GelMA concentration, methacrylation degree and cell seeding concentration is set; three different architectures (round, ring and grid) are analyzed in terms of spheroid formation and growth, using 3D bioprinting. The study reveals that Very High GelMA 7.5% w/v formulation, with single cells dispersed in, is the best bioink to obtain NSCLC spheroids. Moreover, grid architecture performs in the best way, because of the highest volume-surface area ratio. The designed GelMA platform can be used as a powerful in vitro tool for drug testing and therapy screening, that can be designed playing with four different parameters: cell concentration, GelMA methacrylation degree, GelMA concentration and geometry.
AUTHOR Juraski, Amanda C. and Sharma, Sonali and Sparanese, Sydney and da Silva, Victor A. and Wong, Julie and Laksman, Zachary and Flannigan, Ryan and Rohani, Leili and Willerth, Stephanie M.
Title 3D bioprinting for organ and organoid models and disease modeling [Abstract]
Year 2023
Journal/Proceedings Expert Opinion on Drug Discovery
Reftype
DOI/URL DOI
Abstract
ABSTRACTIntroduction 3D printing, a versatile additive manufacturing technique, has diverse applications ranging from transportation, rapid prototyping, clean energy, and medical devices.Areas covered The authors focus on how 3D printing technology can enhance the drug discovery process through automating tissue production that enables high-throughput screening of potential drug candidates. They also discuss how the 3D bioprinting process works and what considerations to address when using this technology to generate cell laden constructs for drug screening as well as the outputs from such assays necessary for determining the efficacy of potential drug candidates. They focus on how bioprinting how has been used to generate cardiac, neural, and testis tissue models, focusing on bio-printed 3D organoids.Expert opinion The next generation of 3D bioprinted organ model holds great promises for the field of medicine. In terms of drug discovery, the incorporation of smart cell culture systems and biosensors into 3D bioprinted models could provide highly detailed and functional organ models for drug screening. By addressing current challenges of vascularization, electrophysiological control, and scalability, researchers can obtain more reliable and accurate data for drug development, reducing the risk of drug failures during clinical trials.
AUTHOR Liu, Chun and Dai, Ting and Wu, Xiaoyu and Ma, Jiayi and Liu, Jun and Wu, Siyu and Yang, Lei and Zhao, Hongbin
Title 3D bioprinting of cell-laden nano-attapulgite/gelatin methacrylate composite hydrogel scaffolds for bone tissue repair [Abstract]
Year 2023
Journal/Proceedings Journal of Materials Science & Technology
Reftype
DOI/URL URL DOI
Abstract
Bone tissue engineering (BTE) has proven to be a promising strategy for bone defect repair. Due to its excellent biological properties, gelatin methacrylate (GelMA) hydrogels have been used as bioinks for 3D bioprinting in some BTE studies to produce scaffolds for bone regeneration. However, applications for load-bearing defects are limited by poor mechanical properties and a lack of bioactivity. In this study, 3D printing technology was used to create nano-attapulgite (nano-ATP)/GelMA composite hydrogels loaded into mouse bone mesenchymal stem cells (BMSCs) and mouse umbilical vein endothelial cells (MUVECs). The bioprintability, physicochemical properties, and mechanical properties were all thoroughly evaluated. Our findings showed that nano-ATP groups outperform the control group in terms of printability, indicating that nano-ATP is beneficial for printability. Additionally, after incorporation with nano-ATP, the mechanical strength of the composite hydrogels was significantly improved, resulting in adequate mechanical properties for bone regeneration. The presence of nano-ATP in the scaffolds has also been studied for cell-material interactions. The findings show that cells within the scaffold not only have high viability but also a clear proclivity to promote osteogenic differentiation of BMSCs. Besides, the MUVECs-loaded composite hydrogels demonstrated increased angiogenic activity. A cranial defect model was also developed to evaluate the bone repair capability of scaffolds loaded with rat BMSCs. According to histological analysis, cell-laden nano-ATP composite hydrogels can effectively improve bone regeneration and promote angiogenesis. This study demonstrated the potential of nano-ATP for bone tissue engineering, which should also increase the clinical practicality of nano-ATP.
AUTHOR Boons, Rani and Siqueira, Gilberto and Grieder, Florian and Kim, Soo-Jeong and Giovanoli, Diego and Zimmermann, Tanja and Nyström, Gustav and Coulter, Fergal B. and Studart, André R.
Title 3D Bioprinting of Diatom-Laden Living Materials for Water Quality Assessment [Abstract]
Year 2023
Journal/Proceedings Small
Reftype
DOI/URL DOI
Abstract
Abstract Diatoms have long been used as living biological indicators for the assessment of water quality in lakes and rivers worldwide. While this approach benefits from the great diversity of these unicellular algae, established protocols are time-consuming and require specialized equipment. Here, this work 3D prints diatom-laden hydrogels that can be used as a simple multiplex bio-indicator for water assessment. The hydrogel-based living materials are created with the help of a desktop extrusion-based printer using a suspension of diatoms, cellulose nanocrystals (CNC) and alginate as bio-ink constituents. Rheology and mechanical tests are employed to establish optimum bio-ink formulations, whereas cell culture experiments are utilized to evaluate the proliferation of the entrapped diatoms in the presence of selected water contaminants. Bioprinting of diatom-laden hydrogels is shown to be an enticing approach to generate living materials that can serve as low-cost bio-indicators for water quality assessment.
AUTHOR Cernencu, Alexandra I. and Vlasceanu, George M. and Serafim, Andrada and Pircalabioru, Gratiela and Ionita, Mariana
Title 3D double-reinforced graphene oxide – nanocellulose biomaterial inks for tissue engineered constructs [Abstract]
Year 2023
Journal/Proceedings RSC Adv.
Reftype
DOI/URL DOI
Abstract
The advent of improved fabrication technologies{,} particularly 3D printing{,} has enabled the engineering of bone tissue for patient-specific healing and the fabrication of in vitro tissue models for ex vivo testing. However{,} inks made from natural polymers often fall short in terms of mechanical strength{,} stability{,} and the induction of osteogenesis. Our research focused on developing novel printable formulations using a gelatin/pectin polymeric matrix that integrate synergistic reinforcement components i.e. graphene oxide (GO) and oxidized nanocellulose fibers (CNF). Using 3D printing technology and the aforementioned biomaterial composite inks{,} bone-like scaffolds were created. To simulate critical-sized flaws and demonstrate scaffold fidelity{,} 3D scaffolds were successfully printed using formulations with varied GO concentrations (0.25{,} 0.5{,} and 1% wt with respect to polymer content). The addition of GO to hydrogel inks enhanced not only the compressive modulus but also the printability and scaffold fidelity compared to the pure colloid-gelatin/pectin system. Due to its strong potential for 3D bioprinting{,} the sample containing 0.5% GO is shown to have the greatest perspectives for bone tissue models and tissue engineering applications.
AUTHOR Krstić, Nenad and Jüttner, Jens and Giegerich, Lars and Mayer, Margot and Knuth, Monika and Müller, Achim and Thielemann, Christiane
Title 3D printed biosensor for continuous glucose measurement in cell cultures [Abstract]
Year 2023
Journal/Proceedings Annals of 3D Printed Medicine
Reftype
DOI/URL URL DOI
Abstract
A novel 3D-printed glucose sensor is presented for cell culture application. Glucose sensing was performed using a fluorescence resonance energy transfer (FRET)-based assay principle based on ConA and dextran. Both molecules are encapsulated in alginate microspheres and embedded in the UV-curable, stable hydrogel polyvinyl alcohol (PVA). The rheology of the formulation was adapted to obtain good properties for an extrusion-based printing process. The printed sensor structures were tested for their ability to detect glucose in vitro. A proportional increase in fluorescence intensity was observed in a concentration range of 0 - 2 g/L glucose. Tests with HEK cell cultures also showed good cell compatibility and excellent adhesion properties on plasma-treated Petri dishes. The printed sensors were able to detect the glucose decay associated with the metabolic activities of the fast-growing HEK cells in the cell culture medium over ten days. The proof-of-principle study shows that metabolic processes in cell cultures can be monitored with the new printed sensor using a standard fluorescence wide-field microscope.
AUTHOR Li, Jianfeng and Reimers, Armin and Dang, Ka My and Brunk, Michael G. K. and Drewes, Jonas and Hirsch, Ulrike M. and Willems, Christian and Schmelzer, Christian E. H. and Groth, Thomas and Nia, Ali Shaygan and Feng, Xinliang and Adelung, Rainer and Sacher, Wesley D. and Schütt, Fabian and Poon, Joyce K. S.
Title 3D printed neural tissues with in situ optical dopamine sensors [Abstract]
Year 2023
Journal/Proceedings Biosensors and Bioelectronics
Reftype
DOI/URL URL DOI
Abstract
Engineered neural tissues serve as models for studying neurological conditions and drug screening. Besides observing the cellular physiological properties, in situ monitoring of neurochemical concentrations with cellular spatial resolution in such neural tissues can provide additional valuable insights in models of disease and drug efficacy. In this work, we demonstrate the first three-dimensional (3D) tissue cultures with embedded optical dopamine (DA) sensors. We developed an alginate/Pluronic F127 based bio-ink for human dopaminergic brain tissue printing with tetrapodal-shaped-ZnO microparticles (t-ZnO) additive as the DA sensor. DA quenches the autofluorescence of t-ZnO in physiological environments, and the reduction of the fluorescence intensity serves as an indicator of the DA concentration. The neurons that were 3D printed with the t-ZnO showed good viability, and extensive 3D neural networks were formed within one week after printing. The t-ZnO could sense DA in the 3D printed neural network with a detection limit of 0.137 μM. The results are a first step toward integrating tissue engineering with intensiometric biosensing for advanced artificial tissue/organ monitoring.
AUTHOR Wang, Bin and Barceló, Xavier and Von Euw, Stanislas and Kelly, Daniel J.
Title 3D printing of mechanically functional meniscal tissue equivalents using high concentration extracellular matrix inks [Abstract]
Year 2023
Journal/Proceedings Materials Today Bio
Reftype
DOI/URL URL DOI
Abstract
Decellularized extracellular matrix (dECM) has emerged as a promising biomaterial in the fields of tissue engineering and regenerative medicine due to its ability to provide specific biochemical and biophysical cues supportive of the regeneration of diverse tissue types. Such biomaterials have also been used to produce tissue-specific inks and bioinks for 3D printing applications. However, a major limitation associated with the use of such dECM materials is their poor mechanical properties, which limits their use in load-bearing applications such as meniscus regeneration. In this study, native porcine menisci were solubilized and decellularized using different methods to produce highly concentrated dECM inks of differing biochemical content and printability. All dECM inks displayed shear thinning and thixotropic properties, with increased viscosity and improved printability observed at higher pH levels, enabling the 3D printing of anatomically defined meniscal implants. With additional crosslinking of the dECM inks following thermal gelation at pH 11, it was possible to fabricate highly elastic meniscal tissue equivalents with compressive mechanical properties similar to the native tissue. These improved mechanical properties at higher pH correlated with the development of a denser network of smaller diameter collagen fibers. These constructs also displayed repeatable loading and unloading curves when subjected to long-term cyclic compression tests. Moreover, the printing of dECM inks at the appropriate pH promoted a preferential alignment of the collagen fibers. Altogether, these findings demonstrate the potential of 3D printing of highly concentrated meniscus dECM inks to produce mechanically functional and biocompatible implants for meniscal tissue regeneration. This approach could be applied to a wide variety of different biological tissues, enabling the 3D printing of tissue mimics with diverse applications from tissue engineering to surgical planning.
AUTHOR Limlawan, Pirawish and Insin, Numpon and Marger, Laurine and Freudenreich, Mélanie and Durual, Stéphane and Vacharaksa, Anjalee
Title 3D-printed TCP-HA scaffolds delivering MicroRNA-302a-3p improve bone regeneration in a mouse calvarial model [Abstract]
Year 2023
Journal/Proceedings BDJ Open
Reftype Limlawan2023
DOI/URL DOI
Abstract
To demonstrate hydroxyapatite nanoparticles modified with cationic functional molecules. 3-aminopropyltriethoxysilane (HA-NPs-APTES) carrying microRNA-302a-3p (miR) in the 3D-printed tricalcium phosphate/Hydroxyapatite (TCP/HA) scaffold can increase healing of the critical-sized bone defect.
AUTHOR van Charante, Frits and Martínez-Pérez, David and Guarch-Pérez, Clara and Courtens, Charlotte and Sass, Andrea and Choińska, Emilia and Idaszek, Joanna and Van Calenbergh, Serge and Riool, Martijn and Zaat, Sebastian A. J. and Święszkowski, Wojciech and Coenye, Tom
Title 3D-printed wound dressings containing a fosmidomycin-derivative prevent Acinetobacter baumannii biofilm formation [Abstract]
Year 2023
Journal/Proceedings iScience
Reftype
DOI/URL URL DOI
Abstract
Summary Acinetobacter baumannii causes a wide range of infections, including wound infections. Multidrug-resistant A. baumannii is a major healthcare concern and the development of novel treatments against these infections is needed. Fosmidomycin is a repurposed antimalarial drug targeting the non-mevalonate pathway, and several derivatives show activity towards A. baumannii. We evaluated the antimicrobial activity of CC366, a fosmidomycin prodrug, against a collection of A. baumannii strains, using various in vitro and in vivo models; emphasis was placed on the evaluation of its anti-biofilm activity. We also developed a 3D-printed wound dressing containing CC366, using melt electrowriting technology. Minimal inhibitory concentrations of CC366 ranged from 1 to 64 μg/mL, and CC366 showed good biofilm inhibitory and moderate biofilm eradicating activity in vitro. CC366 successfully eluted from a 3D-printed dressing, the dressings prevented the formation of A. baumannnii wound biofilms in vitro and reduced A. baumannii infection in an in vivo mouse model.
AUTHOR Estermann, Manuela and Coelho, Ricardo and Jacob, Francis and Huang, Yen-Lin and Liang, Ching-Yeu and Faia-Torres, Ana Bela and Septiadi, Dedy and Drasler, Barbara and Karakocak, Bedia Begum and Dijkhoff, Irini Magdelina and Petri-Fink, Alke and Heinzelmann-Schwarz, Viola and Rothen-Rutishauser, Barbara
Title A 3D multi-cellular tissue model of the human omentum to study the formation of ovarian cancer metastasis [Abstract]
Year 2023
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Reliable and predictive experimental models are urgently needed to study metastatic mechanisms of ovarian cancer cells in the omentum. Although models for ovarian cancer cell adhesion and invasion were previously investigated, the lack of certain omental cell types, which influence the metastatic behavior of cancer cells, limits the application of these tissue models. Here, we describe a 3D multi-cellular human omentum tissue model, which considers the spatial arrangement of five omental cell types. Reproducible tissue models were fabricated combining permeable cell culture inserts and bioprinting technology to mimic metastatic processes of immortalized and patient-derived ovarian cancer cells. The implementation of an endothelial barrier further allowed studying the interaction between cancer and endothelial cells during hematogenous dissemination and the impact of chemotherapeutic drugs. This proof-of-concept study may serve as a platform for patient-specific investigations in personalized oncology in the future.
AUTHOR Wesdorp, Marinus A. and Schwab, Andrea and Bektas, Ezgi Irem and Narcisi, Roberto and Eglin, David and Stoddart, Martin J. and Van Osch, Gerjo J. V. M. and D'Este, Matteo
Title A culture model to analyze the acute biomaterial-dependent reaction of human primary neutrophils in vitro [Abstract]
Year 2023
Journal/Proceedings Bioactive Materials
Reftype
DOI/URL URL DOI
Abstract
Neutrophils play a pivotal role in orchestrating the immune system response to biomaterials, the onset and resolution of chronic inflammation, and macrophage polarization. However, the neutrophil response to biomaterials and the consequent impact on tissue engineering approaches is still scarcely understood. Here, we report an in vitro culture model that comprehensively describes the most important neutrophil functions in the light of tissue repair. We isolated human primary neutrophils from peripheral blood and exposed them to a panel of hard, soft, naturally- and synthetically-derived materials. The overall trend showed increased neutrophil survival on naturally derived constructs, together with higher oxidative burst, decreased myeloperoxidase and neutrophil elastase and decreased cytokine secretion compared to neutrophils on synthetic materials. The culture model is a step to better understand the immune modulation elicited by biomaterials. Further studies are needed to correlate the neutrophil response to tissue healing and to elucidate the mechanism triggering the cell response and their consequences in determining inflammation onset and resolution.
AUTHOR Rikkers, Margot and Nguyen, H. Chien and Golafshan, Nasim and de Ruijter, Mylène and Levato, Riccardo and Vonk, Lucienne A. and van Egmond, Nienke and Castilho, Miguel and Custers, Roel J. H. and Malda, Jos
Title A Gap-Filling, Regenerative Implant for Open-Wedge Osteotomy [Abstract]
Year 2023
Journal/Proceedings Journal of Cartilage & Joint Preservation
Reftype
DOI/URL URL DOI
Abstract
Purpose In patients suffering from unilateral osteoarthritis in the knee, an osteotomy can provide symptomatic relief and postpone the need for replacement of the joint. Nevertheless, open-wedge osteotomies (OWO) around the knee joint face several challenges like postoperative pain and bone non-union. In this study, the aim was to design, fabricate, and evaluate a gap-filling implant for OWO using an osteoinductive and degradable biomaterial. Methods Design of porous wedge-shaped implants was based on computed tomography (CT) scans of cadaveric legs. Implants were 3D printed using a magnesium strontium phosphate-polycaprolactone (MgPSr-PCL) biomaterial ink. Standardized scaffolds with different inter-fibre spacing (IFS) were mechanically characterized and osteoinductive properties of the biomaterial were assessed in vitro. Finally, human-sized implants with different heights (5 mm, 10 mm, 15 mm) were designed and fabricated for ex vivo implantation during three OWO procedures in human cadaveric legs. Results Implants printed with an interior of IFS-1.0 resulted in scaffolds that maintained top and bottom porosity, while the interior of the implant exhibited significant mechanical stability. Bone marrow concentrate and culture expanded mesenchymal stromal cells attached to the MgPSr-PCL material and proliferated over 21 days in culture. The production of osteogenic markers alkaline phosphatase activity, calcium, and osteocalcin was promoted in all culture conditions, independent of osteogenic induction medium. Finally, three OWO procedures were planned and fabricated wedges were implanted ex vivo during the procedures. A small fraction of one side of the wedges was resected to assure fit into the proximal biplanar osteotomy gap. Pre-planned wedge heights were maintained after implantation as measured by micro-CT. Conclusion To conclude, personalized implants for implantation in open-wedge osteotomies were successfully designed and manufactured. The implant material supported osteogenesis of MSCs and BMC in vitro and full-size implants were successfully implemented into the surgical procedure, without compromising pre-planned wedge height.
AUTHOR Moon, Seongjun and Neale, Dylan B. and Kim, Do Hoon and Mukherji, Malini and Hughes, Elliot and Deng, Yuxuan and Kerneis, Fabienne and Luo, Xiuquan and Tharp, Darron and Bognar, Ernest and Stanbery, Laura and Nemunaitis, John and Chun, Tae-Hwa and Lahann, Joerg
Title A Scalable Engineered Extracellular Matrix Platform to Expand Tumor Cells [Abstract]
Year 2023
Journal/Proceedings Advanced NanoBiomed Research
Reftype
DOI/URL DOI
Abstract
The demand for high-throughput and scalable cell expansion platforms that can accommodate diverse cell types remains a critical requirement across various biomedical fields. Fibronectin (Fn), an essential component of the extracellular matrix (ECM), has been used as a conformal surface coating for two-dimensional (2D) cell culture systems. However, the soluble, globular Fn used for 2D coatings differs structurally from the native Fn, which possesses a three-dimensional (3D) fibrillar structure. Herein, a large-scale engineered ECM (EECM) cell expansion platform based on a 3D fibrillar Fn network spanning over centimeters is presented. Extended fibrillar networks are formed by shearing dilute Fn solutions over tessellated polymeric scaffolds, which are conveniently prepared by 3D printing. The structure and size of the Fn-based 3D EECM scaffold are optimized by evaluating the proliferation of a colorectal tumor cell line, CT26, commonly used in the in vivo tumor immunotherapy models. The 3D EECM scaffolds support a fourfold more efficient tumor cell expansion than a conventional 2D culture system, demonstrating the potential efficacy in supporting the robust expansion of cancer cells ex vivo with an eye on cancer immunotherapy.
AUTHOR Milena Deptuła and Małgorzata Zawrzykraj and Justyna Sawicka and Adrianna Banach-Kopeć and Robert Tylingo and Michał Pikuła
Title Application of 3D- printed hydrogels in wound healing and regenerative medicine [Abstract]
Year 2023
Journal/Proceedings Biomedicine & Pharmacotherapy
Reftype
DOI/URL URL DOI
Abstract
Hydrogels are three-dimensional polymer networks with hydrophilic properties. The modifiable properties of hydrogels and the structure resembling living tissue allow their versatile application. Therefore, increasing attention is focused on the use of hydrogels as bioinks for three-dimensional (3D) printing in tissue engineering. Bioprinting involves the fabrication of complex structures from several types of materials, cells, and bioactive compounds. Stem cells (SC), such as mesenchymal stromal cells (MSCs) are frequently employed in 3D constructs. SCs have desirable biological properties such as the ability to differentiate into various types of tissue and high proliferative capacity. Encapsulating SCs in 3D hydrogel constructs enhances their reparative abilities and improves the likelihood of reaching target tissues. In addition, created constructs can simulate the tissue environment and mimic biological signals. Importantly, the immunogenicity of scaffolds is minimized through the use of patient-specific cells and the biocompatibility and biodegradability of the employed biopolymers. Regenerative medicine is taking advantage of the aforementioned capabilities in regenerating various tissues- muscle, bones, nerves, heart, skin, and cartilage.
AUTHOR Anupama Sekar, J. and Velayudhan, Shiny and Anil Kumar, P. R.
Title Biocompatibility evaluation of antioxidant cocktail loaded gelatin methacrylamide as bioink for extrusion-based 3D bioprinting [Abstract]
Year 2023
Journal/Proceedings Biomedical Materials
Reftype
DOI/URL DOI
Abstract
Three-dimensional (3D) liver bioprinting is a promising technique for creating 3D liver models that can be used for in vitro drug testing, hepatotoxicity studies, and transplantation. The functional performance of 3D bioprinted liver constructs are limited by the lack of cell–cell interactions, which calls for the creation of bioprinted tissue constructs with high cell densities. This study reports the fabrication of 3D bioprinted liver constructs using a novel photocrosslinkable gelatin methacrylamide (GelMA)-based bioink formulation. However, the formation of excess free radicals during photoinitiation poses a challenge, particularly during photocrosslinking of large constructs with high cell densities. Hence, we designed a bioink formulation comprising the base polymer GelMA loaded with an antioxidant cocktail containing vitamin C (L-ascorbic acid (AA)) and vitamin E (α-tocopherol (α-Toc)). We confirmed that the combination of antioxidants loaded in GelMA enhanced the ability to scavenge intracellular reactive oxygen species formed during photocrosslinking. The GelMA formulation was evaluated for biocompatibility in vitro and in vivo. These results demonstrated that the bioink had adequate rheological characteristics and was biocompatible. Furthermore, when compared to bioprinted constructs with lower cell density, high-density primary rat hepatocyte constructs demonstrated improved cell-cell interactions and liver-specific functions like albumin and urea secretion, which increased 5-fold and 2.5-fold, respectively.
AUTHOR Jahangir, Shahrbanoo and Vecstaudza, Jana and Augurio, Adriana and Canciani, Elena and Stipniece, Liga and Locs, Janis and Alini, Mauro and Serra, Tiziano
Title Cell-Laden 3D Printed GelMA/HAp and THA Hydrogel Bioinks: Development of Osteochondral Tissue-like Bioinks [Abstract]
Year 2023
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
Osteochondral (OC) disorders such as osteoarthritis (OA) damage joint cartilage and subchondral bone tissue. To understand the disease, facilitate drug screening, and advance therapeutic development, in vitro models of OC tissue are essential. This study aims to create a bioprinted OC miniature construct that replicates the cartilage and bone compartments. For this purpose, two hydrogels were selected: one composed of gelatin methacrylate (GelMA) blended with nanosized hydroxyapatite (nHAp) and the other consisting of tyramine-modified hyaluronic acid (THA) to mimic bone and cartilage tissue, respectively. We characterized these hydrogels using rheological testing and assessed their cytotoxicity with live-dead assays. Subsequently, human osteoblasts (hOBs) were encapsulated in GelMA-nHAp, while micropellet chondrocytes were incorporated into THA hydrogels for bioprinting the osteochondral construct. After one week of culture, successful OC tissue generation was confirmed through RT-PCR and histology. Notably, GelMA/nHAp hydrogels exhibited a significantly higher storage modulus (G′) compared to GelMA alone. Rheological temperature sweeps and printing tests determined an optimal printing temperature of 20 °C, which remained unaffected by the addition of nHAp. Cell encapsulation did not alter the storage modulus, as demonstrated by amplitude sweep tests, in either GelMA/nHAp or THA hydrogels. Cell viability assays using Ca-AM and EthD-1 staining revealed high cell viability in both GelMA/nHAp and THA hydrogels. Furthermore, RT-PCR and histological analysis confirmed the maintenance of osteogenic and chondrogenic properties in GelMA/nHAp and THA hydrogels, respectively. In conclusion, we have developed GelMA-nHAp and THA hydrogels to simulate bone and cartilage components, optimized 3D printing parameters, and ensured cell viability for bioprinting OC constructs.
AUTHOR Sanz-Fraile, Héctor and Herranz-Diez, Carolina and Ulldemolins, Anna and Falcones, Bryan and Almendros, Isaac and Gavara, Núria and Sunyer, Raimon and Farré, Ramon and Otero, Jorge
Title Characterization of Bioinks Prepared via Gelifying Extracellular Matrix from Decellularized Porcine Myocardia [Abstract]
Year 2023
Journal/Proceedings Gels
Reftype
DOI/URL URL DOI
Abstract
Since the emergence of 3D bioprinting technology, both synthetic and natural materials have been used to develop bioinks for producing cell-laden cardiac grafts. To this end, extracellular-matrix (ECM)-derived hydrogels can be used to develop scaffolds that closely mimic the complex 3D environments for cell culture. This study presents a novel cardiac bioink based on hydrogels exclusively derived from decellularized porcine myocardium loaded with human-bone-marrow-derived mesenchymal stromal cells. Hence, the hydrogel can be used to develop cell-laden cardiac patches without the need to add other biomaterials or use additional crosslinkers. The scaffold ultrastructure and mechanical properties of the bioink were characterized to optimize its production, specifically focusing on the matrix enzymatic digestion time. The cells were cultured in 3D within the developed hydrogels to assess their response. The results indicate that the hydrogels fostered inter-cell and cell-matrix crosstalk after 1 week of culture. In conclusion, the bioink developed and presented in this study holds great potential for developing cell-laden customized patches for cardiac repair.
AUTHOR Barceló, Xavier and Garcia, Orquidea and Kelly, Daniel J.
Title Chondroitinase ABC Treatment Improves the Organization and Mechanics of 3D Bioprinted Meniscal Tissue [Abstract]
Year 2023
Journal/Proceedings ACS Biomater. Sci. Eng.
Reftype
DOI/URL DOI
Abstract
The meniscus is a fibrocartilage tissue that is integral to the correct functioning of the knee joint. The tissue possesses a unique collagen fiber architecture that is integral to its biomechanical functionality. In particular, a network of circumferentially aligned collagen fibers function to bear the high tensile forces generated in the tissue during normal daily activities. The limited regenerative capacity of the meniscus has motivated increased interest in meniscus tissue engineering; however, the in vitro generation of structurally organized meniscal grafts with a collagen architecture mimetic of the native meniscus remains a significant challenge. Here we used melt electrowriting (MEW) to produce scaffolds with defined pore architectures to impose physical boundaries upon cell growth and extracellular matrix production. This enabled the bioprinting of anisotropic tissues with collagen fibers preferentially oriented parallel to the long axis of the scaffold pores. Furthermore, temporally removing glycosaminoglycans (sGAGs) during the early stages of in vitro tissue development using chondroitinase ABC (cABC) was found to positively impact collagen network maturation. Specially we found that temporal depletion of sGAGs is associated with an increase in collagen fiber diameter without any detrimental effect on the development of a meniscal tissue phenotype or subsequent extracellular matrix production. Moreover, temporal cABC treatment supported the development of engineered tissues with superior tensile mechanical properties compared to empty MEW scaffolds. These findings demonstrate the benefit of temporal enzymatic treatments when engineering structurally anisotropic tissues using emerging biofabrication technologies such as MEW and inkjet bioprinting.
AUTHOR Tournier, Pierre and Saint-Pé, Garance and Lagneau, Nathan and Loll, François and Halgand, Boris and Tessier, Arnaud and Guicheux, Jérôme and Visage, Catherine Le and Delplace, Vianney
Title Clickable Dynamic Bioinks Enable Post-Printing Modifications of Construct Composition and Mechanical Properties Controlled over Time and Space [Abstract]
Year 2023
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Bioprinting is a booming technology, with numerous applications in tissue engineering and regenerative medicine. However, most biomaterials designed for bioprinting depend on the use of sacrificial baths and/or non-physiological stimuli. Printable biomaterials also often lack tunability in terms of their composition and mechanical properties. To address these challenges, the authors introduce a new biomaterial concept that they have termed “clickable dynamic bioinks”. These bioinks use dynamic hydrogels that can be printed, as well as chemically modified via click reactions to fine-tune the physical and biochemical properties of printed objects after printing. Specifically, using hyaluronic acid (HA) as a polymer of interest, the authors investigate the use of a boronate ester-based crosslinking reaction to produce dynamic hydrogels that are printable and cytocompatible, allowing for bioprinting. The resulting dynamic bioinks are chemically modified with bioorthogonal click moieties to allow for a variety of post-printing modifications with molecules carrying the complementary click function. As proofs of concept, the authors perform various post-printing modifications, including adjusting polymer composition (e.g., HA, chondroitin sulfate, and gelatin) and stiffness, and promoting cell adhesion via adhesive peptide immobilization (i.e., RGD peptide). The results also demonstrate that these modifications can be controlled over time and space, paving the way for 4D bioprinting applications.
AUTHOR D’Atanasio, Paolo and Fiaschini, Noemi and Rinaldi, Antonio and Zambotti, Alessandro and Cantini, Lorenzo and Mancuso, Mariateresa and Antonelli, Francesca
Title Design and Implementation of an Accessible 3D Bioprinter: Benchmarking the Performance of a Home-Made Bioprinter against a Professional Bioprinter [Abstract]
Year 2023
Journal/Proceedings Applied Sciences
Reftype
DOI/URL URL DOI
Abstract
The tremendous application potential of 3D bioprinting in the biomedical field is witnessed by the ever-increasing interest in this technology over the past few years. In particular, the possibility of obtaining 3D cellular models that mimic tissues with precision and reproducibility represents a definitive advance for in vitro studies dealing with the biological mechanisms of cell growth, death and proliferation and is at the basis of the responses of healthy and pathological tissues to drugs and therapies. However, the impact of 3D bioprinting on research is limited by the high costs of professional 3D bioprinters, which represent an obstacle to the widespread access and usability of this technology. In this work, we present a 3D bioprinter that was developed in-house by modifying a low-cost commercial 3D printer by replacing the default extruder used to print plastic filaments with a custom-made syringe extruder that is suitable for printing bioinks. The modifications made to the 3D printer include adjusting the size of the extruder to accommodate a 1 mL syringe and reducing the extruder’s size above the printer. To validate the performance of the home-made bioprinter, some main printing characteristics, the cell vitality and the possibility of bioprinting CAD-designed constructs were benchmarked against a renowned professional 3D bioprinter by RegenHu. According to our findings, our in-house 3D bioprinter was mostly successful in printing a complex glioblastoma tumor model with good performances, and it managed to maintain a cell viability that was comparable to that achieved by a professional bioprinter. This suggests that an accessible open-source 3D bioprinter could be a viable option for research and development (R&D) laboratories interested in pre-commercial 3D bioprinting advancements.
AUTHOR Lai, Jiahui and Wang, Min
Title Developments of additive manufacturing and 5D printing in tissue engineering [Abstract]
Year 2023
Journal/Proceedings Journal of Materials Research
Reftype Lai2023
DOI/URL DOI
Abstract
Additive manufacturing, popularly known as “3D printing”, enables us to fabricate advanced scaffolds and cell-scaffold constructs for tissue engineering. 4D printing makes dynamic scaffolds for human tissue regeneration, while bioprinting involves living cells for constructing cell-laden structures. However, 3D/4D printing and bioprinting have limitations. This article provides an up-to-date review of 3D/4D printing and bioprinting in tissue engineering. Based on 3D/4D printing, 5D printing is conceptualized and explained. In 5D printing, information as the fifth dimension in addition to 3D space and time is embedded in printed structures and can be subsequently delivered, causing change/changes of the environment of 5D printed objects. Unlike 3D/4D printing that makes passive/inactive products, 5D printing produces active or intelligent products that interact with the environments and cause their positive changes. Finally, the application of 5D printing in tissue engineering is illustrated by our recent work. 3D/4D/5D printing and bioprinting are powerful manufacturing platforms for tissue engineering.
AUTHOR Mungenast, Lena and Nieminen, Ronya and Gaiser, Carine and Faia-Torres, Ana Bela and Rühe, Jürgen and Suter-Dick, Laura
Title Electrospun decellularized extracellular matrix scaffolds promote the regeneration of injured neurons [Abstract]
Year 2023
Journal/Proceedings Biomaterials and Biosystems
Reftype
DOI/URL URL DOI
Abstract
Traumatic injury to the spinal cord (SCI) causes the transection of neurons, formation of a lesion cavity, and remodeling of the microenvironment by excessive extracellular matrix (ECM) deposition and scar formation leading to a regeneration-prohibiting environment. Electrospun fiber scaffolds have been shown to simulate the ECM and increase neural alignment and neurite outgrowth contributing to a growth-permissive matrix. In this work, electrospun ECM-like fibers providing biochemical and topological cues are implemented into a scaffold to represent an oriented biomaterial suitable for the alignment and migration of neural cells in order to improve spinal cord regeneration. The successfully decellularized spinal cord ECM (dECM), with no visible cell nuclei and dsDNA content < 50 ng/mg tissue, showed preserved ECM components, such as glycosaminoglycans and collagens. Serving as the biomaterial for 3D printer-assisted electrospinning, highly aligned and randomly distributed dECM fiber scaffolds (< 1 µm fiber diameter) were fabricated. The scaffolds were cytocompatible and supported the viability of a human neural cell line (SH-SY5Y) for 14 days. Cells were selectively differentiated into neurons, as confirmed by immunolabeling of specific cell markers (ChAT, Tubulin ß), and followed the orientation given by the dECM scaffolds. After generating a lesion site on the cell-scaffold model, cell migration was observed and compared to reference poly-ε-caprolactone fiber scaffolds. The aligned dECM fiber scaffold promoted the fastest and most efficient lesion closure, indicating superior cell guiding capabilities of dECM-based scaffolds. The strategy of combining decellularized tissues with controlled deposition of fibers to optimize biochemical and topographical cues opens the way for clinically relevant central nervous system scaffolding solutions.
AUTHOR Cojocaru, Elena and Ghitman, Jana and Pircalabioru, Gratiela Gradisteanu and Zaharia, Anamaria and Iovu, Horia and Sarbu, Andrei
Title Electrospun/3D-Printed Bicomponent Scaffold Co-Loaded with a Prodrug and a Drug with Antibacterial and Immunomodulatory Properties [Abstract]
Year 2023
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
This work reports the construction of a bicomponent scaffold co-loaded with both a prodrug and a drug (BiFp@Ht) as an efficient platform for wound dressing, by combining the electrospinning and 3D-printing technologies. The outer component consisted of a chitosan/polyethylene oxide-electrospun membrane loaded with the indomethacin–polyethylene glycol–indomethacin prodrug (Fp) and served as a support for printing the inner component, a gelatin methacryloyl/sodium alginate hydrogel loaded with tetracycline hydrochloride (Ht). The different architectural characteristics of the electrospun and 3D-printed layers were very well highlighted in a morphological analysis performed by Scanning Electron Microscopy (SEM). In vitro release profile studies demonstrated that both Fp and Ht layers were capable to release the loaded therapeutics in a controlled and sustained manner. According to a quantitative in vitro biological assessment, the bicomponent BiFp@Ht scaffold showed a good biocompatibility and no cytotoxic effect on HeLa cell cultures, while the highest proliferation level was noted in the case of HeLa cells seeded onto an Fp nanofibrous membrane. Furthermore, the BiFp@Ht scaffold presented an excellent antimicrobial activity against the E. coli and S. aureus bacterial strains, along with promising anti-inflammatory and proangiogenic activities, proving its potential to be used for wound dressing.
AUTHOR Mahmoud, Dina B. and Wölk, Christian and Schulz-Siegmund, Michaela
Title Fabrication of 3D Printed, Core-and-Shell Implants as Controlled Release Systems for Local siRNA Delivery [Abstract]
Year 2023
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract The development and clinical translation of small interfering RNA (siRNA) therapies remains challenging owing to their poor pharmacokinetics. 3D printing technology presents a great opportunity to fabricate personalized implants for local and sustained delivery of siRNA. Hydrogels can mimic the mechanical properties of tissues, avoiding the problems associated with rigid implants. Herein, a thermoresponsive composite hydrogel suitable for extrusion 3D-printing is formulated to fabricate controlled-release implants loaded with siRNA-Lipofectamine RNAiMAX complexes. A hydrogel matrix mainly composed of uncharged agarose to protect siRNA from decomplexation is selected. Additionally, pluronic F127 and gelatin are added to improve the printability, degradation, and cell adhesion to the implants. To avoid exposing siRNA to thermal stress during the printing process, a core-and-shell design is set up for the implants in which a core of siRNA-complexes loaded-pluronic F127 is printed without heat and enclosed with a shell comprising the thermoresponsive composite hydrogel. The release profile of siRNA-complexes is envisioned to be controlled by varying the printing patterns. The results reveal that the implants sustain siRNA release for one month. The intactness of the released siRNA-complexes is proven until the eighth day. Furthermore, by changing the printing patterns, the release profiles can be tailored.
AUTHOR Tan, Yadong and Fan, Shijie and Wu, Xiaoyu and Liu, Menggege and Dai, Ting and Liu, Chun and Ni, Su and Wang, Jiafeng and Yuan, Xiuchen and Zhao, Hongbin and Weng, Yiping
Title Fabrication of a three-dimensional printed gelatin/sodium alginate/nano-attapulgite composite polymer scaffold loaded with leonurine hydrochloride and its effects on osteogenesis and vascularization [Abstract]
Year 2023
Journal/Proceedings International Journal of Biological Macromolecules
Reftype
DOI/URL URL DOI
Abstract
Bone tissue engineering scaffolds have made significant progress in treating bone defects in recent decades. However, the lack of a vascular network within the scaffold limits bone formation after implantation in vivo. Recent research suggests that leonurine hydrochloride (LH) can promote healing in full-thickness cutaneous wounds by increasing vessel formation and collagen deposition. Gelatin and Sodium Alginate are both polymers. ATP is a magnesium silicate chain mineral. In this study, a Gelatin/Sodium Alginate/Nano-Attapulgite composite hydrogel was used as the base material first, and the Gelatin/Sodium Alginate/Nano-Attapulgite composite polymer scaffold loaded with LH was then created using 3D printing technology. Finally, LH was grafted onto the base material by an amide reaction to construct a scaffold loaded with LH to achieve long-term LH release. When compared to pure polymer scaffolds, in vitro results showed that LH-loaded scaffolds promoted the differentiation of BMSCs into osteoblasts, as evidenced by increased expression of osteogenic key genes. The results of in vivo tissue staining revealed that the drug-loaded scaffold promoted both angiogenesis and bone formation. Collectively, these findings suggest that LH-loaded Gelatin/Sodium Alginate/Nano-Attapulgite composite hydrogel scaffolds are a potential therapeutic strategy and can assist bone regeneration.
AUTHOR Wu, Qinghua and Zhang, Peikai and O'Leary, Gerard and Zhao, Yimu and Xu, Yinghao and Rafatian, Naimeh and Okhovatian, Sargol and Landau, Shira and Valiante, Taufik A. and Travas-Sejdic, Jadranka and Radisic, Milica
Title Flexible 3D printed microwires and 3D microelectrodes for heart-on-a-chip engineering [Abstract]
Year 2023
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
We developed a heart-on-a-chip platform that integrates highly flexible, vertical, 3D micropillar electrodes for electrophysiological recording and elastic microwires for the tissue’s contractile force assessment. The high aspect ratio microelectrodes were 3D-printed into the device using a conductive polymer, poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS). A pair of flexible, quantum dots/thermoplastic elastomer nanocomposite microwires were 3D printed to anchor the tissue and enable continuous contractile force assessment. The 3D microelectrodes and flexible microwires enabled unobstructed human iPSC-based cardiac tissue formation and contraction, suspended above the device surface, under both spontaneous beating and upon pacing with a separate set of integrated carbon electrodes. Recording of extracellular field potentials using the PEDOT:PSS micropillars was demonstrated with and without epinephrine as a model drug, non-invasively, along with in situ monitoring of tissue contractile properties and calcium transients. Uniquely, the platform provides integrated profiling of electrical and contractile tissue properties, which is critical for proper evaluation of complex, mechanically and electrically active tissues, such as the heart muscle under both physiological and pathological conditions.
AUTHOR Comperat, Léo and Chagot, Lise and Massot, Sarah and Stachowicz, Marie-Laure and Dusserre, Nathalie and Médina, Chantal and Desigaux, Théo and Dupuy, Jean-William and Fricain, Jean-Christophe and Oliveira, Hugo
Title Harnessing Human Placental Membrane-Derived Bioinks: Characterization and Applications in Bioprinting and Vasculogenesis [Abstract]
Year 2023
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Bioprinting applications in the clinical field generate great interest, but developing suitable biomaterial inks for medical settings is a challenge. Placental tissues offer a promising solution due to their abundance, stability, and status as medical waste. They contain basement membrane components, have a clinical history, and support angiogenesis. This study formulates bioinks from two placental tissues, amnion (AM) and chorion (CHO), and compares their unique extracellular matrix (ECM) and growth factor compositions. Rheological properties of the bioinks are evaluated for bioprinting and maturation of human endothelial cells. Both AM and Cho-derived bioinks sustained human endothelial cell viability, proliferation, and maturation, promoting optimal vasculogenesis. These bioinks derived from human sources have significant potential for tissue engineering applications, particularly in supporting vasculogenesis. This research contributes to the advancement of tissue engineering and regenerative medicine, bringing everyone closer to clinically viable bioprinting solutions using placental tissues as valuable biomaterials.
AUTHOR Pereira, Inês and Lopez-Martinez, Maria J. and Villasante, Aranzazu and Introna, Clelia and Tornero, Daniel and Canals, Josep M. and Samitier, Josep
Title Hyaluronic acid-based bioink improves the differentiation and network formation of neural progenitor cells [Abstract]
Year 2023
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
Introduction: Three-dimensional (3D) bioprinting is a promising technique for the development of neuronal in vitro models because it controls the deposition of materials and cells. Finding a biomaterial that supports neural differentiation in vitro while ensuring compatibility with the technique of 3D bioprinting of a self-standing construct is a challenge.Methods: In this study, gelatin methacryloyl (GelMA), methacrylated alginate (AlgMA), and hyaluronic acid (HA) were examined by exploiting their biocompatibility and tunable mechanical properties to resemble the extracellular matrix (ECM) and to create a suitable material for printing neural progenitor cells (NPCs), supporting their long-term differentiation. NPCs were printed and differentiated for up to 15 days, and cell viability and neuronal differentiation markers were assessed throughout the culture.Results and Discussion: This composite biomaterial presented the desired physical properties to mimic the ECM of the brain with high water intake, low stiffness, and slow degradation while allowing the printing of defined structures. The viability rates were maintained at approximately 80% at all time points. However, the levels of β-III tubulin marker increased over time, demonstrating the compatibility of this biomaterial with neuronal cell culture and differentiation. Furthermore, these cells showed increased maturation with corresponding functional properties, which was also demonstrated by the formation of a neuronal network that was observed by recording spontaneous activity via Ca2+ imaging.
AUTHOR Mohd, Nurulhuda and Razali, Masfueh and Fauzi, Mh Busra and Abu Kasim, Noor Hayaty
Title In Vitro and In Vivo Biological Assessments of 3D-Bioprinted Scaffolds for Dental Applications [Abstract]
Year 2023
Journal/Proceedings International Journal of Molecular Sciences
Reftype
DOI/URL URL DOI
Abstract
Three-dimensional (3D) bioprinting is a unique combination of technological advances in 3D printing and tissue engineering. It has emerged as a promising approach to address the dilemma in current dental treatments faced by clinicians in order to repair or replace injured and diseased tissues. The exploration of 3D bioprinting technology provides high reproducibility and precise control of the bioink containing the desired cells and biomaterial over the architectural and dimensional features of the scaffolds in fabricating functional tissue constructs that are specific to the patient treatment need. In recent years, the dental applications of different 3D bioprinting techniques, types of novel bioinks, and the types of cells used have been extensively explored. Most of the findings noted significant challenges compared to the non-biological 3D printing approach in constructing the bioscaffolds that mimic native tissues. Hence, this review focuses solely on the implementation of 3D bioprinting techniques and strategies based on cell-laden bioinks. It discusses the in vitro applications of 3D-bioprinted scaffolds on cell viabilities, cell functionalities, differentiation ability, and expression of the markers as well as the in vivo evaluations of the implanted bioscaffolds on the animal models for bone, periodontal, dentin, and pulp tissue regeneration. Finally, it outlines some perspectives for future developments in dental applications.
AUTHOR Petretta, Mauro and Villata, Simona and Scozzaro, Marika Pia and Roseti, Livia and Favero, Marta and Napione, Lucia and Frascella, Francesca and Pirri, Candido Fabrizio and Grigolo, Brunella and Olivotto, Eleonora
Title In Vitro Synovial Membrane 3D Model Developed by Volumetric Extrusion Bioprinting [Abstract]
Year 2023
Journal/Proceedings Applied Sciences
Reftype
DOI/URL URL DOI
Abstract
(1) Background: Synovial tissue plays a fundamental role in inflammatory processes. Therefore, understanding the mechanisms regulating healthy and diseased synovium functions, as in rheumatic diseases, is crucial to discovering more effective therapies to minimize or prevent pathological progress. The present study aimed at developing a bioartificial synovial tissue as an in vitro model for drug screening or personalized medicine applications using 3D bioprinting technology. (2) Methods: The volumetric extrusion technique has been used to fabricate cell-laden scaffolds. Gelatin Methacryloyl (GelMA), widely applied in regenerative medicine and tissue engineering, was selected as a bioink and combined with an immortalized cell line of fibroblast-like synoviocytes (K4IM). (3) Results: Three different GelMA formulations, 7.5–10–12.5% w/v, were tested for the fabrication of the scaffold with the desired morphology and internal architecture. GelMA 10% w/v was chosen and combined with K4IM cells to fabricate scaffolds that showed high cell viability and negligible cytotoxicity for up to 14 days tested by Live & Dead and lactate dehydrogenase assays. (4) Conclusions: We successfully 3D bioprinted synoviocytes-laden scaffolds as a proof-of-concept (PoC) towards the fabrication of a 3D synovial membrane model suitable for in vitro studies. However, further research is needed to reproduce the complexity of the synovial microenvironment to better mimic the physiological condition.
AUTHOR Kaneda, Giselle and Chan, Julie L. and Castaneda, Chloe M. and Papalamprou, Angela and Sheyn, Julia and Shelest, Oksana and Huang, Dave and Kluser, Nadine and Yu, Victoria and Ignacio, Gian C. and Gertych, Arkadiusz and Yoshida, Ryu and Metzger, Melodie and Tawackoli, Wafa and Vernengo, Andrea and Sheyn, Dmitriy
Title iPSC-derived tenocytes seeded on microgrooved 3D printed scaffolds for Achilles Tendon Regeneration [Abstract]
Year 2023
Journal/Proceedings Journal of Orthopaedic Research
Reftype
DOI/URL DOI
Abstract
AbstractTendons and ligaments have a poor innate healing capacity, yet account for 50% of musculoskeletal injuries in the US. Full structure and function restoration post-injury remains an unmet clinical need. This study aimed to assess the application of novel 3D printed scaffolds and induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) overexpressing the transcription factor Scleraxis (SCX, iMSCSCX+) as a new strategy for tendon defect repair. The polycaprolactone (PCL) scaffolds were fabricated by extrusion through a patterned nozzle or conventional round nozzle. Scaffolds were seeded with iMSCSCX+ and outcomes were assessed in vitro via gene expression analysis and immunofluorescence. In vivo, rat Achilles tendon defects were repaired with iMSCSCX+-seeded microgrooved scaffolds, microgrooved scaffolds only, or suture only and assessed via gait, gene expression, biomechanical testing, histology, and immunofluorescence.iMSCSCX+-seeded on microgrooved scaffolds showed upregulation of tendon markers and increased organization and linearity of cells compared to non-patterned scaffolds in vitro. In vivo gait analysis showed improvement in the Scaffold+iMSCSCX+-treated group compared to the controls. Tensile testing of the tendons demonstrated improved biomechanical properties of the Scaffold+iMSCSCX+ group compared to the controls. Histology and immunofluorescence demonstrated more regular tissue formation in the Scaffold+iMSCSCX+ group.This article is protected by copyright. All rights reserved.
AUTHOR Marin, Maria Minodora and Gifu, Ioana Catalina and Pircalabioru, Gratiela Gradisteanu and Albu Kaya, Madalina and Constantinescu, Rodica Roxana and Alexa, Rebeca Leu and Trica, Bogdan and Alexandrescu, Elvira and Nistor, Cristina Lavinia and Petcu, Cristian and Ianchis, Raluca
Title Microbial Polysaccharide-Based Formulation with Silica Nanoparticles; A New Hydrogel Nanocomposite for 3D Printing [Abstract]
Year 2023
Journal/Proceedings Gels
Reftype
DOI/URL URL DOI
Abstract
Natural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials are widely used in 3D hydrogel printing of tissue substitutes. In this context, our goal was to obtain printable hydrogel nanocomposites by adding silica nanoparticles to a microbial polysaccharide’s polymer network. Several amounts of silica nanoparticles were added to the biopolymer, and their effects on the morpho-structural characteristics of the resulting nanocomposite hydrogel inks and subsequent 3D printed constructs were studied. FTIR, TGA, and microscopy analysis were used to investigate the resulting crosslinked structures. Assessment of the swelling characteristics and mechanical stability of the nanocomposite materials in a wet state was also conducted. The salecan-based hydrogels displayed excellent biocompatibility and could be employed for biomedical purposes, according to the results of the MTT, LDH, and Live/Dead tests. The innovative, crosslinked, nanocomposite materials are recommended for use in regenerative medicine.
AUTHOR Cohen, Roni and Baruch, Ester-Sapir and Cabilly, Itai and Shapira, Assaf and Dvir, Tal
Title Modified ECM-Based Bioink for 3D Printing of Multi-Scale Vascular Networks [Abstract]
Year 2023
Journal/Proceedings Gels
Reftype
DOI/URL URL DOI
Abstract
The survival and function of tissues depend on appropriate vascularization. Blood vessels of the tissues supply oxygen, and nutrients and remove waste and byproducts. Incorporating blood vessels into engineered tissues is essential for overcoming diffusion limitations, improving tissue function, and thus facilitating the fabrication of thick tissues. Here, we present a modified ECM bioink, with enhanced mechanical properties and endothelial cell-specific adhesion motifs, to serve as a building material for 3D printing of a multiscale blood vessel network. The bioink is composed of natural ECM and alginate conjugated with a laminin adhesion molecule motif (YIGSR). The hybrid hydrogel was characterized for its mechanical properties, biochemical content, and ability to interact with endothelial cells. The pristine and modified hydrogels were mixed with induced pluripotent stem cells derived endothelial cells (iPSCs-ECs) and used to print large blood vessels with capillary beds in between.
AUTHOR Ianchis, Raluca and Marin, Maria Minodora and Alexa, Rebeca Leu and Gifu, Ioana Catalina and Alexandrescu, Elvira and Pircalabioru, Gratiela Gradisteanu and Vlasceanu, George Mihail and Teodorescu, George Mihail and Serafim, Andrada and Preda, Silviu and Nistor, Cristina Lavinia and Petcu, Cristian
Title Nanoclay-reinforced alginate/salecan composite inks for 3D printing applications
Year 2023
Journal/Proceedings IJB
Reftype
DOI/URL DOI
AUTHOR Read, Sophia A. and Go, Chee Shuen and Ferreira, Miguel J. S. and Ligorio, Cosimo and Kimber, Susan J. and Dumanli, Ahu G. and Domingos, Marco A. N.
Title Nanocrystalline Cellulose as a Versatile Engineering Material for Extrusion-Based Bioprinting [Abstract]
Year 2023
Journal/Proceedings Pharmaceutics
Reftype
DOI/URL URL DOI
Abstract
Naturally derived polysaccharide-based hydrogels, such as alginate, are frequently used in the design of bioinks for 3D bioprinting. Traditionally, the formulation of such bioinks requires the use of pre-reticulated materials with low viscosities, which favour cell viability but can negatively influence the resolution and shape fidelity of the printed constructs. In this work, we propose the use of cellulose nanocrystals (CNCs) as a rheological modifier to improve the printability of alginate-based bioinks whilst ensuring a high viability of encapsulated cells. Through rheological analysis, we demonstrate that the addition of CNCs (1% and 2% (w/v)) to alginate hydrogels (1% (w/v)) improves shear-thinning behaviour and mechanical stability, resulting in the high-fidelity printing of constructs with superior resolution. Importantly, LIVE/DEAD results confirm that the presence of CNCs does not seem to affect the health of immortalised chondrocytes (TC28a2) that remain viable over a period of seven days post-encapsulation. Taken together, our results indicate a favourable effect of the CNCs on the rheological and biocompatibility properties of alginate hydrogels, opening up new perspectives for the application of CNCs in the formulation of bioinks for extrusion-based bioprinting.
AUTHOR Mira, Mira and Wibowo, Arie and Tajalla, Gusti Umindya Nur and Cooper, Glen and Bartolo, Paulo Jorge Da Silva and Barlian, Anggraini
Title Osteogenic potential of a 3D printed silver nanoparticle-based electroactive scaffold for bone tissue engineering using human Wharton{'}s jelly mesenchymal stem cells [Abstract]
Year 2023
Journal/Proceedings Mater. Adv.
Reftype
DOI/URL DOI
Abstract
This study aims to perform biological assessments of an electroactive and anti-infection scaffold based on polycaprolactone/0.5 wt% silver nanoparticles (PCL/AgNPs) that was fabricated using a green synthesis approach followed by a 3D printing method without utilization of any toxic solvents{,} which has not been explored previously. For this purpose{,} human Wharton{'}s jelly mesenchymal stem cells (hWJ-MSCs) were used as a cell source to explore the biocompatibility and the ability to induce the osteogenesis process on the fabricated PCL and PCL/AgNPs scaffolds. Scanning electron microscopy (SEM){,} confocal microscopy and an alamar blue assay up to day 14 revealed that the PCL/AgNPs scaffolds have better cell attachment{,} penetration and proliferation than the PCL scaffolds. A gene expression study up to day 21 using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) showed that the PCL/AgNPs scaffolds have better osteogenic differentiation at the gene level than the PCL scaffolds. This is indicated by the 2–3 fold greater expression of runt-related transcription factor 2 (RUNX2){,} collagen type I alpha 1 chain (COL1A1){,} and osteopontin (OPN) than the PCL scaffold. A protein expression study up to day 21 using immunocytochemistry and detection of alkaline phosphatase (ALP) revealed that the PCL/AgNPs scaffolds have better osteogenic differentiation at the protein level than the PCL scaffolds. This is shown by the observed collagen type I and osteopontin protein{,} and ALP activity at day 21 of PCL/AgNPs scaffolds (768 U L−1) which is 1.3 times higher than that of the PCL scaffolds (578 U L−1). These biological assessments showed that the combination of a green synthesis approach to prepare AgNPs and solvent-free 3D printing methods to fabricate the PCL/AgNPs scaffolds led to better biocompatibility and ability to induce the osteogenesis process{,} which is attractive for bone tissue engineering and regenerative medicine applications.
AUTHOR Aizarna-Lopetegui, Uxue and García-Astrain, Clara and Renero-Lecuna, Carlos and González-Callejo, Patricia and Villaluenga, Irune and del Pozo, Miguel A. and Sánchez-Álvarez, Miguel and Henriksen-Lacey, Malou and Jimenez de Aberasturi, Dorleta
Title Remodeling arteries: studying the mechanical properties of 3D-bioprinted hybrid photoresponsive materials [Abstract]
Year 2023
Journal/Proceedings J. Mater. Chem. B
Reftype
DOI/URL DOI
Abstract
3D-printed cell models are currently in the spotlight of medical research. Whilst significant advances have been made{,} there are still aspects that require attention to achieve more realistic models which faithfully represent the in vivo environment. In this work we describe the production of an artery model with cyclic expansive properties{,} capable of mimicking the different physical forces and stress factors that cells experience in physiological conditions. The artery wall components are reproduced using 3D printing of thermoresponsive polymers with inorganic nanoparticles (NPs) representing the outer tunica adventitia{,} smooth muscle cells embedded in extracellular matrix representing the tunica media{,} and finally a monolayer of endothelial cells as the tunica intima. Cyclic expansion can be induced thanks to the inclusion of photo-responsive plasmonic NPs embedded within the thermoresponsive ink composition{,} resulting in changes in the thermoresponsive polymer hydration state and hence volume{,} in a stimulated on–off manner. By changing the thermoresponsive polymer composition{,} the transition temperature and pulsatility can be efficiently tuned. We show the direct effect of cyclic expansion and contraction on the overlying cell layers by analyzing transcriptional changes in mechanoresponsive mesenchymal genes associated with such microenvironmental physical cues. The technique described herein involving stimuli-responsive 3D printed tissue constructs{,} also described as four- dimensional (4D) printing{,} offers a novel approach for the production of dynamic biomodels.
AUTHOR Chen, Shangsi and Wang, Yue and Lai, Jiahui and Tan, Shenglong and Wang, Min
Title Structure and Properties of Gelatin Methacryloyl (GelMA) Synthesized in Different Reaction Systems [Abstract]
Year 2023
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
Abstract
Gelatin methacryloyl (GelMA) hydrogels have been extensively used for drug delivery and tissue engineering applications due to their good biocompatibility, biodegradability, and controllable photocurable efficiency. Phosphate buffer solution (PBS) is the most widely used reaction system for GelMA synthesis. However, carbonate-bicarbonate buffer solution (CBS) has been tried recently for synthesizing GelMA due to its high reaction efficiency. However, there is a lack of systematic investigation into possible differences in the structure and properties of GelMA synthesized in PBS and CBS, respectively. Therefore, in the current study, GelMA molecules with two degrees of methacryloylation (∼20 and ∼80%) were synthesized under PBS and CBS reaction systems, respectively, in comparable conditions. The results showed that because of the functionalization of methacrylate groups in gelatin chains, which could interfere with the intrachain and interchain interactions, such as hydrogen bonding, the GelMA molecules synthesized in PBS had distinct physical structures and exhibited different properties in comparison with those produced in CBS. GelMA hydrogels synthesized in PBS exhibited higher gel-sol transition temperatures and better photocurable efficiencies, mechanical strength, and biological properties. In contrast, GelMA hydrogels produced in CBS showed advantages in swelling performance and microstructures, such as pore sizes and porosities. In addition, GelMA synthesized in PBS and possessing a high degree of methacryloylation (the “GelMA-PH” polymer) showed great potential for three-dimensional (3D) bioprinting. This focused study has gained helpful new insights into GelMA and can provide guidance on the application of GelMA in 3D printing and tissue engineering.
AUTHOR Pan, Yiwen and Chen, Shaoqing and Meng, Yanyan and He, Mu and Liu, Chun and Wang, Cheli and Ni, Xinye
Title Study on 3D-Printed Emodin/Nano-Hydroxyapatite Scaffolds Promoting Bone Regeneration by Supporting Osteoblast Proliferation and Macrophage M2 Polarization [Abstract]
Year 2023
Journal/Proceedings ACS Appl. Polym. Mater.
Reftype
DOI/URL DOI
Abstract
The treatment of bone defects caused by diseases, trauma, or tumor has always been a great clinical challenge. Implantation of bone biomaterials into bone defect areas is an effective method for bone injury repair. In this study, we used three-dimensional (3D) printing technology to prepare nano-hydroxyapatite (nHA)/sodium alginate (SA)/gelatin (Gel) hydrogel scaffolds loaded with different ratios (0, 0.13, 0.26, 0.39, 0.53, and 0.79‰) of emodin (EM) (EM/nHA/SA/Gel). Scanning electron microscopy showed that the scaffolds had a smooth surface without fracture and nHA was evenly distributed on the surface. The cell proliferation and migration results showed that the 0.39‰ EM group, in particular, could significantly promote the proliferation and migration of mouse embryonic osteoblast precursor (MC3T3-E1) cells and significantly increase the mRNA expression of osteogenic differentiation-related genes (bone morphogenetic protein/BMP-2, BMP-9, osteocalcin). In addition, the 0.39‰ EM group exhibited the best effect on osteogenic differentiation-related proteins (alkaline phosphatase, Runx 2, OSX). The expression of M2 polarization-related genes (arginase-1, CD206) also significantly increased after the treatment with the 0.39‰ EM group. Micro-CT showed that in the rat skull defect model, the EM/nHA/SA/Gel scaffold group significantly promoted bone regeneration after being implanted into the skull for 30 days. Our results indicate that the EM/nHA/SA/Gel hydrogel scaffolds can not only directly promote the proliferation and differentiation of osteoblasts but also indirectly promote osteogenic differentiation by supporting M2 polarization of macrophages. EM/nHA/SA/Gel hydrogel scaffolds are potential bone tissue engineering materials for bone regeneration.
AUTHOR Sebastian Loewner, Sebastian Heene, Fabian Cholewa, Henrik Heymann, Holger Blume, Cornelia Blume
Title Successful endothelial monolayer formation on melt electrowritten scaffolds under dynamic conditions to mimic tunica intima
Year 2023
Journal/Proceedings IJB
Reftype
DOI/URL URL
AUTHOR Majrashi, Majed and Kotowska, Anna and Scurr, David and Hicks, Jacqueline M. and Ghaemmaghami, Amir and Yang, Jing
Title Sustained Release of Dexamethasone from 3D-Printed Scaffolds Modulates Macrophage Activation and Enhances Osteogenic Differentiation [Abstract]
Year 2023
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
Abstract
Enhancing osteogenesis via modulating immune cells is emerging as a new approach to address the current challenges in repairing bone defects and fractures. However, much remains unknown about the crosstalk between immune cells and osteolineage cells during bone formation. Moreover, biomaterial scaffold-based approaches to effectively modulate this crosstalk to favor bone healing are also lacking. This study is the first to investigate the interactions between macrophages and mesenchymal stem cells (MSCs) in co-cultures with the sustained release of an anti-inflammatory and pro-osteogenesis drug (dexamethasone) from three-dimensional (3D)-printed scaffolds. We successfully achieved the sustained release of dexamethasone from polycaprolactone (PCL) by adding the excipient-sucrose acetate isobutyrate (SAIB). Dexamethasone was released over 35 days in the 17-163 nM range. The osteogenic differentiation of MSCs was enhanced by M1 macrophages at early time points. The late-stage mineralization was dominated by dexamethasone, with little contribution from the macrophages. Besides confirming BMP-2 whose secretion was promoted by both dexamethasone and M1 macrophages as a soluble mediator for enhanced osteogenesis, IL-6 was found to be a possible new soluble factor that mediated osteogenesis in macrophage-MSC co-cultures. The phenotype switching from M1 to M2 was drastically enhanced by the scaffold-released dexamethasone but only marginally by the co-cultured MSCs. Our results offer new insight into macrophage-MSC crosstalk and demonstrate the potential of using drug-release scaffolds to both modulate inflammation and enhance bone regeneration.
AUTHOR Kopecká, Kateřina and Vítková, Lenka and Kroneková, Zuzana and Musilová, Lenka and Smolka, Petr and Mikulka, Filip and Melánová, Klára and Knotek, Petr and Humeník, Martin and Minařík, Antonín and Mráček, Aleš
Title Synthesis and Exfoliation of Calcium Organophosphonates for Tailoring Rheological Properties of Sodium Alginate Solutions: A Path toward Polysaccharide-Based Bioink [Abstract]
Year 2023
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
Abstract
Layered nanoparticles with surface charge are explored as rheological modifiers for extrudable materials, utilizing their ability to induce electrostatic repulsion and create a house-of-cards structure. These nanoparticles provide mechanical support to the polymer matrix, resulting in increased viscosity and storage modulus. Moreover, their advantageous aspect ratio allows for shear-induced orientation and decreased viscosity during flow. In this work, we present a synthesis and liquid-based exfoliation procedure of phenylphosphonate-phosphate particles with enhanced ability to be intercalated by hydrophilic polymers. These layered nanoparticles are then tested as rheological modifiers of sodium alginate. The effective rheological modification is proved as the viscosity increases from 101 up to 103 Pa·s in steady state. Also, shear-thinning behavior is observed. The resulting nanocomposite hydrogels show potential as an extrudable bioink for 3D printing in tissue engineering and other biomedical applications, with good shape fidelity, nontoxicity, and satisfactory cell viability confirmed through encapsulation and printing of mouse fibroblasts.
AUTHOR Züger, Fabian and Berner, Natascha and Gullo, Maurizio R.
Title Towards a Novel Cost-Effective and Versatile Bioink for 3D-Bioprinting in Tissue Engineering [Abstract]
Year 2023
Journal/Proceedings Biomimetics
Reftype
DOI/URL URL DOI
Abstract
3D-bioprinting for tissue regeneration relies on, among other things, hydrogels with favorable rheological properties. These include shear thinning for cell-friendly extrusion, post-printing structural stability as well as physiologically relevant elastic moduli needed for optimal cell attachment, proliferation, differentiation and tissue maturation. This work introduces a cost-efficient gelatin-methylcellulose based hydrogel whose rheological properties can be independently optimized for optimal printability and tissue engineering. Hydrogel viscosities were designed to present three different temperature regimes: low viscosity for eased cell suspension and printing with minimal shear stress, form fidelity directly after printing and long term structural stability during incubation. Enzymatically crosslinked hydrogel scaffolds with stiffnesses ranging from 5 to 50 kPa were produced, enabling the hydrogel to biomimic cell environments for different types of tissues. The bioink showed high intrinsic cytocompatibility and tissues fabricated by embedding and bioprinting NIH 3T3 fibroblasts showed satisfactory viability. This novel hydrogel uses robust and inexpensive technology, which can be adjusted for implementation in tissue regeneration, e.g., in myocardial or neural tissue engineering.
AUTHOR Radeke, Carmen and Pons, Raphaël and Mihajlovic, Marko and Knudsen, Jonas R. and Butdayev, Sarkhan and Kempen, Paul J. and Segeritz, Charis-Patricia and Andresen, Thomas L. and Pehmøller, Christian K. and Jensen, Thomas E. and Lind, Johan U.
Title Transparent and Cell-Guiding Cellulose Nanofiber 3D Printing Bioinks [Abstract]
Year 2023
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
Abstract
For three-dimensional (3D) bioprinting to fulfill its promise and enable the automated fabrication of complex tissue-mimicking constructs, there is a need for developing bioinks that are not only printable and biocompatible but also have integrated cell-instructive properties. Toward this goal, we here present a scalable technique for generating nanofiber 3D printing inks with unique tissue-guiding capabilities. Our core methodology relies on tailoring the size and dispersibility of cellulose fibrils through a solvent-controlled partial carboxymethylation. This way, we generate partially negatively charged cellulose nanofibers with diameters of ∼250 nm and lengths spanning tens to hundreds of microns. In this range, the fibers structurally match the size and dimensions of natural collagen fibers making them sufficiently large to orient cells. Yet, they are simultaneously sufficiently thin to be optically transparent. By adjusting fiber concentration, 3D printing inks with excellent shear-thinning properties can be established. In addition, as the fibers are readily dispersible, composite inks with both carbohydrates and extracellular matrix (ECM)-derived proteins can easily be generated. We apply such composite inks for 3D printing cell-laden and cross-linkable structures, as well as tissue-guiding gel substrates. Interestingly, we find that the spatial organization of engineered tissues can be defined by the shear-induced alignment of fibers during the printing procedure. Specifically, we show how myotubes derived from human and murine skeletal myoblasts can be programmed into linear and complex nonlinear architectures on soft printed substrates with intermediate fiber contents. Our nanofibrillated cellulose inks can thus serve as a simple and scalable tool for engineering anisotropic human muscle tissues that mimic native structure and function.
AUTHOR Xue, Ya-Qi and Zhang, Yu-Cheng and Zhang, Yu-Bei and Wang, Jin-Ye
Title Zein-based 3D tubular constructs with tunable porosity for 3D cell culture and drug delivery [Abstract]
Year 2023
Journal/Proceedings Biomedical Engineering Advances
Reftype
DOI/URL URL DOI
Abstract
Manufacturing tubular constructs with tunable porosity can mimic the vascular structure, not only for supplying nutrients and removing metabolites to support long-term 3D cell culture but also for delivering bioactive components and drugs to tissues. There are few reports on the second purpose through 3D printing. In this study, bio-inspired tubular constructs with permeability were achieved using zein-based ink, forming structures with tunable porosity via the 3D printing technique. The parameters, e.g., zein content, with/without the addition of porogen, and drying conditions, were optimized to control the porous structure and porosity of the printed tubes. The inner wall of the resultant tube supported the adhesion of endothelial cells. A perfusion system was designed, and the penetrability of zein-based tubular constructs was demonstrated by the dialysis test. Moreover, perfusion of cell culture media and the anti-cancer drug in cell-laden hydrogels with tubular structure resulted in 3-day of 3D cell culture with a higher survival rate, and the drug was delivered to local cells around the tubular constructs, respectively. This is a new report on the preparation of 3D-printed tubular constructs using zein as the biomaterial inks with tunable porosity and porous structure, providing a general system for 3D cell culture, 3D drugs screening/pharmacokinetics in vitro, and tissue engineering.
AUTHOR Hatt, Luan P. and van der Heide, Daphne and Armiento, Angela R. and Stoddart, Martin J.
Title β-TCP from 3D-printed composite scaffolds acts as an effective phosphate source during osteogenic differentiation of human mesenchymal stromal cells [Abstract]
Year 2023
Journal/Proceedings Frontiers in Cell and Developmental Biology
Reftype
DOI/URL DOI
Abstract
Introduction: Human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) are often combined with calcium phosphate (CaP)—based 3D-printed scaffolds with the goal of creating a bone substitute that can repair segmental bone defects. In vitro, the induction of osteogenic differentiation traditionally requires, among other supplements, the addition of β-glycerophosphate (BGP), which acts as a phosphate source. The aim of this study is to investigate whether phosphate contained within the 3D-printed scaffolds can effectively be used as a phosphate source during hBM-MSC in vitro osteogenesis.Methods: hBM-MSCs are cultured on 3D-printed discs composed of poly (lactic-co-glycolic acid) (PLGA) and β-tricalcium phosphate (β-TCP) for 28 days under osteogenic conditions, with and without the supplementation of BGP. The effects of BGP removal on various cellular parameters, including cell metabolic activity, alkaline phosphatase (ALP) presence and activity, proliferation, osteogenic gene expression, levels of free phosphate in the media and mineralisation, are assessed.Results: The removal of exogenous BGP increases cell metabolic activity, ALP activity, proliferation, and gene expression of matrix-related (COL1A1, IBSP, SPP1), transcriptional (SP7, RUNX2/SOX9, PPARγ) and phosphate-related (ALPL, ENPP1, ANKH, PHOSPHO1) markers in a donor dependent manner. BGP removal leads to decreased free phosphate concentration in the media and maintained of mineral deposition staining.Discussion: Our findings demonstrate the detrimental impact of exogenous BGP on hBM-MSCs cultured on a phosphate-based material and propose β-TCP embedded within 3D-printed scaffold as a sufficient phosphate source for hBM-MSCs during osteogenesis. The presented study provides novel insights into the interaction of hBM-MSCs with 3D-printed CaP based materials, an essential aspect for the advancement of bone tissue engineering strategies aimed at repairing segmental defects.
AUTHOR Pitacco, Pierluca and Sadowska, Joanna M. and O'Brien, Fergal J. and Kelly, Daniel J.
Title 3D bioprinting of cartilaginous templates for large bone defect healing [Abstract]
Year 2022
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
Damaged or diseased bone can be treated using autografts or a range of different bone grafting biomaterials, however limitations with such approaches has motivated increased interest in developmentally inspired bone tissue engineering (BTE) strategies that seek to recapitulate the process of endochondral ossification (EO) as a means of regenerating critically sized defects. The clinical translation of such strategies will require the engineering of scaled-up, geometrically defined hypertrophic cartilage grafts that can be rapidly vascularised and remodelled into bone in mechanically challenging defect environments. The goal of this study was to 3D bioprint mechanically reinforced cartilaginous templates and to assess their capacity to regenerate critically sized femoral bone defects. Human mesenchymal stem/stromal cells (hMSCs) were incorporated into fibrin based bioinks and bioprinted into polycaprolactone (PCL) frameworks to produce mechanically reinforced constructs. Chondrogenic priming of such hMSC laden constructs was required to support robust vascularisation and graft mineralisation in vivo following their subcutaneous implantation into nude mice. With a view towards maximising their potential to support endochondral bone regeneration, we next explored different in vitro culture regimes to produce chondrogenic and early hypertrophic engineered grafts. Following their implantation into femoral bone defects within transiently immunosuppressed rats, such bioprinted constructs were rapidly remodelled into bone in vivo, with early hypertrophic constructs supporting higher levels of vascularisation and bone formation compared to the chondrogenic constructs. Such early hypertrophic bioprinted constructs also supported higher levels of vascularisation and spatially distinct patterns of new formation compared to BMP-2 loaded collagen scaffolds (here used as a positive control). In conclusion, this study demonstrates that fibrin based bioinks support chondrogenesis of hMSCs in vitro, which enables the bioprinting of mechanically reinforced hypertrophic cartilaginous templates capable of supporting large bone defect regeneration. These results support the use of 3D bioprinting as a strategy to scale-up the engineering of developmentally inspired templates for BTE. Statement of significance Despite the promise of developmentally inspired tissue engineering strategies for bone regeneration, there are still challenges that need to be addressed to enable clinical translation. This work reports the development and assessment (in vitro and in vivo) of a 3D bioprinting strategy to engineer mechanically-reinforced cartilaginous templates for large bone defect regeneration using human MSCs. Using distinct in vitro priming protocols, it was possible to generate cartilage grafts with altered phenotypes. More hypertrophic grafts, engineered in vitro using TGF-β3 and BMP-2, supported higher levels of blood vessel infiltration and accelerated bone regeneration in vivo. This study also identifies some of the advantages and disadvantages of such endochondral bone TE strategies over the direct delivery of BMP-2 from collagen-based scaffolds.
AUTHOR Govindharaj, Mano and Hashimi, Noura Al and Soman, Soja Saghar and Kanwar, Susheem and Vijayavenkataraman, Sanjairaj
Title 3D Bioprinting of human Mesenchymal Stem Cells in a novel tunic decellularized ECM bioink for Cartilage Tissue Engineering [Abstract]
Year 2022
Journal/Proceedings Materialia
Reftype
DOI/URL URL DOI
Abstract
Tunicates are marine organisms renowned for their thick, leathery exoskeleton called tunic. This tunic is composed of an extracellular matrix packed with protein-cellulose complexes and sulfated polysaccharides, making it a charming biomaterial choice for cartilage tissue engineering. In this study, P.nigra tunicate was collected and processed to obtain its rich decellularized extracellular matrix (dECM). The dECM was either seeded with human mesenchymal stem cells (hMSCs) as is or underwent further processing to form a hydrogel for 3D bioprinting. The characterization of tunic dECM was achieved by FTIR, XRD, TGA, Raman spectroscopy, SEM and tensile mechanical analysis. Biological compatibility and staining were done by live/dead, alamar blue, alcian blue, safranin O and PCR gene expression. After decellularization, the tunic dECM scaffold preserved the natural honeycomb-shaped microstructure, as well as its functional cellulose and protein groups. Both the tunic dECM scaffolds and bioprinted scaffolds showed enhanced metabolic activity, cell proliferation and chondrogenic differentiation. Combining both the mechanical robustness and biocompatibility, the bioink is able to fill the elusive gap in cartilage regeneration. This study offers a new potential source of dECM scaffolds and bioinks which are both biologically compatible and mechanically stable, making it a one stop shop for cartilage tissue engineering.
AUTHOR Leu Alexa, Rebeca and Cucuruz, Andreia and Ghițulică, Cristina-Daniela and Voicu, Georgeta and Stamat (Balahura), Liliana-Roxana and Dinescu, Sorina and Vlasceanu, George Mihail and Stavarache, Cristina and Ianchis, Raluca and Iovu, Horia and Costache, Marieta
Title 3D Printable Composite Biomaterials Based on GelMA and Hydroxyapatite Powders Doped with Cerium Ions for Bone Tissue Regeneration [Abstract]
Year 2022
Journal/Proceedings International Journal of Molecular Sciences
Reftype
DOI/URL URL DOI
Abstract
The main objective was to produce 3D printable hydrogels based on GelMA and hydroxyapatite doped with cerium ions with potential application in bone regeneration. The first part of the study regards the substitution of Ca2+ ions from hydroxyapatite structure with cerium ions (Ca10-xCex(PO4)6(OH)2, xCe = 0.1, 0.3, 0.5). The second part followed the selection of the optimal concentration of HAp doped, which will ensure GelMA-based scaffolds with good biocompatibility, viability and cell proliferation. The third part aimed to select the optimal concentrations of GelMA for the 3D printing process (20%, 30% and 35%). In vitro biological assessment presented the highest level of cell viability and proliferation potency of GelMA-HC5 composites, along with a low cytotoxic potential, highlighting the beneficial effects of cerium on cell growth, also supported by Live/Dead results. According to the 3D printing experiments, the 30% GelMA enriched with HC5 was able to generate 3D scaffolds with high structural integrity and homogeneity, showing the highest suitability for the 3D printing process. The osteogenic differentiation experiments confirmed the ability of 30% GelMA-3% HC5 scaffold to support and efficiently maintain the osteogenesis process. Based on the results, 30% GelMA-3% HC5 3D printed scaffolds could be considered as biomaterials with suitable characteristics for application in bone tissue engineering.
AUTHOR Qin, Wen and Li, Chenkai and Liu, Chun and Wu, Siyu and Liu, Jun and Ma, Jiayi and Chen, Wenyang and Zhao, Hongbin and Zhao, Xiubo
Title 3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration [Abstract]
Year 2022
Journal/Proceedings Journal of Biomaterials Applications
Reftype
DOI/URL DOI
Abstract
Tissue-engineered bone material is one of the effective methods to repair bone defects, but the application is restricted in clinical because of the lack of excellent scaffolds that can induce bone regeneration as well as the difficulty in making scaffolds with personalized structures. 3D printing is an emerging technology that can fabricate bespoke 3D scaffolds with precise structure. However, it is challenging to develop the scaffold materials with excellent printability, osteogenesis ability, and mechanical strength. In this study, graphene oxide (GO), attapulgite (ATP), type I collagen (Col I) and polyvinyl alcohol were used as raw materials to prepare composite scaffolds via 3D bioprinting. The composite materials showed excellent printability. The microcosmic architecture and properties was characterized by scanning electron microscopy, Fourier transform infrared and thermal gravimetric analyzer, respectively. To verify the biocompatibility of the scaffolds, the viability, proliferation and osteogenic differentiation of Bone Marrow Stromal Cells (BMSCs) on the scaffolds were assessed by CCK-8, Live/Dead staining and Real-time PCR in vitro. The composited scaffolds were then implanted into the skull defects on rat for bone regeneration. Hematoxylin-eosin staining, Masson staining and immunohistochemistry staining were carried out in vivo to evaluate the regeneration of bone tissue.The results showed that GO/ATP/COL scaffolds have been demonstrated to possess controlled porosity, water absorption, biodegradability and good apatite-mineralization ability. The scaffold consisting of 0.5% GO/ATP/COL have excellent biocompatibility and was able to promote the growth, proliferation and osteogenic differentiation of mouse BMSCs in vitro. Furthermore, the 0.5% GO/ATP/COL scaffolds were also able to promote bone regeneration of in rat skull defects. Our results illustrated that the 3D printed GO/ATP/COL composite scaffolds have good mechanical properties, excellent cytocompatibility for enhanced mouse BMSCs adhesion, proliferation, and osteogenic differentiation. All these advantages made it potential as a promising biomaterial for osteogenic reconstruction.
AUTHOR Leu Alexa, Rebeca and Cucuruz, Andreia and Ghițulică, Cristina-Daniela and Voicu, Georgeta and Stamat (Balahura), Liliana-Roxana and Dinescu, Sorina and Vlasceanu, George Mihail and Iovu, Horia and Serafim, Andrada and Ianchis, Raluca and Ciocan, Lucian-Toma and Costache, Marieta
Title 3D Printed Composite Scaffolds of GelMA and Hydroxyapatite Nanopowders Doped with Mg/Zn Ions to Evaluate the Expression of Genes and Proteins of Osteogenic Markers [Abstract]
Year 2022
Journal/Proceedings Nanomaterials
Reftype
DOI/URL URL DOI
Abstract
As bone diseases and defects are constantly increasing, the improvement of bone regeneration techniques is constantly evolving. The main purpose of this scientific study was to obtain and investigate biomaterials that can be used in tissue engineering. In this respect, nanocomposite inks of GelMA modified with hydroxyapatite (HA) substituted with Mg and Zn were developed. Using a 3D bioprinting technique, scaffolds with varying shapes and dimensions were obtained. The following analyses were used in order to study the nanocomposite materials and scaffolds obtained by the 3D printing technique: Fourier transform infrared spectrometry and X-ray diffraction (XRD), scanning electron microscopy (SEM), and micro-computed tomography (Micro-CT). The swelling and dissolvability of each scaffold were also studied. Biological studies, osteopontin (OPN), and osterix (OSX) gene expression evaluations were confirmed at the protein levels, using immunofluorescence coupled with confocal microscopy. These findings suggest the positive effect of magnesium and zinc on the osteogenic differentiation process. OSX fluorescent staining also confirmed the capacity of GelMA-HM5 and GelMA-HZ5 to support osteogenesis, especially of the magnesium enriched scaffold.
AUTHOR Hashimi, Noura Sayed Al and Soman, Soja Saghar and Govindharaj, Mano and Vijayavenkataraman, Sanjairaj
Title 3D printing of complex architected metamaterial structures by simple material extrusion for bone tissue engineering [Abstract]
Year 2022
Journal/Proceedings Materials Today Communications
Reftype
DOI/URL URL DOI
Abstract
Triply periodic minimal surfaces (TPMS) are gaining popularity as scaffolds for bioapplications due to their unique structure, offering strong mechanical properties and biomorphic surfaces which enhance cell attachment and proliferation. In this work, polymer TPMS sheet lattices were printed using a well-known yet unprecedented technique of manufacturing such structures; which is material extrusion (specifically, pneumatic melt extrusion). This method offers a one step, straightforward yet reliable way to print complex porous structures while retaining design accuracy and significantly simplifying the process. Multiple primitive, gyroid and cubic structures were designed using MSLattice and Solidworks with 70% porosity and 2×2×3 unit cells. The scaffolds were printed by melt extrusion of polycaprolactone (PCL) at different parameters to establish the optimal settings. Morphological features (pore size and strut thickness) were determined using scanning electron microscopy (SEM) and the accuracy of print was determined by comparing to the design, showing high print accuracy and minimal percentage errors of less than 15% in all prints. Uniaxial compression testing was used to demonstrate the different deformation processes of the scaffolds and evaluate their mechanical properties, with primitive having the highest modulus and gyroid the highest yield strength. Finally, cell viability was quantified by alamar blue cell viability assay and visualized by SEM, displaying significant increase in cell proliferation and attachment, specifically in the primitive structure. Herein we will explain the challenges faced with design and print optimization and how we overcame them, making this work the first of its kind in material extrusion (pneumatic melt extrusion) printing of TPMS scaffolds.
AUTHOR Dairaghi, Jacob and Rogozea, Dan and Cadle, Rachel and Bustamante, Joseph and Moldovan, Leni and Petrache, Horia I. and Moldovan, Nicanor I.
Title 3D Printing of Human Ossicle Models for the Biofabrication of Personalized Middle Ear Prostheses [Abstract]
Year 2022
Journal/Proceedings Applied Sciences
Reftype
DOI/URL URL DOI
Abstract
The middle ear bones (‘ossicles’) may become severely damaged due to accidents or to diseases. In these situations, the most common current treatments include replacing them with cadaver-derived ossicles, using a metal (usually titanium) prosthesis, or introducing bridges made of biocompatible ceramics. Neither of these solutions is ideal, due to the difficulty in finding or producing shape-matching replacements. However, the advent of additive manufacturing applications to biomedical problems has created the possibility of 3D-printing anatomically correct, shape- and size-personalized ossicle prostheses. To demonstrate this concept, we generated and printed several models of ossicles, as solid, porous, or soft material structures. These models were first printed with a plottable calcium phosphate/hydroxyapatite paste by extrusion on a solid support or embedded in a Carbopol hydrogel bath, followed by temperature-induced hardening. We then also printed an ossicle model with this ceramic in a porous format, followed by loading and crosslinking an alginate hydrogel within the pores, which was validated by microCT imaging. Finally, ossicle models were printed using alginate as well as a cell-containing nanocellulose-based bioink, within the supporting hydrogel bath. In selected cases, the devised workflow and the printouts were tested for repeatability. In conclusion, we demonstrate that moving beyond simplistic geometric bridges to anatomically realistic constructs is possible by 3D printing with various biocompatible materials and hydrogels, thus opening the way towards the in vitro generation of personalized middle ear prostheses for implantation.
AUTHOR Dairaghi, Jacob and Rogozea, Dan and Cadle, Rachel and Bustamante, Joseph and Moldovan, Leni and Petrache, Horia I. and Moldovan, Nicanor I.
Title 3D Printing of Human Ossicle Models for the Biofabrication of Personalized Middle Ear Prostheses [Abstract]
Year 2022
Journal/Proceedings Applied Sciences
Reftype
DOI/URL URL DOI
Abstract
The middle ear bones (‘ossicles’) may become severely damaged due to accidents or to diseases. In these situations, the most common current treatments include replacing them with cadaver-derived ossicles, using a metal (usually titanium) prosthesis, or introducing bridges made of biocompatible ceramics. Neither of these solutions is ideal, due to the difficulty in finding or producing shape-matching replacements. However, the advent of additive manufacturing applications to biomedical problems has created the possibility of 3D-printing anatomically correct, shape- and size-personalized ossicle prostheses. To demonstrate this concept, we generated and printed several models of ossicles, as solid, porous, or soft material structures. These models were first printed with a plottable calcium phosphate/hydroxyapatite paste by extrusion on a solid support or embedded in a Carbopol hydrogel bath, followed by temperature-induced hardening. We then also printed an ossicle model with this ceramic in a porous format, followed by loading and crosslinking an alginate hydrogel within the pores, which was validated by microCT imaging. Finally, ossicle models were printed using alginate as well as a cell-containing nanocellulose-based bioink, within the supporting hydrogel bath. In selected cases, the devised workflow and the printouts were tested for repeatability. In conclusion, we demonstrate that moving beyond simplistic geometric bridges to anatomically realistic constructs is possible by 3D printing with various biocompatible materials and hydrogels, thus opening the way towards the in vitro generation of personalized middle ear prostheses for implantation.
AUTHOR Dairaghi, Jacob and Rogozea, Dan and Cadle, Rachel and Bustamante, Joseph and Moldovan, Leni and Petrache, Horia I. and Moldovan, Nicanor I.
Title 3D Printing of Human Ossicle Models for the Biofabrication of Personalized Middle Ear Prostheses [Abstract]
Year 2022
Journal/Proceedings Applied Sciences
Reftype
DOI/URL URL DOI
Abstract
The middle ear bones (‘ossicles’) may become severely damaged due to accidents or to diseases. In these situations, the most common current treatments include replacing them with cadaver-derived ossicles, using a metal (usually titanium) prosthesis, or introducing bridges made of biocompatible ceramics. Neither of these solutions is ideal, due to the difficulty in finding or producing shape-matching replacements. However, the advent of additive manufacturing applications to biomedical problems has created the possibility of 3D-printing anatomically correct, shape- and size-personalized ossicle prostheses. To demonstrate this concept, we generated and printed several models of ossicles, as solid, porous, or soft material structures. These models were first printed with a plottable calcium phosphate/hydroxyapatite paste by extrusion on a solid support or embedded in a Carbopol hydrogel bath, followed by temperature-induced hardening. We then also printed an ossicle model with this ceramic in a porous format, followed by loading and crosslinking an alginate hydrogel within the pores, which was validated by microCT imaging. Finally, ossicle models were printed using alginate as well as a cell-containing nanocellulose-based bioink, within the supporting hydrogel bath. In selected cases, the devised workflow and the printouts were tested for repeatability. In conclusion, we demonstrate that moving beyond simplistic geometric bridges to anatomically realistic constructs is possible by 3D printing with various biocompatible materials and hydrogels, thus opening the way towards the in vitro generation of personalized middle ear prostheses for implantation.
AUTHOR Mao, Qiuyi and Zhu, Bowen and Zhuang, Hai and Bu, Shoushan
Title 3D-Printing Assisted SF-SA Based MgP Hybrid Hydrogel Scaffold for Bone Tissue Engineering [Abstract]
Year 2022
Journal/Proceedings Frontiers in Materials
Reftype
DOI/URL DOI
Abstract
A new prototype of hybrid silk fibroin and sodium alginate (SF-SA) based osteogenic hydrogel scaffold with a concentration of 2.5% magnesium phosphate (MgP) based gel was prepared with the assistance of an extrusion-based three-dimensional (3D) printing machine in this study. To determine the optimum ratio of MgP-based gel in the hydrogel, a series of physical and biochemical experiments were performed to determine the proper concentration of MgP in two-dimensional hydrogel films, as well as the cell compatibility with these materials in sequence. The SF-SA hydrogel with 2.5wt% magnesium phosphate (SF-SA/MgP) stood out and then was used to fabricate 3D hydrogel scaffolds according to the consequences of the experiments, with SF-SA hydrogel as a control. Then the morphology and osteogenic activity of the scaffolds were further characterized by field emission scanning electron microscope (SEM), calcium mineralization staining, and reverse transcription-polymerase chain reaction (rt-PCR). The SF-SA/MgP hydrogel scaffold promoted the adhesion of rat mesenchymal stem cells with higher degrees of efficiency under dynamic culture conditions. After co-culturing in an osteogenic differentiation medium, cells seeded on SF-SA/MgP hydrogel scaffold were shown to have better performance on osteogenesis in the early stage than the control group. This work illustrates that the 3D structures of hybrid SF-SA/MgP hydrogel are promising headstones for osteogenic tissue engineering.
AUTHOR Kitana, Waseem and Apsite, Indra and Hazur, Jonas and Boccaccini, Aldo R. and Ionov, Leonid
Title 4D Biofabrication of T-Shaped Vascular Bifurcation [Abstract]
Year 2022
Journal/Proceedings Advanced Materials Technologies
Reftype
DOI/URL DOI
Abstract
Abstract 4D Biofabrication – a pioneering biofabrication technique – involves the automated fabrication of 3D constructs that are dynamic and show shape-transformation capability. Although current 4D biofabrication methods are highly promising for the fabrication of vascular elements such as tubes, the fabrication of tubular junctions is still highly challenging. Here, for the first time, a 4D biofabrication-based concept for the fabrication of a T-shaped vascular bifurcation using 3D printed shape-changing layers based on a mathematical model is reported. The formation of tubular structures with various diameters is achieved by precisely controlling the parameters (e.g. crosslinking time). Consequently, the 3D printed films show self-transformation into a T-junction upon immersion in water with a diameter of a few millimeters. Perfusion of the tubular T-junction with an aqueous medium simulating blood flow through vessels shows minimal leakages with a maximum flow velocity of 0.11 m s–1. Furthermore, human umbilical vein endothelial cells seeded on the inner surface of the plain T-junction show outstanding growth properties and excellent cell viability. The achieved diameters are comparable to the native blood vessels, which is still a challenge in 3D biofabrication. This approach paves the way for the fabrication of fully automatic self-actuated vascular bifurcations as vascular grafts.
AUTHOR Pellegrini, Evelin and Desando, Giovanna and Petretta, Mauro and Cellamare, Antonella and Cristalli, Camilla and Pasello, Michela and Manara, Maria Cristina and Grigolo, Brunella and Scotlandi, Katia
Title A 3D Collagen-Based Bioprinted Model to Study Osteosarcoma Invasiveness and Drug Response [Abstract]
Year 2022
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
The biological and therapeutic limits of traditional 2D culture models, which only partially mimic the complexity of cancer, have recently emerged. In this study, we used a 3D bioprinting platform to process a collagen-based hydrogel with embedded osteosarcoma (OS) cells. The human OS U-2 OS cell line and its resistant variant (U-2OS/CDDP 1 μg) were considered. The fabrication parameters were optimized to obtain 3D printed constructs with overall morphology and internal microarchitecture that accurately match the theoretical design, in a reproducible and stable process. The biocompatibility of the 3D bioprinting process and the chosen collagen bioink in supporting OS cell viability and metabolism was confirmed through multiple assays at short- (day 3) and long- (day 10) term follow-ups. In addition, we tested how the 3D collagen-based bioink affects the tumor cell invasive capabilities and chemosensitivity to cisplatin (CDDP). Overall, we developed a new 3D culture model of OS cells that is easy to set up, allows reproducible results, and better mirrors malignant features of OS than flat conditions, thus representing a promising tool for drug screening and OS cell biology research.
AUTHOR Dorjsuren, Dorjbal and Eastman, Richard T. and Song, Min Jae and Yasgar, Adam and Chen, Yuchi and Bharti, Kapil and Zakharov, Alexey V. and Jadhav, Ajit and Ferrer, Marc and Shi, Pei-Yong and Simeonov, Anton
Title A platform of assays for the discovery of anti-Zika small-molecules with activity in a 3D-bioprinted outer-blood-retina model [Abstract]
Year 2022
Journal/Proceedings PLOS ONE
Reftype
DOI/URL DOI
Abstract
The global health emergency posed by the outbreak of Zika virus (ZIKV), an arthropod-borne flavivirus causing severe neonatal neurological conditions, has subsided, but there continues to be transmission of ZIKV in endemic regions. As such, there is still a medical need for discovering and developing therapeutical interventions against ZIKV. To identify small-molecule compounds that inhibit ZIKV disease and transmission, we screened multiple small-molecule collections, mostly derived from natural products, for their ability to inhibit wild-type ZIKV. As a primary high-throughput screen, we used a viral cytopathic effect (CPE) inhibition assay conducted in Vero cells that was optimized and miniaturized to a 1536-well format. Suitably active compounds identified from the primary screen were tested in a panel of orthogonal assays using recombinant Zika viruses, including a ZIKV Renilla luciferase reporter assay and a ZIKV mCherry reporter system. Compounds that were active in the wild-type ZIKV inhibition and ZIKV reporter assays were further evaluated for their inhibitory effects against other flaviviruses. Lastly, we demonstrated that wild-type ZIKV is able to infect a 3D-bioprinted outer-blood-retina barrier tissue model and disrupt its barrier function, as measured by electrical resistance. One of the identified compounds (3-Acetyl-13-deoxyphomenone, NCGC00380955) was able to prevent the pathological effects of the viral infection on this clinically relevant ZIKV infection model.
AUTHOR Cakal, Selgin D. and Radeke, Carmen and Alcala, Juan F. and Ellman, Ditte G. and Butdayev, Sarkhan and Andersen, Ditte C. and Calloe, Kirstine and Lind, Johan U.
Title A simple and scalable 3D printing methodology for generating aligned and extended human and murine skeletal muscle tissues [Abstract]
Year 2022
Journal/Proceedings Biomedical Materials
Reftype
DOI/URL DOI
Abstract
Preclinical biomedical and pharmaceutical research on disease causes, drug targets, and side effects increasingly relies on in vitro models of human tissue. 3D printing offers unique opportunities for generating models of superior physiological accuracy, as well as for automating their fabrication. Towards these goals, we here describe a simple and scalable methodology for generating physiologically relevant models of skeletal muscle. Our approach relies on dual-material micro-extrusion of two types of gelatin hydrogel into patterned soft substrates with locally alternating stiffness. We identify minimally complex patterns capable of guiding the large-scale self-assembly of aligned, extended, and contractile human and murine skeletal myotubes. Interestingly, we find high-resolution patterning is not required, as even patterns with feature sizes of several hundred micrometers is sufficient. Consequently, the procedure is rapid and compatible with any low-cost extrusion-based 3D printer. The generated myotubes easily span several millimeters, and various myotube patterns can be generated in a predictable and reproducible manner. The compliant nature and adjustable thickness of the hydrogel substrates, serves to enable extended culture of contractile myotubes. The method is further readily compatible with standard cell-culturing platforms as well as commercially available electrodes for electrically induced exercise and monitoring of the myotubes.
AUTHOR Anand, Resmi and Amoli, Mehdi Salar and Huysecom, An-Sofie and Amorim, Paulo Alexandre and Agten, Hannah and Geris, Liesbet and Bloemen, Veerle
Title A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing [Abstract]
Year 2022
Journal/Proceedings Biomedical Materials
Reftype
DOI/URL DOI
Abstract
Methacryloyl gelatin (GelMA) is a versatile material for bioprinting because of its tunable physical properties and inherent bioactivity. Bioprinting of GelMA is often met with challenges such as lower viscosity of GelMA inks due to higher methacryloyl substitution and longer physical gelation time at room temperature. In this study, a tunable interpenetrating polymer network (IPN) hydrogel was prepared from gelatin-hyaluronan dialdehyde (Gel-HDA) Schiff’s polymer, and 100% methacrylamide substituted GelMA for biofabrication through extrusion based bioprinting. Temperature sweep rheology measurements show a higher sol-gel transition temperature for IPN (30 °C) compared to gold standard GelMA (27 °C). Furthermore, to determine the tunability of the IPN hydrogel, several IPN samples were prepared by combining different ratios of Gel-HDA and GelMA achieving a compressive modulus ranging from 20.6 ± 2.48 KPa to 116.7 ± 14.80 KPa. Our results showed that the mechanical properties and printability at room temperature could be tuned by adjusting the ratios of GelMA and Gel-HDA. To evaluate cell response to the material, MC3T3-E1 mouse pre-osteoblast cells were embedded in hydrogels and 3D-printed, demonstrating excellent cell viability and proliferation after 10 d of 3D in vitro culture, making the IPN an interesting bioink for the fabrication of 3D constructs for tissue engineering applications.
AUTHOR Shukla, Arvind Kumar and Gao, Ge and Kim, Byoung Soo
Title Applications of 3D Bioprinting Technology in Induced Pluripotent Stem Cells-Based Tissue Engineering [Abstract]
Year 2022
Journal/Proceedings Micromachines
Reftype
DOI/URL URL DOI
Abstract
Induced pluripotent stem cells (iPSCs) are essentially produced by the genetic reprogramming of adult cells. Moreover, iPSC technology prevents the genetic manipulation of embryos. Hence, with the ensured element of safety, they rarely cause ethical concerns when utilized in tissue engineering. Several cumulative outcomes have demonstrated the functional superiority and potency of iPSCs in advanced regenerative medicine. Recently, an emerging trend in 3D bioprinting technology has been a more comprehensive approach to iPSC-based tissue engineering. The principal aim of this review is to provide an understanding of the applications of 3D bioprinting in iPSC-based tissue engineering. This review discusses the generation of iPSCs based on their distinct purpose, divided into two categories: (1) undifferentiated iPSCs applied with 3D bioprinting; (2) differentiated iPSCs applied with 3D bioprinting. Their significant potential is analyzed. Lastly, various applications for engineering tissues and organs have been introduced and discussed in detail.
AUTHOR Song, Min Jae and Quinn, Russ and Nguyen, Eric and Hampton, Christopher and Sharma, Ruchi and Park, Tea Soon and Koster, Céline and Voss, Ty and Tristan, Carlos and Weber, Claire and Singh, Anju and Dejene, Roba and Bose, Devika and Chen, Yu-Chi and Derr, Paige and Derr, Kristy and Michael, Sam and Barone, Francesca and Chen, Guibin and Boehm, Manfred and Maminishkis, Arvydas and Singec, Ilyas and Ferrer, Marc and Bharti, Kapil
Title Bioprinted 3D outer retina barrier uncovers RPE-dependent choroidal phenotype in advanced macular degeneration [Abstract]
Year 2022
Journal/Proceedings Nature Methods
Reftype Song2022
DOI/URL DOI
Abstract
Age-related macular degeneration (AMD), a leading cause of blindness, initiates in the outer-blood-retina-barrier (oBRB) formed by the retinal pigment epithelium (RPE), Bruch’s membrane, and choriocapillaris. The mechanisms of AMD initiation and progression remain poorly understood owing to the lack of physiologically relevant human oBRB models. To this end, we engineered a native-like three-dimensional (3D) oBRB tissue (3D-oBRB) by bioprinting endothelial cells, pericytes, and fibroblasts on the basal side of a biodegradable scaffold and establishing an RPE monolayer on top. In this 3D-oBRB model, a fully-polarized RPE monolayer provides barrier resistance, induces choriocapillaris fenestration, and supports the formation of Bruch’s-membrane-like structure by inducing changes in gene expression in cells of the choroid. Complement activation in the 3D-oBRB triggers dry AMD phenotypes (including subRPE lipid-rich deposits called drusen and choriocapillaris degeneration), and HIF-α stabilization or STAT3 overactivation induce choriocapillaris neovascularization and type-I wet AMD phenotype. The 3D-oBRB provides a physiologically relevant model to studying RPE-choriocapillaris interactions under healthy and diseased conditions.
AUTHOR Pontiggia, Luca and Hengel, Ingmar A.J. Van and Klar, Agnes and Rütsche, Dominic and Nanni, Monica and Scheidegger, Andreas and Figi, Sandro and Reichmann, Ernst and Moehrlen, Ueli and Biedermann, Thomas
Title Bioprinting and plastic compression of large pigmented and vascularized human dermo-epidermal skin substitutes by means of a new robotic platform [Abstract]
Year 2022
Journal/Proceedings Journal of Tissue Engineering
Reftype
DOI/URL URL DOI
Abstract
Extensive availability of engineered autologous dermo-epidermal skin substitutes (DESS) with functional and structural properties of normal human skin represents a goal for the treatment of large skin defects such as severe burns. Recently, a clinical phase I trial with this type of DESS was successfully completed, which included patients own keratinocytes and fibroblasts. Yet, two important features of natural skin were missing: pigmentation and vascularization. The first has important physiological and psychological implications for the patient, the second impacts survival and quality of the graft. Additionally, accurate reproduction of large amounts of patient’s skin in an automated way is essential for upscaling DESS production. Therefore, in the present study, we implemented a new robotic unit (called SkinFactory) for 3D bioprinting of pigmented and pre-vascularized DESS using normal human skin derived fibroblasts, blood- and lymphatic endothelial cells, keratinocytes, and melanocytes. We show the feasibility of our approach by demonstrating the viability of all the cells after printing in vitro, the integrity of the reconstituted capillary network in vivo after transplantation to immunodeficient rats and the anastomosis to the vascular plexus of the host. Our work has to be considered as a proof of concept in view of the implementation of an extended platform, which fully automatize the process of skin substitution: this would be a considerable improvement of the treatment of burn victims and patients with severe skin lesions based on patients own skin derived cells.
AUTHOR Blanco-Fernandez, Barbara and Rey-Vinolas, Sergi and Bağcı, Gülsün and Rubi-Sans, Gerard and Otero, Jorge and Navajas, Daniel and Perez-Amodio, Soledad and Engel, Elisabeth
Title Bioprinting Decellularized Breast Tissue for the Development of Three-Dimensional Breast Cancer Models [Abstract]
Year 2022
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
Abstract
The tumor extracellular matrix (ECM) plays a vital role in tumor progression and drug resistance. Previous studies have shown that breast tissue-derived matrices could be an important biomaterial to recreate the complexity of the tumor ECM. We have developed a method for decellularizing and delipidating a porcine breast tissue (TDM) compatible with hydrogel formation. The addition of gelatin methacrylamide and alginate allows this TDM to be bioprinted by itself with good printability, shape fidelity, and cytocompatibility. Furthermore, this bioink has been tuned to more closely recreate the breast tumor by incorporating collagen type I (Col1). Breast cancer cells (BCCs) proliferate in both TDM bioinks forming cell clusters and spheroids. The addition of Col1 improves the printability of the bioink as well as increases BCC proliferation and reduces doxorubicin sensitivity due to a downregulation of HSP90. TDM bioinks also allow a precise three-dimensional printing of scaffolds containing BCCs and stromal cells and could be used to fabricate artificial tumors. Taken together, we have proven that these novel bioinks are good candidates for biofabricating breast cancer models.
AUTHOR Govindharaj, Mano and Al Hashemi, Noura Sayed and Soman, Soja Saghar and Vijayavenkataraman, Sanjairaj
Title Bioprinting of bioactive tissue scaffolds from ecologically-destructive fouling tunicates [Abstract]
Year 2022
Journal/Proceedings Journal of Cleaner Production
Reftype
DOI/URL URL DOI
Abstract
Urochordates are the closest invertebrate relative to humans and commonly referred to as tunicates, a name ascribed to their leathery outer “tunic”. The tunic is the outer covering of the organism which functions as the exoskeleton and is rich in carbohydrates and proteins. Invasive or fouling tunicates pose a great threat to the indigenous marine ecosystem and governments spend several hundred thousand dollars for tunicate management, considering the huge adverse economic impact it has on the shipping and fishing industries. In this work, the environmentally destructive colonizing tunicate species of Polyclinum constellatum was successfully identified in the coast of Abu Dhabi and methods of sustainably using it as wound-dressing materials, decellularized extra-cellular matrix (dECM) scaffolds for tissue engineering applications and bioinks for bioprinting of tissue constructs for regenerative medicine are proposed. The intricate three-dimensional nanofibrous cellulosic networks in the tunic remain intact even after the multi-step process of decellularization and lyophilization. The lyophilized dECM tunics possess excellent biocompatibility and remarkable tensile modulus of 3.85 ± 0.93 MPa compared to ∼0.1–1 MPa of other hydrogel systems. This work demonstrates the use of lyophilized tunics as wound-dressing materials, having outperformed the commercial dressing materials with a capacity of absorbing 20 times its weight in the dry state. This work also demonstrates the biocompatibility of dECM scaffold and dECM-derived bioink (3D bioprinting with Mouse Embryonic Fibroblasts (MEFs)). Both dECM scaffolds and bioprinted dECM-based tissue constructs show enhanced metabolic activity and cell proliferation over time. Sustainable utilization of dECM-based biomaterials from ecologically-destructive fouling tunicates proposed in this work helps preserve the marine ecosystem, shipping and fishing industries worldwide, and mitigate the huge cost spent for tunicate management.
AUTHOR Saghar Soman, Soja and Govindraj, Mano and Al Hashimi, Noura and Zhou, Jiarui and Vijayavenkataraman, Sanjairaj
Title Bioprinting of Human Neural Tissues Using a Sustainable Marine Tunicate-Derived Bioink for Translational Medicine Applications [Abstract]
Year 2022
Journal/Proceedings International Journal of Bioprinting; Vol 8, No 4 (2022)DO - 10.18063/ijb.v8i4.604
Reftype
DOI/URL URL
Abstract
Bioprinting of nervous tissue is a major challenge in the bioprinting field due to its soft consistency and complex architecture. The first step in efficient neural bioprinting is the design and optimization of printable bioinks which favor the growth and differentiation of neural tissues by providing the mechanophysiological properties of the native tissue microenvironment. However, till date, limited studies have been conducted to make tissue specific bioinks. Here, we report a novel bioink formulation specifically designed for bioprinting and differentiation of neural stem cells (NSCs) to peripheral neurons, using a marine tunicate-derived hydrogel and Matrigel. The formulation resulted in seamless bioprinting of NSCs with minimal processing time from bioink preparation to in vitro culture. The tissues exhibited excellent post-printing viability and cell proliferation along with a precise peripheral nerve morphology on in vitro differentiation. The cultured tissues showed significant cell recovery after subjecting to a freeze-thaw cycle of −80 to 37°C, indicating the suitability of the method for developing tissues compatible for long-term storage and transportation for clinical use. The study provides a robust method to use a sustainable bioink for three-dimensional bioprinting of neural tissues for translational medicine applications.
AUTHOR Saghar Soman, Soja and Govindraj, Mano and Al Hashimi, Noura and Zhou, Jiarui and Vijayavenkataraman, Sanjairaj
Title Bioprinting of Human Neural Tissues Using a Sustainable Marine Tunicate-Derived Bioink for Translational Medicine Applications [Abstract]
Year 2022
Journal/Proceedings International Journal of Bioprinting; Vol 8, No 4 (2022)DO - 10.18063/ijb.v8i4.604
Reftype
DOI/URL URL
Abstract
Bioprinting of nervous tissue is a major challenge in the bioprinting field due to its soft consistency and complex architecture. The first step in efficient neural bioprinting is the design and optimization of printable bioinks which favor the growth and differentiation of neural tissues by providing the mechanophysiological properties of the native tissue microenvironment. However, till date, limited studies have been conducted to make tissue specific bioinks. Here, we report a novel bioink formulation specifically designed for bioprinting and differentiation of neural stem cells (NSCs) to peripheral neurons, using a marine tunicate-derived hydrogel and Matrigel. The formulation resulted in seamless bioprinting of NSCs with minimal processing time from bioink preparation to in vitro culture. The tissues exhibited excellent post-printing viability and cell proliferation along with a precise peripheral nerve morphology on in vitro differentiation. The cultured tissues showed significant cell recovery after subjecting to a freeze-thaw cycle of −80 to 37°C, indicating the suitability of the method for developing tissues compatible for long-term storage and transportation for clinical use. The study provides a robust method to use a sustainable bioink for three-dimensional bioprinting of neural tissues for translational medicine applications.
AUTHOR Saghar Soman, Soja and Govindraj, Mano and Al Hashimi, Noura and Zhou, Jiarui and Vijayavenkataraman, Sanjairaj
Title Bioprinting of Human Neural Tissues Using a Sustainable Marine Tunicate-Derived Bioink for Translational Medicine Applications [Abstract]
Year 2022
Journal/Proceedings International Journal of Bioprinting; Vol 8, No 4 (2022)DO - 10.18063/ijb.v8i4.604
Reftype
DOI/URL URL
Abstract
Bioprinting of nervous tissue is a major challenge in the bioprinting field due to its soft consistency and complex architecture. The first step in efficient neural bioprinting is the design and optimization of printable bioinks which favor the growth and differentiation of neural tissues by providing the mechanophysiological properties of the native tissue microenvironment. However, till date, limited studies have been conducted to make tissue specific bioinks. Here, we report a novel bioink formulation specifically designed for bioprinting and differentiation of neural stem cells (NSCs) to peripheral neurons, using a marine tunicate-derived hydrogel and Matrigel. The formulation resulted in seamless bioprinting of NSCs with minimal processing time from bioink preparation to in vitro culture. The tissues exhibited excellent post-printing viability and cell proliferation along with a precise peripheral nerve morphology on in vitro differentiation. The cultured tissues showed significant cell recovery after subjecting to a freeze-thaw cycle of −80 to 37°C, indicating the suitability of the method for developing tissues compatible for long-term storage and transportation for clinical use. The study provides a robust method to use a sustainable bioink for three-dimensional bioprinting of neural tissues for translational medicine applications.
AUTHOR Saghar Soman, Soja and Govindraj, Mano and Al Hashimi, Noura and Zhou, Jiarui and Vijayavenkataraman, Sanjairaj
Title Bioprinting of Human Neural Tissues Using a Sustainable Marine Tunicate-Derived Bioink for Translational Medicine Applications [Abstract]
Year 2022
Journal/Proceedings International Journal of Bioprinting; Vol 8, No 4 (2022)DO - 10.18063/ijb.v8i4.604
Reftype
DOI/URL URL
Abstract
Bioprinting of nervous tissue is a major challenge in the bioprinting field due to its soft consistency and complex architecture. The first step in efficient neural bioprinting is the design and optimization of printable bioinks which favor the growth and differentiation of neural tissues by providing the mechanophysiological properties of the native tissue microenvironment. However, till date, limited studies have been conducted to make tissue specific bioinks. Here, we report a novel bioink formulation specifically designed for bioprinting and differentiation of neural stem cells (NSCs) to peripheral neurons, using a marine tunicate-derived hydrogel and Matrigel. The formulation resulted in seamless bioprinting of NSCs with minimal processing time from bioink preparation to in vitro culture. The tissues exhibited excellent post-printing viability and cell proliferation along with a precise peripheral nerve morphology on in vitro differentiation. The cultured tissues showed significant cell recovery after subjecting to a freeze-thaw cycle of −80 to 37°C, indicating the suitability of the method for developing tissues compatible for long-term storage and transportation for clinical use. The study provides a robust method to use a sustainable bioink for three-dimensional bioprinting of neural tissues for translational medicine applications.
AUTHOR Daskalakis, Evangelos and Huang, Boyang and Vyas, Cian and Acar, Anil A. and Liu, Fengyuan and Fallah, Ali and Cooper, Glen and Weightman, Andrew and Blunn, Gordon and Koç, Bahattin and Bartolo, Paulo
Title Bone Bricks: The Effect of Architecture and Material Composition on the Mechanical and Biological Performance of Bone Scaffolds [Abstract]
Year 2022
Journal/Proceedings ACS Omega
Reftype
DOI/URL DOI
Abstract
Large bone loss injuries require high-performance scaffolds with an architecture and material composition resembling native bone. However, most bone scaffold studies focus on three-dimensional (3D) structures with simple rectangular or circular geometries and uniform pores, not able to recapitulate the geometric characteristics of the native tissue. This paper addresses this limitation by proposing novel anatomically designed scaffolds (bone bricks) with nonuniform pore dimensions (pore size gradients) designed based on new lay-dawn pattern strategies. The gradient design allows one to tailor the properties of the bricks and together with the incorporation of ceramic materials allows one to obtain structures with high mechanical properties (higher than reported in the literature for the same material composition) and improved biological characteristics.
AUTHOR Fl{'{e}}geau, Killian and Puiggali-Jou, Anna and Zenobi-Wong, Marcy
Title Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks [Abstract]
Year 2022
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
3D bioprinting offers an excellent opportunity to provide tissue-engineered cartilage to microtia patients. However, hydrogel-based bioinks are hindered by their dense and cell-restrictive environment, impairing tissue development and ultimately leading to mechanical failure of large scaffolds in vivo. Granular hydrogels, made of annealed microgels, offer a superior alternative to conventional bioinks, with their improved porosity and modularity. We have evaluated the ability of enzymatically crosslinked hyaluronic acid (HA) microgel bioinks to form mature cartilage in vivo. Microgel bioinks were formed by mechanically sizing bulk HA-tyramine hydrogels through meshes with aperture diameters of 40, 100 or 500 µm. Annealing of the microgels was achieved by crosslinking residual tyramines. Secondary crosslinked scaffolds were stable in solution and showed tunable porosity from 9% to 21%. Bioinks showed excellent rheological properties and were used to print different objects. Printing precision was found to be directly correlated to microgel size. As a proof of concept, freeform reversible embedding of suspended hydrogels printing with gelation triggered directly in the bath was performed to demonstrate the versatility of the method. The granular hydrogels support the homogeneous development of mature cartilage-like tissues in vitro with mechanical stiffening up to 200 kPa after 63 d. After 6 weeks of in vivo implantation, small-diameter microgels formed stable constructs with low immunogenicity and continuous tissue maturation. Conversely, increasing the microgel size resulted in increased inflammatory response, with limited stability in vivo. This study reports the development of new microgel bioinks for cartilage tissue biofabrication and offers insights into the foreign body reaction towards porous scaffolds implantation.
AUTHOR Cao, Chuanliang and Huang, Pengren and Prasopthum, Aruna and Parsons, Andrew J. and Ai, Fanrong and Yang, Jing
Title Characterisation of bone regeneration in 3D printed ductile PCL/PEG/hydroxyapatite scaffolds with high ceramic microparticle concentrations [Abstract]
Year 2022
Journal/Proceedings Biomater. Sci.
Reftype
DOI/URL DOI
Abstract
3D printed bioactive glass or bioceramic particle reinforced composite scaffolds for bone tissue engineering currently suffer from low particle concentration (100% breaking strain) by adding poly(ethylene glycol) which is biocompatible and FDA approved. The scaffolds require no post-printing washing to remove hazardous components. More exposure of HA microparticles on strut surfaces is enabled by incorporating higher HA concentrations. Compared to scaffolds with 72 wt% HA{,} scaffolds with higher HA content (90 wt%) enhance matrix formation but not new bone volume after 12 weeks implantation in rat calvarial defects. Histological analyses demonstrate that bone regeneration within the 3D printed scaffolds is via intramembranous ossification and starts in the central region of pores. Fibrous tissue that resembles non-union tissue within bone fractures is formed within pores that do not have new bone. The amount of blood vessels is similar between scaffolds with mainly fibrous tissue and those with more bone tissue{,} suggesting vascularization is not a deciding factor for determining the type of tissues regenerated within the pores of 3D printed scaffolds. Multinucleated immune cells are commonly present in all scaffolds surrounding the struts{,} suggesting a role of managing inflammation in bone regeneration within 3D printed scaffolds.
AUTHOR Monaco, Graziana and Qawasmi, Feras and El Haj, Alicia J. and Forsyth, Nicolas R. and Stoddart, Martin J.
Title Chondrogenic differentiation of human bone marrow MSCs in osteochondral implants under kinematic mechanical load is dependent on the underlying osteo component [Abstract]
Year 2022
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
Chondrogenic models utilizing human mesenchymal stromal cells (hMSCs) are often simplistic, with a single cell type and the absence of mechanical stimulation. Considering the articulating joint as an organ it would be beneficial to include more complex stimulation. Within this study we applied clinically relevant kinematic load to biphasic constructs. In each case, the upper layer consisted of fibrin embedded hMSCs retained within an elastomeric polyurethane (PU) scaffold. These were randomly assigned to five base scaffolds, a cell-free fibrin PU base, viable bone, decellularized bone, 3D printed calcium phosphate or clinically used cement. This allowed the study of cross talk between viable bone and chondrogenically differentiating MSCs, while controlling for the change in stiffness of the base material. Data obtained showed that the bulk stiffness of the construct was not the defining factor in the response obtained, with viable and decellularized bone producing similar results to the softer PU base. However, the stiff synthetic materials led to reduced chondrogenesis and increased calcification in the upper MSC seeded layer. This demonstrates that the underlying base material must be considered when driving chondrogenesis of human cells using a clinically relevant loading protocol. It also indicates that the material used for bony reconstruction of osteochondral defects may influence subsequent chondrogenic potential.
AUTHOR Clua-Ferré, Laura and de Chiara, Francesco and Rodríguez-Comas, Júlia and Comelles, Jordi and Martinez, Elena and Godeau, Amelie Luise and García-Alamán, Ainhoa and Gasa, Rosa and Ramón-Azcón, Javier
Title Collagen-Tannic Acid Spheroids for β-Cell Encapsulation Fabricated Using a 3D Bioprinter [Abstract]
Year 2022
Journal/Proceedings Advanced Materials Technologies
Reftype
DOI/URL DOI
Abstract
Abstract Type 1 Diabetes results from autoimmune response elicited against β-cell antigens. Nowadays, insulin injections remain the leading therapeutic option. However, injection treatment fails to emulate the highly dynamic insulin release that β-cells provide. 3D cell-laden microspheres have been proposed during the last years as a major platform for bioengineering insulin-secreting constructs for tissue graft implantation and a model for in vitro drug screening platforms. Current microsphere fabrication technologies have several drawbacks: the need for an oil phase containing surfactants, diameter inconsistency of the microspheres, and high time-consuming processes. These technologies have widely used alginate for its rapid gelation, high processability, and low cost. However, its low biocompatible properties do not provide effective cell attachment. This study proposes a high-throughput methodology using a 3D bioprinter that employs an ECM-like microenvironment for effective cell-laden microsphere production to overcome these limitations. Crosslinking the resulting microspheres with tannic acid prevents collagenase degradation and enhances spherical structural consistency while allowing the diffusion of nutrients and oxygen. The approach allows customization of microsphere diameter with extremely low variability. In conclusion, a novel bio-printing procedure is developed to fabricate large amounts of reproducible microspheres capable of secreting insulin in response to extracellular glucose stimuli.
AUTHOR Man, Kenny and Barroso, Inês A. and Brunet, Mathieu Y. and Peacock, Ben and Federici, Angelica S. and Hoey, David A. and Cox, Sophie C.
Title Controlled Release of Epigenetically-Enhanced Extracellular Vesicles from a GelMA/Nanoclay Composite Hydrogel to Promote Bone Repair [Abstract]
Year 2022
Journal/Proceedings International Journal of Molecular Sciences
Reftype
DOI/URL URL DOI
Abstract
Extracellular vesicles (EVs) have garnered growing attention as promising acellular tools for bone repair. Although EVs’ potential for bone regeneration has been shown, issues associated with their therapeutic potency and short half-life in vivo hinders their clinical utility. Epigenetic reprogramming with the histone deacetylase inhibitor Trichostatin A (TSA) has been reported to promote the osteoinductive potency of osteoblast-derived EVs. Gelatin methacryloyl (GelMA) hydrogels functionalised with the synthetic nanoclay laponite (LAP) have been shown to effectively bind, stabilise, and improve the retention of bioactive factors. This study investigated the potential of utilising a GelMA-LAP hydrogel to improve local retention and control delivery of epigenetically enhanced osteoblast-derived EVs as a novel bone repair strategy. LAP was found to elicit a dose-dependent increase in GelMA compressive modulus and shear-thinning properties. Incorporation of the nanoclay was also found to enhance shape fidelity when 3D printed compared to LAP-free gels. Interestingly, GelMA hydrogels containing LAP displayed increased mineralisation capacity (1.41-fold) (p ≤ 0.01) over 14 days. EV release kinetics from these nanocomposite systems were also strongly influenced by LAP concentration with significantly more vesicles being released from GelMA constructs as detected by a CD63 ELISA (p ≤ 0.001). EVs derived from TSA-treated osteoblasts (TSA-EVs) enhanced proliferation (1.09-fold), migration (1.83-fold), histone acetylation (1.32-fold) and mineralisation (1.87-fold) of human bone marrow stromal cells (hBMSCs) when released from the GelMA-LAP hydrogel compared to the untreated EV gels (p ≤ 0.01). Importantly, the TSA-EV functionalised GelMA-LAP hydrogel significantly promoted encapsulated hBMSCs extracellular matrix collagen production (≥1.3-fold) and mineralisation (≥1.78-fold) in a dose-dependent manner compared to untreated EV constructs (p ≤ 0.001). Taken together, these findings demonstrate the potential of combining epigenetically enhanced osteoblast-derived EVs with a nanocomposite photocurable hydrogel to promote the therapeutic efficacy of acellular vesicle approaches for bone regeneration.
AUTHOR Wei, Shan and Zhang, Ren-Gang and Wang, Zheng-Yu
Title Deferoxamine/magnesium modified β-tricalcium phosphate promotes the bone regeneration in osteoporotic rats [Abstract]
Year 2022
Journal/Proceedings Journal of Biomaterials Applications
Reftype
DOI/URL DOI
Abstract
Recently, Deferoxamine (DFO) and magnesium (Mg) have been identified as critical factors for angiogenesis and bone formation. However, in current research studies, there is a lack of focus on whether DFO plus Mg can affect the regeneration of β-tricalcium phosphate (β-TCP) in osteoporosis and through what biological mechanisms. Therefore, the present work was aimed to preparation and evaluate the effect of Deferoxamine/magnesium modified β-tricalcium phosphate promotes (DFO/Mg-TCP) in ovariectomized rats model and preliminary exploration of possible mechanisms. The MC3T3-E1 cells were co-cultured with the exudate of DFO/Mg-TCP and induced to osteogenesis, and the cell viability, osteogenic activity were observed by Cell Counting Kit-8(CCK-8), Alkaline Phosphatase (ALP) staining, Alizarin Red Staining (RES) and Western Blot. In vitro experiments, CCK-8, ALP and ARS staining results show that the mineralization and osteogenic activity of MC3T3-E1increased significantly after intervention by DFO/Mg-TCP, as well as a higher levels of protein expressions including VEGF, OC, Runx-2 and HIF-1α. In vivo experiment, Micro-CT and Histological analysis evaluation show that DFO/Mg-TCP treatment presented the stronger effect on bone regeneration, bone mineralization and biomaterial degradation, when compared with OVX+Mg-TCP group and OVX+TCP group, as well as a higher VEGF, OC, Runx-2 and HIF-1α gene expression. The present study indicates that treatment with DFO/Mg-TCP was associated with increased regeneration by enhancing the function of osteoblasts in an OVX rat.
AUTHOR Cadle, Rachel and Rogozea, Dan and Moldovan, Leni and Moldovan, Nicanor I.
Title Design and Implementation of Anatomically Inspired Mesenteric and Intestinal Vascular Patterns for Personalized 3D Bioprinting [Abstract]
Year 2022
Journal/Proceedings Applied Sciences
Reftype
DOI/URL URL DOI
Abstract
Recent progress in bioprinting has made possible the creation of complex 3D intestinal constructs, including vascularized villi. However, for their integration into functional units useful for experimentation or implantation, the next challenge is to endow them with a larger-scale, anatomically realistic vasculature. In general, the perfusion of bioprinted constructs has remained difficult, and the current solution is to provide them with mostly linear and simply branched channels. To address this limitation, here we demonstrated an image analysis-based workflow leading through computer-assisted design from anatomic images of rodent mesentery and colon to the actual printing of such patterns with paste and hydrogel bioinks. Moreover, we reverse-engineered the 2D intestinal image-derived designs into cylindrical objects, and 3D-printed them in a support hydrogel. These results open the path towards generation of more realistically vascularized tissue constructs for a variety of personalized medicine applications.
AUTHOR Cadle, Rachel and Rogozea, Dan and Moldovan, Leni and Moldovan, Nicanor I.
Title Design and Implementation of Anatomically Inspired Mesenteric and Intestinal Vascular Patterns for Personalized 3D Bioprinting [Abstract]
Year 2022
Journal/Proceedings Applied Sciences
Reftype
DOI/URL URL DOI
Abstract
Recent progress in bioprinting has made possible the creation of complex 3D intestinal constructs, including vascularized villi. However, for their integration into functional units useful for experimentation or implantation, the next challenge is to endow them with a larger-scale, anatomically realistic vasculature. In general, the perfusion of bioprinted constructs has remained difficult, and the current solution is to provide them with mostly linear and simply branched channels. To address this limitation, here we demonstrated an image analysis-based workflow leading through computer-assisted design from anatomic images of rodent mesentery and colon to the actual printing of such patterns with paste and hydrogel bioinks. Moreover, we reverse-engineered the 2D intestinal image-derived designs into cylindrical objects, and 3D-printed them in a support hydrogel. These results open the path towards generation of more realistically vascularized tissue constructs for a variety of personalized medicine applications.
AUTHOR Cadle, Rachel and Rogozea, Dan and Moldovan, Leni and Moldovan, Nicanor I.
Title Design and Implementation of Anatomically Inspired Mesenteric and Intestinal Vascular Patterns for Personalized 3D Bioprinting [Abstract]
Year 2022
Journal/Proceedings Applied Sciences
Reftype
DOI/URL URL DOI
Abstract
Recent progress in bioprinting has made possible the creation of complex 3D intestinal constructs, including vascularized villi. However, for their integration into functional units useful for experimentation or implantation, the next challenge is to endow them with a larger-scale, anatomically realistic vasculature. In general, the perfusion of bioprinted constructs has remained difficult, and the current solution is to provide them with mostly linear and simply branched channels. To address this limitation, here we demonstrated an image analysis-based workflow leading through computer-assisted design from anatomic images of rodent mesentery and colon to the actual printing of such patterns with paste and hydrogel bioinks. Moreover, we reverse-engineered the 2D intestinal image-derived designs into cylindrical objects, and 3D-printed them in a support hydrogel. These results open the path towards generation of more realistically vascularized tissue constructs for a variety of personalized medicine applications.
AUTHOR Geevarghese, Rency and Somasekharan, Lakshmi T. and Bhatt, Anugya and Kasoju, Naresh and Nair, Renjith P.
Title Development and evaluation of a multicomponent bioink consisting of alginate, gelatin, diethylaminoethyl cellulose and collagen peptide for 3D bioprinting of tissue construct for drug screening application [Abstract]
Year 2022
Journal/Proceedings International Journal of Biological Macromolecules
Reftype
DOI/URL URL DOI
Abstract
Three dimensional (3D) bioprinting technology has been making a progressive advancement in the field of tissue engineering to produce tissue constructs that mimic the shape, framework, and microenvironment of an organ. The technology has not only paved the way to organ development but has been widely studied for its application in drug and cosmetic testing using 3D bioprinted constructs. However, not much has been explored on the utilization of bioprinting technology for the development of tumor models to test anti-cancer drug efficacy. The conventional methodology involves a two dimensional (2D) monolayer model to test cellular drug response which has multiple limitations owing to its inability to mimic the natural tissue environment. The choice of bioink for 3D bioprinting is critical as cell morphology and proliferation depend greatly on the property of bioink. In this study, we developed a multicomponent bioink composed of alginate, diethylaminoethyl cellulose, gelatin, and collagen peptide to generate a 3D bioprinted construct. The bioink has been characterised and validated for its printability, shape fidelity and biocompatibility to be used for generating tumor models. Further, a bioprinted tumor model was developed using lung cancer cell line and the efficacy of 3D printed construct for drug screening application was established.
AUTHOR Curti, Filis and Serafim, Andrada and Olaret, Elena and Dinescu, Sorina and Samoila, Iuliana and Vasile, Bogdan Stefan and Iovu, Horia and Lungu, Adriana and Stancu, Izabela Cristina and Marinescu, Rodica
Title Development of Biocomposite Alginate-Cuttlebone-Gelatin 3D Printing Inks Designed for Scaffolds with Bone Regeneration Potential [Abstract]
Year 2022
Journal/Proceedings Marine Drugs
Reftype
DOI/URL URL DOI
Abstract
Fabrication of three-dimensional (3D) scaffolds using natural biomaterials introduces valuable opportunities in bone tissue reconstruction and regeneration. The current study aimed at the development of paste-like 3D printing inks with an extracellular matrix-inspired formulation based on marine materials: sodium alginate (SA), cuttlebone (CB), and fish gelatin (FG). Macroporous scaffolds with microporous biocomposite filaments were obtained by 3D printing combined with post-printing crosslinking. CB fragments were used for their potential to stimulate biomineralization. Alginate enhanced CB embedding within the polymer matrix as confirmed by scanning electron microscopy (ESEM) and micro-computer tomography (micro-CT) and improved the deformation under controlled compression as revealed by micro-CT. SA addition resulted in a modulation of the bulk and surface mechanical behavior, and lead to more elongated cell morphology as imaged by confocal microscopy and ESEM after the adhesion of MC3T3-E1 preosteoblasts at 48 h. Formation of a new mineral phase was detected on the scaffold’s surface after cell cultures. All the results were correlated with the scaffolds’ compositions. Overall, the study reveals the potential of the marine materials-containing inks to deliver 3D scaffolds with potential for bone regeneration applications.
AUTHOR Ramakrishnan, Rashmi and Kasoju, Naresh and Raju, Riya and Geevarghese, Rency and Gauthaman, Ashna and Bhatt, Anugya
Title Exploring the Potential of Alginate-Gelatin-Diethylaminoethyl Cellulose-Fibrinogen based Bioink for 3D Bioprinting of Skin Tissue Constructs [Abstract]
Year 2022
Journal/Proceedings Carbohydrate Polymer Technologies and Applications
Reftype
DOI/URL URL DOI
Abstract
Designing printable bioinks for 3D bioprinting capable of supporting cellular viability with post-printing functionality remains challenging. Native ECM offers several physical, chemical, and biological cues that are difficult to restore using only a single component. Herein, we have optimized a multicomponent-based bioink formulation comprising alginate (ALG), gelatin (GEL), diethylaminoethyl cellulose (DCEL) and fibrinogen (FIB), termed as ALG-GEL-DCEL-FIB bioink for potential application in bioprinting and biofabrication of skin tissue equivalents. The designed formulation was extensively studied for its printability, physico-chemical, rheological, and biocompatibility properties. Excellent printability, shape fidelity and cell-laden tissue equivalent printing were established using the RegenHu 3D Discovery Bioprinter. The human primary fibroblast and keratinocyte-laden bioprinted constructs exhibited good cell viability. Long term culture of 4 weeks comprising 5 days of air-liquid-interphase followed by 21 days of submerged culture produced biomimetic tissue histology in the ALG-GEL-DCEL-FIB bioink printed constructs. Specific epidermal-dermal marker expressions proving functionality were evident in immunohistochemical, biochemical and gene expression analysis. The ALG-GEL-DCEL-FIB bioink may be explored further for potential biofabrication and therapeutic applications.
AUTHOR Rahimnejad, Maedeh and Adoungotchodo, Atma and Demarquette, Nicole R. and Lerouge, Sophie
Title FRESH bioprinting of biodegradable chitosan thermosensitive hydrogels [Abstract]
Year 2022
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Thermosensitive chitosan (CH)-based hydrogels prepared with a mix of sodium bicarbonate and β-glycerophosphate as gelling agents rapidly pass from a liquid at room temperature to a mechanically strong solid at body temperature without any crosslinker. They show excellent potential for tissue engineering applications and could be interesting candidates for bioprinting. Unfortunately, since gelation is not instantaneous, formulations compatible with cell encapsulation (chitosan concentrations around 2% or lower) lead to very poor resolution and fidelity due to filament spreading. Here, we investigate the FRESH bioprinting approach with a warm sacrificial support bath, to overcome these limitations and enhance their bioprintability. First, a support bath, made of Pluronic including sodium chloride salt as a rheology modifier agent, was designed to meet the specific physical state requirements (solid at 37 °C and liquid at room temperature) and rheological properties appropriate for bioprinting. This support bath presented yield stress of over 100 Pa, a shear thinning behavior, and fast self-healing during cyclic recovery tests. Three different chitosan hydrogels (CH2%w/v, CH3%w/v, and a mixture of CH and gelatin) were tested for their ability to form filament and 3D structures, with and without a support bath. Both the resolution and mechanical properties of the printed structure were drastically enhanced using the FRESH method, with an approximate four fold decrease of the filament diameter which is close to the needle diameter. The printed structures were easily harvested without altering their shape by cooling down the support bath, and do not swell when immersed in PBS. Live/dead assays confirmed that the viability of encapsulated mesenchymal stem cells was highest in CH2% and that the support bath-assisted bioprinting process did not adversely impact cell viability. This study demonstrates that using a warm FRESH-like approach drastically enhances the potential for bioprinting of the thermosensitive biodegradable chitosan hydrogels and opens up a wide range of applications for 3D models and tissue engineering.
AUTHOR Lee, Hanna and Kim, Soon Hee and Lee, Ji Seung and Lee, Young Jin and Lee, Ok Joo and Ajiteru, Olatunji and Sultan, Md Tipu and Lee, Suk Woo and Park, Chan Hum
Title Functional Skeletal Muscle Regeneration Using Muscle Mimetic Tissue Fabricated by Microvalve-Assisted Coaxial 3D Bioprinting [Abstract]
Year 2022
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract 3D-printed artificial skeletal muscle, which mimics the structural and functional characteristics of native skeletal muscle, is a promising treatment method for muscle reconstruction. Although various fabrication techniques for skeletal muscle using 3D bio-printers are studied, it is still challenging to build a functional muscle structure. A strategy using microvalve-assisted coaxial 3D bioprinting in consideration of functional skeletal muscle fabrication is reported. The unit (artificial muscle fascicle: AMF) of muscle mimetic tissue is composed of a core filled with medium-based C2C12 myoblast aggregates as a role of muscle fibers and a photo cross-linkable hydrogel-based shell as a role of connective tissue in muscles that enhances printability and cell adhesion and proliferation. Especially, a microvalve system is applied for the core part with even cell distribution and strong cell–cell interaction. This system enhances myotube formation and consequently shows spontaneous contraction. A multi-printed AMF (artificial muscle tissue: AMT) as a piece of muscle is implanted into the anterior tibia (TA) muscle defect site of immunocompromised rats. As a result, the TA-implanted AMT responds to electrical stimulation and represents histologically regenerated muscle tissue. This microvalve-assisted coaxial 3D bioprinting shows a significant step forward to mimicking native skeletal muscle tissue.
AUTHOR Li, Ming-Chia and Chang, Pu-Yuan and Luo, Huai-Rou and Chang, Ling-Yuan and Lin, Chuan-Yi and Yang, Chih-Yu and Lee, Oscar Kuang-Sheng and Lee, Yan-Hwa Wu and Tarng, Der-Cherng
Title Functioning tailor-made 3D-printed vascular graft for hemodialysis [Abstract]
Year 2022
Journal/Proceedings The Journal of Vascular Access
Reftype
DOI/URL DOI
Abstract
Background:The two ends of arteriovenous graft (AVG) are anastomosed to the upper limb vessels by surgery for hemodialysis therapy. However, the size of upper limb vessels varies to a large extent among different individuals.Methods:According to the shape and size of neck vessels quantified from the preoperative computed tomography angiographic scan, the ethylene-vinyl acetate (EVA)-based AVG was produced in H-shape by the three-dimensional (3D) printer and then sterilized. This study investigated the function of this novel 3D-printed AVG in vitro and in vivo.Results:This 3D-printed AVG can be implanted in the rabbit’s common carotid artery and common jugular vein with ease and functions in vivo. The surgical procedure was quick, and no suture was required. The blood loss was minimal, and no hematoma was noted at least 1 week after the surgery. The blood flow velocity within the implanted AVG was 14.9 ± 3.7 cm/s. Additionally, the in vitro characterization experiments demonstrated that this EVA-based biomaterial is biocompatible and possesses a superior recovery property than ePTFE after hemodialysis needle cannulation.Conclusions:Through the 3D printing technology, the EVA-based AVG can be tailor-made to fit the specific vessel size. This kind of 3D-printed AVG is functioning in vivo, and our results realize personalized vascular implants. Further large-animal studies are warranted to examine the long-term patency.
AUTHOR Yan Li and Lijing Huang and Guangpin Tai and Feifei Yan and Lin Cai and Chenxing Xin and Shamoon {Al Islam}
Title Graphene Oxide-loaded magnetic nanoparticles within 3D hydrogel form High-performance scaffolds for bone regeneration and tumour treatment [Abstract]
Year 2022
Journal/Proceedings Composites Part A: Applied Science and Manufacturing
Reftype
DOI/URL URL DOI
Abstract
The treatment of tumour-related bone defects should ideally combine bone regeneration with tumour treatment. Additive manufacturing (AM) could feasibly place functional bone-repair materials within composite materials with functional-grade structures, giving them bone repair and anti-tumour effects. Magnetothermal therapy is a promising non-invasive method of tumour treatment that has attracted increasing attention. In this study, we prepared novel hydrogel composite scaffolds of polyvinyl alcohol/sodium alginate/hydroxyapatite (PVA/SA/HA) at low temperature via AM. The scaffolds were loaded with various concentrations of magnetic graphene oxide (MGO) @Fe3O4 nanoparticles. The scaffolds were characterised by fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and thermal gravimetric analysis (TGA), which showed that the scaffolds have good moulding qualities and strong hydrogen bonding between the MGO/PVA/SA/HA components. TGA analysis demonstrated the expected thermal stability of the MGO and scaffolds. Thermal effects can be adjusted by varying the contents of MGO and the strength of an external alternating magnetic field. The prepared MGO hydrogel composite scaffolds enhance biological functions and support bone mesenchymal stem cell differentiation in vitro. The scaffolds also show favourable anti-tumour characteristics with effective magnetothermal conversion in vivo.
AUTHOR Liu, Chuan and Campbell, Scott B. and Li, Jianzhao and Bannerman, Dawn and Pascual-Gil, Simon and Kieda, Jennifer and Wu, Qinghua and Herman, Peter R. and Radisic, Milica
Title High Throughput Omnidirectional Printing of Tubular Microstructures from Elastomeric Polymers [Abstract]
Year 2022
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Bioelastomers have been extensively used in biomedical applications due to their desirable mechanical strength, tunable properties, and chemical versatility; however, 3D printing bioelastomers into microscale structures has proven elusive. Herein, a high throughput omnidirectional printing approach via coaxial extrusion is described that fabricated perfusable elastomeric microtubes of unprecedently small inner diameter (350-550 μm) and wall thickness (40-60 μm). The versatility of this approach was shown through the printing of two different polymeric elastomers, followed by photocrosslinking and removal of the fugitive inner phase. Designed experiments were used to tune the dimensions and stiffness of the microtubes to match that of native ex vivo rat vasculature. This approach afforded the fabrication of multiple biomimetic shapes resembling cochlea and kidney glomerulus and afforded facile, high-throughput generation of perfusable structures that can be seeded with endothelial cells for biomedical applications. Post-printing laser micromachining was performed to generate numerous micro-sized holes (5-20 μm) in the tube wall to tune microstructure permeability. Importantly, for organ-on-a-chip applications, the described approach took only 3.6 minutes to print microtubes (without microholes) over an entire 96-well plate device, in contrast to comparable hole-free structures that take between 1.5 to 6.5 days to fabricate using a manual 3D stamping approach. This article is protected by copyright. All rights reserved
AUTHOR Bedell, Matthew L. and Torres, Angelica L. and Hogan, Katie J. and Wang, Ziwen and Wang, Bonnie and Melchiorri, Anthony J. and Grande-Allen, K. Jane and Mikos, Antonios G.
Title Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting [Abstract]
Year 2022
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
The investigation of novel hydrogel systems allows for the study of relationships between biomaterials, cells, and other factors within osteochondral tissue engineering. Three-dimensional (3D) printing is a popular research method that can allow for further interrogation of these questions via the fabrication of 3D hydrogel environments that mimic tissue-specific, complex architectures. However, the adaptation of promising hydrogel biomaterial systems into 3D-printable bioinks remains a challenge. Here, we delineated an approach to that process. First, we characterized a novel methacryloylated gelatin composite hydrogel system and assessed how calcium phosphate and glycosaminoglycan additives upregulated bone- and cartilage-like matrix deposition and certain genetic markers of differentiation within human mesenchymal stem cells (hMSCs), such as RUNX2 and SOX9. Then, new assays were developed and utilized to study the effects of xanthan gum and nanofibrillated cellulose, which allowed for cohesive fiber deposition, reliable droplet formation, and non-fracturing digital light processing (DLP)-printed constructs within extrusion, inkjet, and DLP techniques, respectively. Finally, these bioinks were used to 3D print constructs containing viable encapsulated hMSCs over a 7 d period, where DLP printed constructs facilitated the highest observed increase in cell number over 7 d (∼2.4×). The results presented here describe the promotion of osteochondral phenotypes via these novel composite hydrogel formulations, establish their ability to bioprint viable, cell-encapsulating constructs using three different 3D printing methods on multiple bioprinters, and document how a library of modular bioink additives affected those physicochemical properties important to printability.
AUTHOR Girardeau-Hubert, Sarah and Lynch, Barbara and Zuttion, Francesca and Label, Rabab and Rayee, Chrystelle and Brizion, Sébastien and Ricois, Sylvie and Martinez, Anthony and Park, Eunhye and Kim, Changhwan and Marinho, Paulo André and Shim, Jin-Hyung and Jin, Songwan and Rielland, Maïté and Soeur, Jérémie
Title Impact of microstructure on cell behavior and tissue mechanics in collagen and dermal decellularized extra-cellular matrices [Abstract]
Year 2022
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
Skin models are used for many applications such as research and development or grafting. Unfortunately, most lack a proper microenvironment producing poor mechanical properties and inaccurate extra-cellular matrix composition and organization. In this report we focused on mechanical properties, extra-cellular matrix organization and cell interactions in human skin samples reconstructed with pure collagen or dermal decellularized extra-cellular matrices (S-dECM) and compared them to native human skin. We found that Full-thickness S-dECM samples presented stiffness two times higher than collagen gel and similar to ex vivo human skin, and proved for the first time that keratinocytes also impact dermal mechanical properties. This was correlated with larger fibers in S-dECM matrices compared to collagen samples and with a differential expression of F-actin, vinculin and tenascin C between S-dECM and collagen samples. This is clear proof of the microenvironment's impact on cell behaviors and mechanical properties. Statement of significance In vitro skin models have been used for a long time for clinical applications or in vitro knowledge and evaluation studies. However, most lack a proper microenvironment producing a poor combination of mechanical properties and appropriate biological outcomes, partly due to inaccurate extra-cellular matrix (ECM) composition and organization. This can lead to limited predictivity and weakness of skin substitutes after grafting. This study shows, for the first time, the importance of a complex and rich microenvironment on cell behaviors, matrix macro- and micro-organization and mechanical properties. The increased composition and organization complexity of dermal skin decellularized extra-cellular matrix populated with differentiated cells produces in vitro skin models closer to native human skin physiology.
AUTHOR Wang, Chenmin and Honiball, John Robert and Lin, Junyu and Xia, Xingyu and Lau, Dzi Shing Aaron and Chen, Bo and Deng, Lianfu and Lu, William Weijia
Title Infiltration from Suspension Systems Enables Effective Modulation of 3D Scaffold Properties in Suspension Bioprinting [Abstract]
Year 2022
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
Abstract
Bioprinting is a biofabrication technology which allows efficient and large-scale manufacture of 3D cell culture systems. However, the available biomaterials for bioinks used in bioprinting are limited by their printability and biological functionality. Fabricated constructs are often homogeneous and have limited complexity in terms of current 3D cell culture systems comprising multiple cell types. Inspired by the phenomenon that hydrogels can exchange liquids under the infiltration action, infiltration-induced suspension bioprinting (IISBP), a novel printing technique based on a hyaluronic acid (HA) suspension system to modulate the properties of the printed scaffolds by infiltration action, was described in this study. HA served as a suspension system due to its shear-thinning and self-healing rheological properties, simplicity of preparation, reusability, and ease of adjustment to osmotic pressure. Changes in osmotic pressure were able to direct the swelling or shrinkage of 3D printed gelatin methacryloyl (GelMA)-based bioinks, enabling the regulation of physical properties such as fiber diameter, micromorphology, mechanical strength, and water absorption of 3D printed scaffolds. Human umbilical vein endothelial cells (HUVEC) were applied as a cell culture model and printed within cell-laden scaffolds at high resolution and cell viability with the IISBP technique. Herein, the IISBP technique had been realized as a reliable hydrogel-based bioprinting technique, which enabled facile modulation of 3D printed hydrogel scaffolds properties, being expected to meet the scaffolds requirements of a wide range of cell culture conditions to be utilized in bioprinting applications.
AUTHOR Hou, Yanhao and Wang, Weiguang and Bartolo, Paulo
Title Investigation of polycaprolactone for bone tissue engineering scaffolds: in vitro degradation and biological studies [Abstract]
Year 2022
Journal/Proceedings Materials & Design
Reftype
DOI/URL URL DOI
Abstract
Polycaprolactone (PCL) is one of the most recognized polymeric materials used for bone tissue engineering scaffold fabrication. This study aims to evaluate the effects of the molecular weight (Mn) of PCL on the degradation kinematics, surface, microstructural, thermal, mechanical, and biological properties of 3D printed bone scaffolds. Surface properties were investigated considering water-in-air contact angle and nanoindentation tests, while morphological characteristics and degradation kinematics (accelerated degradation tests) were examined using scanning electron microscopy (SEM), pairing with thermal and mechanical properties monitored at each considered time point. A set of mathematical equations describing the variation of fiber diameter, porosity, mechanical properties, and weight, as a function of molecular weight and degradation time, were obtained based on the experimental results. Human adipose-derived stem cells (hADSCs) proliferation and differentiation tests were also conducted using in vitro colorimetric assay. All results indicated that molecular weight had impacts on the surface, mechanical and biological properties of PCL scaffolds, while no significant effects were observed on the degradation rate. Scaffolds with lower molecular weight presented better bio-mechanical properties. These findings provide useful information for the design of polymeric bone tissue engineering scaffolds.
AUTHOR Lai, Jiahui and Wang, Chong and Liu, Jia and Chen, Shangsi and Liu, Chaoyu and Huang, Xiangxuan and Wu, Jing and Pan, Yue and Xie, Yuancai and Wang, Min
Title Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with in situ delivery of osteogenic peptide and mesenchymal stem cells [Abstract]
Year 2022
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Compared to other conventional scaffold fabrication techniques, three-dimensional (3D) printing is advantageous in producing bone tissue engineering scaffolds with customized shape, tailored pore size/porosity, required mechanical properties and even desirable biomolecule delivery capability. However, for scaffolds with a large volume, it is highly difficult to get seeded cells to migrate to the central region of the scaffolds, resulting in an inhomogeneous cell distribution and therefore lowering the bone forming ability. To overcome this major obstacle, in this study, cell-laden bone tissue engineering scaffolds consisting of osteogenic peptide (OP) loaded β-tricalcium phosphate (TCP)/poly(lactic-co-glycolic acid) (PLGA) (OP/TCP/PLGA, designated as OTP) nanocomposite struts and rat bone marrow derived mesenchymal stem cell (rBMSC)-laden gelatin/GelMA hydrogel rods were produced through ‘dual-nozzle’ low temperature hybrid 3D printing. The cell-laden scaffolds exhibited a bi-phasic structure and had a mechanical modulus of about 19.6 MPa, which was similar to that of human cancellous bone. OP can be released from the hybrid scaffolds in a sustained manner and achieved a cumulative release level of about 78% after 24 d. rBMSCs encapsulated in the hydrogel rods exhibited a cell viability of about 87.4% right after low temperature hybrid 3D printing and could be released from the hydrogel rods to achieve cell anchorage on the surface of adjacent OTP struts. The OP released from OTP struts enhanced rBMSCs proliferation. Compared to rBMSC-laden hybrid scaffolds without OP incorporation, the rBMSC-laden hybrid scaffolds incorporated with OP significantly up-regulated osteogenic differentiation of rBMSCs by showing a higher level of alkaline phosphatase expression and calcium deposition. This ‘proof-of-concept’ study has provided a facile method to form cell-laden bone tissue engineering scaffolds with not only required mechanical strength, biomimetic structure and sustained biomolecule release profile but also excellent cell delivery capability with uniform cell distribution, which can improve the bone forming ability in the body.
AUTHOR Włodarczyk-Biegun, Małgorzata K. and Villiou, Maria and Koch, Marcus and Muth, Christina and Wang, Peixi and Ott, Jenna and del Campo, Aranzazu
Title Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork [Abstract]
Year 2022
Journal/Proceedings ACS Biomaterials Science & Engineering
Reftype
DOI/URL DOI
Abstract
The permeability of the human trabecular meshwork (HTM) regulates eye pressure via a porosity gradient across its thickness modulated by stacked layers of matrix fibrils and cells. Changes in HTM porosity are associated with increases in intraocular pressure and the progress of diseases such as glaucoma. Engineered HTMs could help to understand the structure–function relation in natural tissues and lead to new regenerative solutions. Here, melt electrowriting (MEW) is explored as a biofabrication technique to produce fibrillar, porous scaffolds that mimic the multilayer, gradient structure of native HTM. Poly(caprolactone) constructs with a height of 125–500 μm and fiber diameters of 10–12 μm are printed. Scaffolds with a tensile modulus between 5.6 and 13 MPa and a static compression modulus in the range of 6–360 kPa are obtained by varying the scaffold design, that is, the density and orientation of the fibers and number of stacked layers. Primary HTM cells attach to the scaffolds, proliferate, and form a confluent layer within 8–14 days, depending on the scaffold design. High cell viability and cell morphology close to that in the native tissue are observed. The present work demonstrates the utility of MEW for reconstructing complex morphological features of natural tissues.
AUTHOR Abbasi, Akram and Imaichi, Sachiko and Ling, Vincent and Shukla, Anita
Title Mesenchymal Stem Cell Behavior on Soft Hydrogels with Aligned Surface Topographies [Abstract]
Year 2022
Journal/Proceedings ACS Appl. Bio Mater.
Reftype
DOI/URL DOI
Abstract
Human mesenchymal stem cells (HMSCs) are important for cell-based therapies. However, the success of HMSC therapy requires large-scale in vitro expansion of these multipotent cells. The traditional expansion of HMSCs on tissue-culture-treated stiff polystyrene induces significant changes in their shape, multipotency, and secretome, leading to early senescence and subdued paracrine activity. To enhance their therapeutic potential, here, we have developed two-dimensional soft hydrogels with imprinted microscale aligned grooves for use as HMSC culture substrates. We showed that, depending on the dimensions of the topographical features, these substrates led to lower cellular spreading and cytoskeletal tension, maintaining multipotency and osteogenic and adipogenic differentiate potential, while lowering cellular senescence. We also observed a greater capacity of HMSCs to produce anti-inflammatory cytokines after short-term priming on these hydrogel substrates. Overall, these soft hydrogels with unique surface topography have shown great promise as in vitro culture substrates to maximize the therapeutic potential of HMSCs.
AUTHOR Bucciarelli, Alessio and Petretta, Mauro and Grigolo, Brunella and Gambari, Laura and Bossi, Alessandra Maria and Grassi, Francesco and Maniglio, Devid
Title Methacrylated Silk Fibroin Additive Manufacturing of Shape Memory Constructs with Possible Application in Bone Regeneration [Abstract]
Year 2022
Journal/Proceedings Gels
Reftype
DOI/URL URL DOI
Abstract
Methacrylated silk (Sil-MA) is a chemically modified silk fibroin specifically designed to be crosslinkable under UV light, which makes this material applicable in additive manufacturing techniques and allows the prototyping and development of patient-specific 2D or 3D constructs. In this study, we produced a thin grid structure based on crosslinked Sil-MA that can be withdrawn and ejected and that can recover its shape after rehydration. A complete chemical and physical characterization of Sil-MA was first conducted. Additionally, we tested Sil-MA biocompatibility according to the International Standard Organization protocols (ISO 10993) ensuring the possibility of using it in future trials. Sil-MA was also tested to verify its ability to support osteogenesis. Overall, Sil-MA was shown to be biocompatible and osteoconductive. Finally, two different additive manufacturing technologies, a Digital Light Processing (DLP) UV projector and a pneumatic extrusion technique, were used to develop a Sil-MA grid construct. A proof-of-concept of its shape-memory property was provided. Together, our data support the hypothesis that Sil-MA grid constructs can be injectable and applicable in bone regeneration applications.
AUTHOR Sarmin, Atiya M. and El Moussaid, Nadia and Suntornnond, Ratima and Tyler, Eleanor J. and Kim, Yang-Hee and Di Cio, Stefania and Megone, William V. and Pearce, Oliver and Gautrot, Julien E. and Dawson, Jonathan and Connelly, John T.
Title Multi-Scale Analysis of the Composition, Structure, and Function of Decellularized Extracellular Matrix for Human Skin and Wound Healing Models [Abstract]
Year 2022
Journal/Proceedings Biomolecules
Reftype
DOI/URL URL DOI
Abstract
The extracellular matrix (ECM) is a complex mixture of structural proteins, proteoglycans, and signaling molecules that are essential for tissue integrity and homeostasis. While a number of recent studies have explored the use of decellularized ECM (dECM) as a biomaterial for tissue engineering, the complete composition, structure, and mechanics of these materials remain incompletely understood. In this study, we performed an in-depth characterization of skin-derived dECM biomaterials for human skin equivalent (HSE) models. The dECM materials were purified from porcine skin, and through mass spectrometry profiling, we quantified the presence of major ECM molecules, including types I, III, and VI collagen, fibrillin, and lumican. Rheological analysis demonstrated the sol-gel and shear-thinning properties of dECM materials, indicating their physical suitability as a tissue scaffold, while electron microscopy revealed a complex, hierarchical structure of nanofibers in dECM hydrogels. The dECM materials were compatible with advanced biofabrication techniques, including 3D printing within a gelatin microparticle support bath, printing with a sacrificial material, or blending with other ECM molecules to achieve more complex compositions and structures. As a proof of concept, we also demonstrate how dECM materials can be fabricated into a 3D skin wound healing model using 3D printing. Skin-derived dECM therefore represents a complex and versatile biomaterial with advantageous properties for the fabrication of next-generation HSEs.
AUTHOR Daskalakis, Evangelos and Huang, Boyang and Vyas, Cian and Acar, Anil Ahmet and Fallah, Ali and Cooper, Glen and Weightman, Andrew and Koc, Bahattin and Blunn, Gordon and Bartolo, Paulo
Title Novel 3D Bioglass Scaffolds for Bone Tissue Regeneration [Abstract]
Year 2022
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
The design of scaffolds with optimal biomechanical properties for load-bearing applications is an important topic of research. Most studies have addressed this problem by focusing on the material composition and not on the coupled effect between the material composition and the scaffold architecture. Polymer–bioglass scaffolds have been investigated due to the excellent bioactivity properties of bioglass, which release ions that activate osteogenesis. However, material preparation methods usually require the use of organic solvents that induce surface modifications on the bioglass particles, compromising the adhesion with the polymeric material thus compromising mechanical properties. In this paper, we used a simple melt blending approach to produce polycaprolactone/bioglass pellets to construct scaffolds with pore size gradient. The results show that the addition of bioglass particles improved the mechanical properties of the scaffolds and, due to the selected architecture, all scaffolds presented mechanical properties in the cortical bone region. Moreover, the addition of bioglass indicated a positive long-term effect on the biological performance of the scaffolds. The pore size gradient also induced a cell spreading gradient.
AUTHOR Staubli, Flurina and Stoddart, Martin J. and D'Este, Matteo and Schwab, Andrea
Title Pre-culture of human mesenchymal stromal cells in spheroids facilitates chondrogenesis at a low total cell count upon embedding in biomaterials to generate cartilage microtissues [Abstract]
Year 2022
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
Material-assisted cartilage tissue engineering has limited application in cartilage treatment due to hypertrophic tissue formation and high cell counts required. This study aimed at investigating the potential of human mesenchymal stromal cell (hMSC) spheroids embedded in biomaterials to study the effect of biomaterial composition on cell differentiation. Pre-cultured (3 days, chondrogenic differentiation media) spheroids (250 cells/spheroid) were embedded in tyramine-modified hyaluronic acid (THA) and collagen type I (Col) composite hydrogels (four combinations of THA (12.5 vs 16.7 mg/ml) and Col (2.5 vs 1.7 mg/ml) content) at a cell density of 5 × 106 cells/ml (2 × 104 spheroids/ml). Macropellets derived from single hMSCs (2.5 × 105 cells, ScMP) or hMSC spheroids (2.5 × 105 cells, 103 spheroids, SpMP) served as control. hMSC differentiation was analyzed using glycosaminoglycan (GAG) quantification, gene expression analysis and (immuno-)histology. Embedding of hMSC spheroids in THA-Col induced chondrogenic differentiation marked by upregulation of aggrecan (ACAN) and COL2A1, and the production of GAGs . Lower THA led to more pronounced chondrogenic phenotype compared to higher THA content. Col content had no significant influence on hMSC chondrogenesis. Pellet cultures showed an upregulation in chondrogenic-associated genes and production of GAGs with less upregulation of hypertrophic-associated genes in SpMP culture compared to ScMP group. This study presents hMSC pre-culture in spheroids as promising approach to study chondrogenic differentiation after biomaterial encapsulation at low total cell count (5 × 106/ml) without compromising chondrogenic matrix production. This approach can be applied to assemble microtissues in biomaterials to generate large cartilage construct. Statement of significance In vitro studies investigating the chondrogenic potential of biomaterials are limited due to the low cell-cell contact of encapsulated single cells. Here, we introduce the use of pre-cultured hMSC spheroids to study chondrogenesis upon encapsulation in a biomaterial. The use of spheroids takes advantage of the high cell-cell contact within each spheroid being critical in the early chondrogenesis of hMSCs. At a low seeding density of 5·106 cells/ml (2 × 104 spheroids/ml) we demonstrated hMSC chondrogenesis and cartilaginous matrix deposition. Our results indicate that the pre-culture might have a beneficial effect on hypertrophic gene expression without compromising chondrogenic differentiation. This approach has shown potential to assemble microtissues (here spheroids) in biomaterials to generate large cartilage constructs and to study the effect of biomaterial composition on cell alignment and migration.
AUTHOR Pai, Roopesh R. and Ajit, Shilpa and Sekar J, Anupama and Nair, Sarath S. and Anil Kumar, P. R. and Velayudhan, Shiny
Title Radical scavenging gelatin methacrylamide based bioink formulation for three dimensional bioprinting of parenchymal liver construct [Abstract]
Year 2022
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Methacrylated gelatin (GelMA) in the form of methacryloyl, methacrylate, and methacrylamide is an established and widely accepted photocrosslinkable bioink, for three dimensional bioprinting of various tissues. One of the limitations of photocrosslinkable bioinks is the inability to control the free radicals generated by photoinitiators and ultraviolet (UV) rays. The presence of excess free radicals compromises the viability and functionality of cells during crosslinking. In this study, ascorbic acid, a known free radical scavenger (FRS) molecule, was introduced into the GelMA bioink formulation to protect the cell viability, proliferation, and tissue functions of 3D bioprinted parenchymal liver constructs. The concentration of FRS in the bioink was optimized and used for 3D bioprinting of HepG2 cells. The results confirmed that the inclusion of 3.4 mM FRS in the GelMA bioink formulation nullified the excess ROS formed inside the cells. Furthermore, the optimized GelMA formulation containing FRS preserved and improved the cell activity, albumin, and urea synthesis in the 3D construct over 7 days in culture. In the future, this concept could be implemented in the biofabrication of large liver constructs that require multiple or longer durations of UV irradiation.
AUTHOR Trossmann, Vanessa T. and Heltmann-Meyer, Stefanie and Amouei, Hanna and Wajant, Harald and Horch, Raymund E. and Steiner, Dominik and Scheibel, Thomas
Title Recombinant Spider Silk Bioinks for Continuous Protein Release by Encapsulated Producer Cells [Abstract]
Year 2022
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
Abstract
Targeted therapies using biopharmaceuticals are of growing clinical importance in disease treatment. Currently, there are several limitations of protein-based therapeutics (biologicals), including suboptimal biodistribution, lack of stability, and systemic side effects. A promising approach to overcoming these limitations could be a therapeutic cell-loaded 3D construct consisting of a suitable matrix component that harbors producer cells continuously secreting the biological of interest. Here, the recombinant spider silk proteins eADF4(C16), eADF4(C16)-RGD, and eADF4(C16)-RGE have been processed together with HEK293 producer cells stably secreting the highly traceable reporter biological TNFR2-Fc-GpL, a fusion protein consisting of the extracellular domain of TNFR2, the Fc domain of human IgG1, and the luciferase of Gaussia princeps as a reporter domain. eADF4(C16) and eADF4(C16)-RGD hydrogels provide structural and mechanical support, promote HEK293 cell growth, and allow fusion protein production by the latter. Bioink-captured HEK293 producer cells continuously release functional TNFR2-Fc-GpL over 14 days. Thus, the combination of biocompatible, printable spider silk bioinks with drug-producing cells is promising for generating implantable 3D constructs for continuous targeted therapy.
AUTHOR Wang, Ruiqi and Deng, Shuai and Wu, Yuping and Wei, Haiying and Jing, Guangping and Zhang, Bosong and Liu, Fengzhen and Tian, Hui and Chen, Xiongbiao and Tian, Weiming
Title Remodelling 3D printed GelMA-HA corneal scaffolds by cornea stromal cells [Abstract]
Year 2022
Journal/Proceedings Colloid and Interface Science Communications
Reftype
DOI/URL URL DOI
Abstract
Engineering scaffolds with a structure mimicking that of native cornea allows for addressing the severe donor shortage for the corneal blindness treatment, which, however, remains challenging. In the light that corneal stromal (CS) cells can play a key role in corneal stroma formation, in this study we incorporated CS cells into three-dimensional (3D) scaffolds printed from hyaluronic acid-modified gelatin-methacrylate (GelMA-HA) scaffolds and characterized the scaffolds in terms of remodeled extracellular matrix (ECM) in vitro. Our results illustrated that the modification of GelMA by HA allowed for 3D printing of corneal scaffolds and further improved the characteristics of primary rabbit-derived corneal stromal cells for remodelling scaffolds. After 60 days, we decellularized the remodeled corneal scaffolds and examined their optical properties; and our results demonstrated that the 3D printed corneal scaffolds provided CS cells with cues that guided them toward the directional and spatial organization and facilitated the ECM remodelling.
AUTHOR Eichholz, Kian and Freeman, Fiona and Pitacco, Pierluca and Nulty, Jessica and Ahern, Daniel and Burdis, Ross and Browe, David and Garcia, Orquidea and Hoey, David and Kelly, Daniel John
Title Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects [Abstract]
Year 2022
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Emerging 3D printing technologies can provide exquisite control over the external shape and internal architecture of scaffolds and tissue engineered constructs, enabling systematic studies to explore how geometric design features influence the regenerative process. Here we used fused deposition modelling (FDM) and melt electrowriting (MEW) to investigate how scaffold microarchitecture influences the healing of large bone defects. FDM was used to fabricate scaffolds with relatively large fibre diameters and low porosities, while MEW was used to fabricate scaffolds with smaller fibre diameters and higher porosities, with both scaffolds being designed to have comparable surface areas. Scaffold microarchitecture significantly influenced the healing response following implantation into critically sized femoral defects in rats, with the FDM scaffolds supporting the formation of larger bone spicules through its pores, while the MEW scaffolds supported the formation of a more round bone front during healing. After 12 weeks in vivo, both MEW and FDM scaffolds supported significantly higher levels of defect vascularisation compared to empty controls, while the MEW scaffolds supported higher levels of new bone formation. Somewhat surprisingly, this superior healing in the MEW group did not correlate with higher levels of angiogenesis, with the FDM scaffold supporting greater total vessel formation and the formation of larger vessels, while the MEW scaffold promoted the formation of a dense microvasculature with minimal evidence of larger vessels infiltrating the defect region. To conclude, the small fibre diameter, high porosity and high specific surface area of the MEW scaffold proved beneficial for osteogenesis and bone regeneration, demonstrating that changes in scaffold architecture enabled by this additive manufacturing technique can dramatically modulate angiogenesis and tissue regeneration without the need for complex exogenous growth factors. These results provide a valuable insight into the importance of 3D printed scaffold architecture when developing new bone tissue engineering strategies.
AUTHOR Liu, Jing and Zhou, Zhengtong and Zhang, Min and Song, Feng and Feng, Chong and Liu, Haochen
Title Simple and robust 3D bioprinting of full-thickness human skin tissue [Abstract]
Year 2022
Journal/Proceedings Bioengineered
Reftype
DOI/URL DOI
Abstract
ABSTRACTArtificial skins have been used as skin substitutes for wound healing in the clinic, and as in vitro models for safety assessment in cosmetic and pharmaceutical industries. The three-dimensional (3D) bioprinting technique provides a promising strategy in the fabrication of artificial skins. Despite the technological advances, many challenges remain to be conquered, such as the complicated preparation conditions for bio-printed skin and the unavailability of stability and robustness of skin bioprinting. Here, we formulated a novel bio-ink composed of gelatin, sodium alginate and fibrinogen. By optimizing the ratio of components in the bio-ink, the design of the 3D model and the printing conditions, a fibroblasts-containing dermal layer construct was firstly fabricated, on the top of which laminin and keratinocytes were sequentially placed. Through air-liquid interface (ALI) culture by virtue of sterile wire mesh, a full-thickness skin tissue was thus prepared. HE and immunofluorescence staining showed that the bio-printed skin was not only morphologically representative of the human skin, but also expressed the specific markers related to epidermal differentiation and stratum corneum formation. The presented easy and robust preparation of full-thickness skin constructs provides a powerful tool for the establishment of artificial skins, holding critical academic significance and application value.
AUTHOR Burdis, Ross and Chariyev-Prinz, Farhad and Browe, David C. and Freeman, Fiona E. and Nulty, Jessica and McDonnell, Emily E. and Eichholz, Kian F. and Wang, Bin and Brama, Pieter and Kelly, Daniel J.
Title Spatial patterning of phenotypically distinct microtissues to engineer osteochondral grafts for biological joint resurfacing [Abstract]
Year 2022
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Modular biofabrication strategies using microtissues or organoids as biological building blocks have great potential for engineering replacement tissues and organs at scale. Here we describe the development of a biofabrication strategy to engineer osteochondral tissues by spatially localising phenotypically distinct cartilage microtissues within an instructive 3D printed polymer framework. We first demonstrate that immature cartilage microtissues can spontaneously fuse to form homogeneous macrotissues, and that combining less cellular microtissues results in superior fusion and the generation of a more hyaline-like cartilage containing higher levels of sulphated glycosaminoglycans and type II collagen. Furthermore, temporally exposing developing microtissues to transforming growth factor-β accelerates their volumetric growth and subsequent capacity to fuse into larger hyaline cartilage grafts. Next, 3D printed polymeric frameworks are used to further guide microtissue fusion and the subsequent self-organisation process, resulting in the development of a macroscale tissue with zonal collagen organisation analogous to the structure seen in native articular cartilage. To engineer osteochondral grafts, hypertrophic cartilage microtissues are engineered as bone precursor tissues and spatially localised below phenotypically stable cartilage microtissues. Implantation of these engineered grafts into critically-sized caprine osteochondral defects results in effective defect stabilisation and histologically supports the restoration of a more normal articular surface after 6 months in vivo. These findings support the use of such modular biofabrication strategies for biological joint resurfacing.
AUTHOR Hatt, Luan P. and Armiento, Angela R. and Mys, Karen and Thompson, Keith and Hildebrand, Maria and Nehrbass, Dirk and Müller, Werner E. G. and Zeiter, Stephan and Eglin, David and Stoddart, Martin J.
Title Standard in vitro evaluations of engineered bone substitutes are not sufficient to predict in vivo preclinical model outcomes [Abstract]
Year 2022
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
Understanding the optimal conditions required for bone healing can have a substantial impact to target the problem of non–unions and large bone defects. The combination of bioactive factors, regenerative progenitor cells and biomaterials to form a tissue engineered (TE) complex is a promising solution but translation to the clinic has been slow. We hypothesized the typical material testing algorithm used is insufficient and leads to materials being mischaracterized as promising. In the first part of this study, human bone marrow – derived mesenchymal stromal cells (hBM-MSCs) were embedded in three commonly used biomaterials (hyaluronic acid methacrylate, gelatin methacrylate and fibrin) and combined with relevant bioactive osteogenesis factors (dexamethasone microparticles and polyphosphate nanoparticles) to form a TE construct that underwent in vitro osteogenic differentiation for 28 days. Gene expression of relevant transcription factors and osteogenic markers, and von Kossa staining were performed. In the second and third part of this study, the same combination of TE constructs were implanted subcutaneously (cell containing) in T cell-deficient athymic Crl:NIH-Foxn1rnu rats for 8 weeks or cell free in an immunocompetent New Zealand white rabbit calvarial model for 6 weeks, respectively. Osteogenic performance was investigated via MicroCT imaging and histology staining. The in vitro study showed enhanced upregulation of relevant genes and significant mineral deposition within the three biomaterials, generally considered as a positive result. Subcutaneous implantation indicates none to minor ectopic bone formation. No enhanced calvarial bone healing was detected in implanted biomaterials compared to the empty defect. The reasons for the poor correlation of in vitro and in vivo outcomes are unclear and needs further investigation. This study highlights the discrepancy between in vitro and in vivo outcomes, demonstrating that in vitro data should be interpreted with extreme caution. In vitro models with higher complexity are necessary to increase value for translational studies. Statement of significance Preclinical testing of newly developed biomaterials is a crucial element of the development cycle. Despite this, there is still significant discrepancy between in vitro and in vivo test results. Within this study we investigate multiple combinations of materials and osteogenic stimulants and demonstrate a poor correlation between the in vitro and in vivo data. We propose rationale for why this may be the case and suggest a modified testing algorithm.
AUTHOR Ma, Jiayi and Wu, Siyu and Liu, Jun and Liu, Chun and Ni, Su and Dai, Ting and Wu, Xiaoyu and Zhang, Zhenyu and Qu, Jixin and Zhao, Hongbin and Zhou, Dong and Zhao, Xiubo
Title Synergistic effects of nanoattapulgite and hydroxyapatite on vascularization and bone formation in a rabbit tibia bone defect model [Abstract]
Year 2022
Journal/Proceedings Biomater. Sci.
Reftype
DOI/URL DOI
Abstract
Hydroxyapatite (HA) is a promising scaffold material for the treatment of bone defects. However{,} the lack of angiogenic properties and undesirable mechanical properties (such as fragility) limits the application of HA. Nanoattapulgite (ATP) is a nature-derived clay mineral and has been proven to be a promising bioactive material for bone regeneration due to its ability to induce osteogenesis. In this study{,} polyvinyl alcohol/collagen/ATP/HA (PVA/COL/ATP/HA) scaffolds were printed. Mouse bone marrow mesenchymal stem/stromal cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) were used in vitro to assess the biocompatibility and the osteogenesis and vascularization induction potentials of the scaffolds. Subsequently{,} in vivo micro-CT and histological staining were carried out to evaluate new bone formation in a rabbit tibial defect model. The in vitro results showed that the incorporation of ATP increased the printing fidelity and mechanical properties{,} with values of compressive strengths up to 200% over raw PC-H scaffolds. Simultaneously{,} the expression levels of osteogenic-related genes and vascularization-related genes were significantly increased after the incorporation of ATP. The in vivo results showed that the PVA/COL/ATP/HA scaffolds exhibited synergistic effects on promoting vascularization and bone formation. The combination of ATP and HA provides a promising strategy for vascularized bone tissue engineering.
AUTHOR Salar Amoli, Mehdi and Anand, Resmi and EzEldeen, Mostafa and Amorim, Paulo Alexandre and Geris, Liesbet and Jacobs, Reinhilde and Bloemen, Veerle
Title The development of a 3D printable chitosan-based copolymer with tunable properties for dentoalveolar regeneration [Abstract]
Year 2022
Journal/Proceedings Carbohydrate Polymers
Reftype
DOI/URL URL DOI
Abstract
Dentoalveolar tissue engineering is an emerging yet challenging field, considering the lack of suitable materials and difficulty to produce patient-specific hydrogel scaffolds. The present paper aims to produce a 3D printable and tuneable biomaterial by copolymerizing a synthesized water-soluble chitosan derivative called maleic anhydride grafted chitosan (MA-C) with gelatin using genipin, a natural crosslinking agent. Development and testing of this material for 3D printing, degradation, and swelling demonstrated the ability to fabricate scaffolds with controlled physical properties based on pre-determined designs. The MA-C-gelatin copolymer demonstrated excellent biocompatibility, which was verified by analyzing the viability, growth and proliferation of human dental pulp stem cells seeded on MA-C-gelatin constructs through live/dead, alamar blue and DNA quantification assays. Based on the present findings, the proposed material might be a suitable candidate for dentoalveolar tissue engineering, while further research is required to achieve this goal.
AUTHOR Anderson, Margaret and Dubey, Nileshkumar and Bogie, Kath and Cao, Chen and Li, Junying and Lerchbacker, Joseph and Mendonça, Gustavo and Kauffmann, Frederic and Bottino, Marco C. and Kaigler, Darnell
Title Three-dimensional printing of clinical scale and personalized calcium phosphate scaffolds for alveolar bone reconstruction [Abstract]
Year 2022
Journal/Proceedings Dental Materials
Reftype
DOI/URL URL DOI
Abstract
Objective Alveolar bone defects can be highly variable in their morphology and, as the defect size increases, they become more challenging to treat with currently available therapeutics and biomaterials. This investigation sought to devise a protocol for fabricating customized clinical scale and patient-specific, bioceramic scaffolds for reconstruction of large alveolar bone defects. Methods Two types of calcium phosphate (CaP)-based bioceramic scaffolds (alginate/β-TCP and hydroxyapatite/α-TCP, hereafter referred to as hybrid CaP and Osteoink™, respectively) were designed, 3D printed, and their biocompatibility with alveolar bone marrow stem cells and mechanical properties were determined. Following scaffold optimization, a workflow was developed to use cone beam computed tomographic (CBCT) imaging to design and 3D print, defect-specific bioceramic scaffolds for clinical-scale bone defects. Results Osteoink™ scaffolds had the highest compressive strength when compared to hybrid CaP with different infill orientation. In cell culture medium, hybrid CaP degradation resulted in decreased pH (6.3) and toxicity to stem cells; however, OsteoInk™ scaffolds maintained a stable pH (7.2) in culture and passed the ISO standard for cytotoxicity. Finally, a clinically feasible laboratory workflow was developed and evaluated using CBCT imaging to engineer customized and defect-specific CaP scaffolds using OsteoInk™. It was determined that printed scaffolds had a high degree of accuracy to fit the respective clinical defects for which they were designed (0.27 mm morphological deviation of printed scaffolds from digital design). Significance From patient to patient, large alveolar bone defects are difficult to treat due to high variability in their complex morphologies and architecture. Our findings shows that Osteoink™ is a biocompatible material for 3D printing of clinically acceptable, patient-specific scaffolds with precision-fit for use in alveolar bone reconstructive procedures. Collectively, emerging digital technologies including CBCT imaging, 3D surgical planning, and (bio)printing can be integrated to address this unmet clinical challenge.
AUTHOR Barceló, Xavier and Eichholz, Kian F. and Garcia, Orquidea and Kelly, Daniel J.
Title Tuning the Degradation Rate of Alginate-Based Bioinks for Bioprinting Functional Cartilage Tissue [Abstract]
Year 2022
Journal/Proceedings Biomedicines
Reftype
DOI/URL URL DOI
Abstract
Negative foreign body responses following the in vivo implantation of bioprinted implants motivate the development of novel bioinks which can rapidly degrade with the formation of functional tissue, whilst still maintaining desired shapes post-printing. Here, we investigated the oxidation of alginate as a means to modify the degradation rate of alginate-based bioinks for cartilage tissue engineering applications. Raw and partially oxidized alginate (OA) were combined at different ratios (Alginate:OA at 100:0; 75:25; 50:50; 25:75; 0:100) to provide finer control over the rate of bioink degradation. These alginate blends were then combined with a temporary viscosity modifier (gelatin) to produce a range of degradable bioinks with rheological properties suitable for extrusion bioprinting. The rate of degradation was found to be highly dependent on the OA content of the bioink. Despite this high mass loss, the initially printed geometry was maintained throughout a 4 week in vitro culture period for all bioink blends except the 0:100 group. All bioink blends also supported robust chondrogenic differentiation of mesenchymal stem/stromal cells (MSCs), resulting in the development of a hyaline-like tissue that was rich in type II collagen and negative for calcific deposits. Such tuneable inks offer numerous benefits to the field of 3D bioprinting, from providing space in a controllable manner for new extracellular matrix deposition, to alleviating concerns associated with a foreign body response to printed material inks in vivo.
AUTHOR Gretzinger, Sarah and Schmieg, Barbara and Guthausen, Gisela and Hubbuch, Jürgen
Title Virtual Reality as Tool for Bioprinting Quality Inspection: A Proof of Principle [Abstract]
Year 2022
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
As virtual reality (VR) has drastically evolved over the past few years, the field of applications of VR flourished way beyond the gaming industry. While commercial VR solutions might be available, there is a need to develop a workflow for specific applications. Bioprinting represents such an example. Here, complex 3D data is generated and needs to be visualized in the context of quality control. We demonstrate that the transfer to a commercially available VR software is possible by introducing an optimized workflow. In the present work, we developed a workflow for the visualization of the critical quality attribute (cQA) cell distribution in bioprinted (extrusion-based) samples in VR. The cQA cell distribution is directly influenced by the pre-processing step mixing of cell material in the bioink. Magnetic Resonance Imaging (MRI) was used as an analytical tool to generate spatially resolved 2.5 and 3D data of the bioprinted objects. A sample with poor quality in respect of the cQA cell distribution was identified as its inhomogeneous cell distribution could be displayed spatially resolved in VR. The described workflow facilitates the usage of VR as a tool for quality inspection in the field of bioprinting and represents a powerful tool for visualization of complex 3D MRI data.
AUTHOR Zhang, Xiao and Liu, Yang and Zuo, Qiang and Wang, Qingyun and Li, Zuxi and Yan, Kai and Yuan, Tao and Zhang, Yi and Shen, Kai and Xie, Rui and Fan, Weimin
Title 3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair [Abstract]
Year 2021
Journal/Proceedings International Journal of Bioprinting; Vol 7, No 4 (2021)
Reftype
DOI/URL URL DOI
Abstract
Recently, three-dimensional (3D) bioprinting technology is becoming an appealing approach for osteochondral repair. However, it is challenging to develop a bilayered scaffold with anisotropic structural properties to mimic a native osteochondral tissue. Herein, we developed a bioink consisting of decellularized extracellular matrix and silk fibroin to print the bilayered scaffold. The bilayered scaffold mimics the natural osteochondral tissue by controlling the composition, mechanical properties, and growth factor release in each layer of the scaffold. The in vitro results show that each layer of scaffolds had a suitable mechanical strength and degradation rate. Furthermore, the scaffolds encapsulating transforming growth factor-beta (TGF-β) and bone morphogenetic protein-2 (BMP-2) can act as a controlled release system and promote directed differentiation of bone marrow-derived mesenchymal stem cells. Furthermore, the in vivo experiments suggested that the scaffolds loaded with growth factors promoted osteochondral regeneration in the rabbit knee joint model. Consequently, the biomimetic bilayered scaffold loaded with TGF-β and BMP-2 would be a promising strategy for osteochondral repair.
AUTHOR Cernencu, Alexandra I. and Lungu, Adriana and Dragusin, Diana M. and Stancu, Izabela C. and Dinescu, Sorina and Balahura, Liliana R. and Mereuta, Paul and Costache, Marieta and Iovu, Horia
Title 3D Bioprinting of Biosynthetic Nanocellulose-Filled GelMA Inks Highly Reliable for Soft Tissue-Oriented Constructs [Abstract]
Year 2021
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
Bioink-formulations based on gelatin methacrylate combined with oxidized cellulose nanofibrils are employed in the present study. The parallel investigation of the printing performance, morphological, swelling, and biological properties of the newly developed hydrogels was performed, with inks prepared using methacrylamide-modified gelatins of fish or bovine origin. Scaffolds with versatile and well-defined internal structure and high shape fidelity were successfully printed due to the high viscosity and shear-thinning behavior of formulated inks and then photo-crosslinked. The biocompatibility of 3D-scaffolds was surveyed using human adipose stem cells (hASCs) and high viability and proliferation rates were obtained when in contact with the biomaterial. Furthermore, bioprinting tests were performed with hASCs embedded in the developed formulations. The results demonstrated that the designed inks are a versatile toolkit for 3D bioprinting and further show the benefits of using fish-derived gelatin for biofabrication.
AUTHOR Nulty, Jessica and Freeman, Fiona E. and Browe, David C. and Burdis, Ross and Ahern, Daniel P. and Pitacco, Pierluca and Lee, Yu Bin and Alsberg, Eben and Kelly, Daniel J.
Title 3D Bioprinting of prevascularised implants for the repair of critically-sized bone defects [Abstract]
Year 2021
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
For 3D bioprinted tissues to be scaled-up to clinically relevant sizes, effective prevascularisation strategies are required to provide the necessary nutrients for normal metabolism and to remove associated waste by-products. The aim of this study was to develop a bioprinting strategy to engineer prevascularised tissues in vitro and to investigate the capacity of such constructs to enhance the vascularisation and regeneration of large bone defects in vivo. From a screen of different bioinks, a fibrin-based hydrogel was found to best support human umbilical vein endothelial cell (HUVEC) sprouting and the establishment of a microvessel network. When this bioink was combined with HUVECs and supporting human bone marrow stem/stromal cells (hBMSCs), these microvessel networks persisted in vitro. Furthermore, only bioprinted tissues containing both HUVECs and hBMSCs, that were first allowed to mature in vitro, supported robust blood vessel development in vivo. To assess the therapeutic utility of this bioprinting strategy, these bioinks were used to prevascularise 3D printed polycaprolactone (PCL) scaffolds, which were subsequently implanted into critically-sized femoral bone defects in rats. Microcomputed tomography (µCT) angiography revealed increased levels of vascularisation in vivo, which correlated with higher levels of new bone formation. Such prevascularised constructs could be used to enhance the vascularisation of a range of large tissue defects, forming the basis of multiple new bioprinted therapeutics. Statement of Significance This paper demonstrates a versatile 3D bioprinting technique to improve the vascularisation of tissue engineered constructs and further demonstrates how this method can be incorporated into a bone tissue engineering strategy to improve vascularisation in a rat femoral defect model.
AUTHOR Das,Sanskrita and Nam,Hyoryung and Jang,Jinah
Title 3D bioprinting of stem cell-laden cardiac patch: A promising alternative for myocardial repair
Year 2021
Journal/Proceedings APL Bioengineering
Reftype
DOI/URL DOI
AUTHOR Leu Alexa, Rebeca and Ianchis, Raluca and Savu, Diana and Temelie, Mihaela and Trica, Bogdan and Serafim, Andrada and Vlasceanu, George Mihail and Alexandrescu, Elvira and Preda, Silviu and Iovu, Horia
Title 3D Printing of Alginate-Natural Clay Hydrogel-Based Nanocomposites [Abstract]
Year 2021
Journal/Proceedings Gels
Reftype
DOI/URL URL DOI
Abstract
Biocompatibility, biodegradability, shear tinning behavior, quick gelation and an easy crosslinking process makes alginate one of the most studied polysaccharides in the field of regenerative medicine. The main purpose of this study was to obtain tissue-like materials suitable for use in bone regeneration. In this respect, alginate and several types of clay were investigated as components of 3D-printing, nanocomposite inks. Using the extrusion-based nozzle, the nanocomposites inks were printed to obtain 3D multilayered scaffolds. To observe the behavior induced by each type of clay on alginate-based inks, rheology studies were performed on composite inks. The structure of the nanocomposites samples was examined using Fourier Transform Infrared Spectrometry and X-ray Diffraction (XRD), while the morphology of the 3D-printed scaffolds was evaluated using Electron Microscopy (SEM, TEM) and Micro-Computed Tomography (Micro-CT). The swelling and dissolvability of each composite scaffold in phosfate buffer solution were followed as function of time. Biological studies indicated that the cells grew in the presence of the alginate sample containing unmodified clay, and were able to proliferate and generate calcium deposits in MG-63 cells in the absence of specific signaling molecules. This study provides novel information on potential manufacturing methods for obtaining nanocomposite hydrogels suitable for 3D printing processes, as well as valuable information on the clay type selection for enabling accurate 3D-printed constructs. Moreover, this study constitutes the first comprehensive report related to the screening of several natural clays for the additive manufacturing of 3D constructs designed for bone reconstruction therapy.
AUTHOR Francesca Cestari and Mauro Petretta and Yuejiao Yang and Antonella Motta and Brunella Grigolo and Vincenzo M. Sglavo
Title 3D printing of PCL/nano-hydroxyapatite scaffolds derived from biogenic sources for bone tissue engineering [Abstract]
Year 2021
Journal/Proceedings Sustainable Materials and Technologies
Reftype
DOI/URL URL DOI
Abstract
Bioactive composites made of ∽85 wt% poly(ε-caprolactone) (PCL) and ∽15 wt% nanometric hydroxyapatite (HA) produced from biogenic sources were 3D printed by an extrusion-based process to obtain porous scaffolds suitable for bone regeneration. Three different composite formulations were considered by using HA synthesized from three distinct natural sources, which were collected as food wastes: cuttlefish bones, mussel shells and chicken eggshells. Composition and thermal properties of the materials were analysed by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and x-ray spectroscopy (XRD), while the morphological and mechanical properties of the 3D scaffolds were studied by means of electron microscopy (SEM) and compression tests. Bioactivity was tested by seeding human osteoblast cell line (MG63) onto the scaffolds which were analysed by confocal microscopy and Alamar Blue and PicoGreen® tests after 1 to 7 culture days. The elastic modulus (177–316 MPa) is found to be within the range reported for typical trabecular bones being increased by the presence of the bio-HA particles. Moreover, cells adhesion, viability and proliferation are largely promoted in the scaffolds containing nanometric HA with respect to pure PCL, the best results being revealed when mussel shell-derived HA is used. Indeed, different biological sources result in different cell proliferation rates, pointing that the biological origin has an impact on the cells-scaffold interaction. In general, the results show that PCL/bio-HA scaffolds possess improved mechanical properties and enhanced bioactivity when compared with pure PCL ones.
AUTHOR Vyas, Cian and Zhang, Jun and Øvrebø, Øystein and Huang, Boyang and Roberts, Iwan and Setty, Mohan and Allardyce, Benjamin and Haugen, Håvard and Rajkhowa, Rangam and Bartolo, Paulo
Title 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Polycaprolactone (PCL) scaffolds have been widely investigated for tissue engineering applications, however, they exhibit poor cell adhesion and mechanical properties. Subsequently, PCL composites have been produced to improve the material properties. This study utilises a natural material, Bombyx mori silk microparticles (SMP) prepared by milling silk fibre, to produce a composite to enhance the scaffolds properties. Silk is biocompatible and biodegradable with excellent mechanical properties. However, there are no studies using SMPs as a reinforcing agent in a 3D printed thermoplastic polymer scaffold. PCL/SMP (10, 20, 30 wt%) composites were prepared by melt blending. Rheological analysis showed that SMP loading increased the shear thinning and storage modulus of the material. Scaffolds were fabricated using a screw-assisted extrusion-based additive manufacturing system. Scanning electron microscopy and X-ray microtomography was used to determine scaffold morphology. The scaffolds had high interconnectivity with regular printed fibres and pore morphologies within the designed parameters. Compressive mechanical testing showed that the addition of SMP significantly improved the compressive Young's modulus of the scaffolds. The scaffolds were more hydrophobic with the inclusion of SMP which was linked to a decrease in total protein adsorption. Cell behaviour was assessed using human adipose derived mesenchymal stem cells. A cytotoxic effect was observed at higher particle loading (30 wt%) after 7 days of culture. By day 21, 10 wt% loading showed significantly higher cell metabolic activity and proliferation, high cell viability, and cell migration throughout the scaffold. Calcium mineral deposition was observed on the scaffolds during cell culture. Large calcium mineral deposits were observed at 30 wt% and smaller calcium deposits were observed at 10 wt%. This study demonstrates that SMPs incorporated into a PCL scaffold provided effective mechanical reinforcement, improved the rate of degradation, and increased cell proliferation, demonstrating potential suitability for bone tissue engineering applications.
AUTHOR Golafshan, Nasim and Willemsen, Koen and Kadumudi, Firoz Babu and Vorndran, Elke and Dolatshahi-Pirouz, Alireza and Weinans, Harrie and van der Wal, Bart C. H. and Malda, Jos and Castilho, Miguel
Title 3D-Printed Regenerative Magnesium Phosphate Implant Ensures Stability and Restoration of Hip Dysplasia [Abstract]
Year 2021
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Osteoarthritis of the hip is a painful and debilitating condition commonly occurring in humans and dogs. One of the main causes that leads to hip osteoarthritis is hip dysplasia. Although the current surgical methods to correct dysplasia work satisfactorily in many circumstances, these are associated with serious complications, tissue resorption, and degeneration. In this study, a one-step fabrication of a regenerative hip implant with a patient-specific design and load-bearing properties is reported. The regenerative hip implant is fabricated based on patient imaging files and by an extrusion assisted 3D printing process using a flexible, bone-inducing biomaterial. The novel implant can be fixed with metallic screws to host bone and can be loaded up to physiological loads without signs of critical permanent deformation or failure. Moreover, after exposing the hip implant to accelerated in vitro degradation, it is confirmed that it is still able to support physiological loads even after losing ≈40% of its initial mass. In addition, the osteopromotive properties of the novel hip implant is demonstrated as shown by an increased expression of osteonectin and osteocalcin by cultured human mesenchymal stem cells after 21 days. Overall, the proposed hip implant provides an innovative regenerative and mechanically stable solution for hip dysplasia treatment.
AUTHOR Chelsea Twohig and Mari Helsinga and Amin Mansoorifar and Avathamsa Athirasala and Anthony Tahayeri and Cristiane Miranda França and Silvia Amaya Pajares and Reyan Abdelmoniem and Susanne Scherrer and Stéphane Durual and Jack Ferracane and Luiz E. Bertassoni
Title A dual-ink 3D printing strategy to engineer pre-vascularized bone scaffolds in-vitro [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
A functional vascular supply is a key component of any large-scale tissue, providing support for the metabolic needs of tissue-remodeling cells. Although well-studied strategies exist to fabricate biomimetic scaffolds for bone regeneration, success rates for regeneration in larger defects can be improved by engineering microvascular capillaries within the scaffolds to enhance oxygen and nutrient supply to the core of the engineered tissue as it grows. Even though the role of calcium and phosphate has been well understood to enhance osteogenesis, it remains unclear whether calcium and phosphate may have a detrimental effect on the vasculogenic and angiogenic potential of endothelial cells cultured on 3D printed bone scaffolds. In this study, we presented a novel dual-ink bioprinting method to create vasculature interwoven inside CaP bone constructs. In this method, strands of a CaP ink and a sacrificial template material was used to form scaffolds containing CaP fibers and microchannels seeded with vascular endothelial and mesenchymal stem cells (MSCs) within a photo-crosslinkable gelatin methacryloyl (GelMA) hydrogel material. Our results show similar morphology of growing vessels in the presence of CaP bioink, and no significant difference in endothelial cell sprouting was found. Furthermore, our initial results showed the differentiation of hMSCs into pericytes in the presence of CaP ink. These results indicate the feasibility of creating vascularized bone scaffolds, which can be used for enhancing vascular formation in the core of bone scaffolds.
AUTHOR Bin Wang and Pedro J. Díaz-Payno and David C. Browe and Fiona E. Freeman and Jessica Nulty and Ross Burdis and Daniel J. Kelly
Title Affinity-bound growth factor within sulfated interpenetrate network bioinks for bioprinting cartilaginous tissues [Abstract]
Year 2021
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
3D bioprinting has emerged as a promising technology in the field of tissue engineering and regenerative medicine due to its ability to create anatomically complex tissue substitutes. However, it still remains challenging to develop bioactive bioinks that provide appropriate and permissive environments to instruct and guide the regenerative process in vitro and in vivo. In this study alginate sulfate, a sulfated glycosaminoglycan (sGAG) mimic, was used to functionalize an alginate-gelatin methacryloyl (GelMA) interpenetrating network (IPN) bioink to enable the bioprinting of cartilaginous tissues. The inclusion of alginate sulfate had a limited influence on the viscosity, shear-thinning and thixotropic properties of the IPN bioink, enabling high-fidelity bioprinting and supporting mesenchymal stem cell (MSC) viability post-printing. The stiffness of printed IPN constructs greatly exceeded that achieved by printing alginate or GelMA alone, while maintaining resilience and toughness. Furthermore, given the high affinity of alginate sulfate to heparin-binding growth factors, the sulfated IPN bioink supported the sustained release of transforming growth factor-β3 (TGF-β3), providing an environment that supported robust chondrogenesis in vitro, with little evidence of hypertrophy or mineralization over extended culture periods. Such bioprinted constructs also supported chondrogenesis in vivo, with the controlled release of TGF-β3 promoting significantly higher levels of cartilage-specific extracellular matrix deposition. Altogether, these results demonstrate the potential of bioprinting sulfated bioinks as part of a ‘single-stage’ or ‘point-of-care’ strategy for regenerating cartilaginous tissues. Statement of Significance: This study highlights the potential of using sulfated interpenetrating network (IPN) bioink to support the regeneration of phenotypically stable articular cartilage. Construction of interpenetrate networks in the bioink enables unique high-fidelity bioprinting and unique synergistic mechanical properties. The presence of alginate sulfate provided the capacity of high affinity-binding of TGF-β3, which promoted robust chondrogenesis.
AUTHOR Rachel Cadle and Dan Rogozea and Leni Moldovan and Patricia Parsons-Wingerter and Nicanor I. Moldovan
Title An image analysis-based workflow for 3D bioprinting of anatomically realistic retinal vascular patterns [Abstract]
Year 2021
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
There is an enduring need for vascularization of bioprinted constructs with vascular networks optimized for distribution of nutrient-containing fluids, both for in vitro applications and in vivo implantation. However, most of the efforts in this field were directed so far towards generation of simple linear channels, often lined with endothelial cells only, and thus lacking the anatomical details of real vascular networks. To start addressing this need, here we explored the possibility of using actual vascular patterns derived from human ocular fundus for instructing the 3D printing activity. In order to assign to these patterns the organ-specific topology, and eventually vessel branch-defined cellular composition, we describe the use of the branching analysis program VESGEN 2D for planning a workflow that links the primary vascular images with their 3D printing with bioinks. To this end, we show how to process flat vascular images and, for an even more realistic representation, how to retro-engineer concave retinal patterns from flat images and to print them in a supporting hydrogel. This work opens the possibility of bioprinting more anatomically realistic vascular networks, and thus to eventually improve the vascularization of living tissue-engineered constructs.
AUTHOR Rachel Cadle and Dan Rogozea and Leni Moldovan and Patricia Parsons-Wingerter and Nicanor I. Moldovan
Title An image analysis-based workflow for 3D bioprinting of anatomically realistic retinal vascular patterns [Abstract]
Year 2021
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
There is an enduring need for vascularization of bioprinted constructs with vascular networks optimized for distribution of nutrient-containing fluids, both for in vitro applications and in vivo implantation. However, most of the efforts in this field were directed so far towards generation of simple linear channels, often lined with endothelial cells only, and thus lacking the anatomical details of real vascular networks. To start addressing this need, here we explored the possibility of using actual vascular patterns derived from human ocular fundus for instructing the 3D printing activity. In order to assign to these patterns the organ-specific topology, and eventually vessel branch-defined cellular composition, we describe the use of the branching analysis program VESGEN 2D for planning a workflow that links the primary vascular images with their 3D printing with bioinks. To this end, we show how to process flat vascular images and, for an even more realistic representation, how to retro-engineer concave retinal patterns from flat images and to print them in a supporting hydrogel. This work opens the possibility of bioprinting more anatomically realistic vascular networks, and thus to eventually improve the vascularization of living tissue-engineered constructs.
AUTHOR Rachel Cadle and Dan Rogozea and Leni Moldovan and Patricia Parsons-Wingerter and Nicanor I. Moldovan
Title An image analysis-based workflow for 3D bioprinting of anatomically realistic retinal vascular patterns [Abstract]
Year 2021
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
There is an enduring need for vascularization of bioprinted constructs with vascular networks optimized for distribution of nutrient-containing fluids, both for in vitro applications and in vivo implantation. However, most of the efforts in this field were directed so far towards generation of simple linear channels, often lined with endothelial cells only, and thus lacking the anatomical details of real vascular networks. To start addressing this need, here we explored the possibility of using actual vascular patterns derived from human ocular fundus for instructing the 3D printing activity. In order to assign to these patterns the organ-specific topology, and eventually vessel branch-defined cellular composition, we describe the use of the branching analysis program VESGEN 2D for planning a workflow that links the primary vascular images with their 3D printing with bioinks. To this end, we show how to process flat vascular images and, for an even more realistic representation, how to retro-engineer concave retinal patterns from flat images and to print them in a supporting hydrogel. This work opens the possibility of bioprinting more anatomically realistic vascular networks, and thus to eventually improve the vascularization of living tissue-engineered constructs.
AUTHOR Rachel Cadle and Dan Rogozea and Leni Moldovan and Patricia Parsons-Wingerter and Nicanor I. Moldovan
Title An image analysis-based workflow for 3D bioprinting of anatomically realistic retinal vascular patterns [Abstract]
Year 2021
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
There is an enduring need for vascularization of bioprinted constructs with vascular networks optimized for distribution of nutrient-containing fluids, both for in vitro applications and in vivo implantation. However, most of the efforts in this field were directed so far towards generation of simple linear channels, often lined with endothelial cells only, and thus lacking the anatomical details of real vascular networks. To start addressing this need, here we explored the possibility of using actual vascular patterns derived from human ocular fundus for instructing the 3D printing activity. In order to assign to these patterns the organ-specific topology, and eventually vessel branch-defined cellular composition, we describe the use of the branching analysis program VESGEN 2D for planning a workflow that links the primary vascular images with their 3D printing with bioinks. To this end, we show how to process flat vascular images and, for an even more realistic representation, how to retro-engineer concave retinal patterns from flat images and to print them in a supporting hydrogel. This work opens the possibility of bioprinting more anatomically realistic vascular networks, and thus to eventually improve the vascularization of living tissue-engineered constructs.
AUTHOR Yuanhao Wu and Gabriele Maria Fortunato and Babatunde O Okesola and Francesco Luigi Pellerej di Brocchetti and Ratima Suntornnond and John Connelly and Carmelo De Maria and Jose Carlos Rodriguez-Cabello and Giovanni Vozzi and Wen Wang and Alvaro Mata
Title An interfacial self-assembling bioink for the manufacturing of capillary-like structures with tuneable and anisotropic permeability [Abstract]
Year 2021
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Self-assembling bioinks offer the possibility to biofabricate with molecular precision, hierarchical control, and biofunctionality. For this to become a reality with widespread impact, it is essential to engineer these ink systems ensuring reproducibility and providing suitable standardization. We have reported a self-assembling bioink based on disorder-to-order transitions of an elastin-like recombinamer (ELR) to co-assemble with graphene oxide (GO). Here, we establish reproducible processes, optimize printing parameters for its use as a bioink, describe new advantages that the self-assembling bioink can provide, and demonstrate how to fabricate novel structures with physiological relevance. We fabricate capillary-like structures with resolutions down to ∼10 µm in diameter and ∼2 µm thick tube walls and use both experimental and finite element analysis to characterize the printing conditions, underlying interfacial diffusion-reaction mechanism of assembly, printing fidelity, and material porosity and permeability. We demonstrate the capacity to modulate the pore size and tune the permeability of the resulting structures with and without human umbilical vascular endothelial cells. Finally, the potential of the ELR-GO bioink to enable supramolecular fabrication of biomimetic structures was demonstrated by printing tubes exhibiting walls with progressively different structure and permeability.
AUTHOR Otto, I. A. and Capendale, P. E. and Garcia, J. P. and de Ruijter, M. and van Doremalen, R. F. M. and Castilho, M. and Lawson, T. and Grinstaff, M. W. and Breugem, C. C. and Kon, M. and Levato, R. and Malda, J.
Title Biofabrication of a shape-stable auricular structure for the reconstruction of ear deformities [Abstract]
Year 2021
Journal/Proceedings Materials Today Bio
Reftype
DOI/URL URL DOI
Abstract
Bioengineering of the human auricle remains a significant challenge, where the complex and unique shape, the generation of high-quality neocartilage, and shape preservation are key factors. Future regenerative medicine–based approaches for auricular cartilage reconstruction will benefit from a smart combination of various strategies. Our approach to fabrication of an ear-shaped construct uses hybrid bioprinting techniques, a recently identified progenitor cell population, previously validated biomaterials, and a smart scaffold design. Specifically, we generated a 3D-printed polycaprolactone (PCL) scaffold via fused deposition modeling, photocrosslinked a human auricular cartilage progenitor cell–laden gelatin methacryloyl (gelMA) hydrogel within the scaffold, and cultured the bioengineered structure in vitro in chondrogenic media for 30 days. Our results show that the fabrication process maintains the viability and chondrogenic phenotype of the cells, that the compressive properties of the combined PCL and gelMA hybrid auricular constructs are similar to native auricular cartilage, and that biofabricated hybrid auricular structures exhibit excellent shape fidelity compared with the 3D digital model along with deposition of cartilage-like matrix in both peripheral and central areas of the auricular structure. Our strategy affords an anatomically enhanced auricular structure with appropriate mechanical properties, ensures adequate preservation of the auricular shape during a dynamic in vitro culture period, and enables chondrogenically potent progenitor cells to produce abundant cartilage-like matrix throughout the auricular construct. The combination of smart scaffold design with 3D bioprinting and cartilage progenitor cells holds promise for the development of clinically translatable regenerative medicine strategies for auricular reconstruction.
AUTHOR Nulty, Jessica and Burdis, Ross and Kelly, Daniel J.
Title Biofabrication of Prevascularised Hypertrophic Cartilage Microtissues for Bone Tissue Engineering [Abstract]
Year 2021
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
Bone tissue engineering (TE) has the potential to transform the treatment of challenging musculoskeletal pathologies. To date, clinical translation of many traditional TE strategies has been impaired by poor vascularisation of the implant. Addressing such challenges has motivated research into developmentally inspired TE strategies, whereby implants mimicking earlier stages of a tissue’s development are engineered in vitro and then implanted in vivo to fully mature into the adult tissue. The goal of this study was to engineer in vitro tissues mimicking the immediate developmental precursor to long bones, specifically a vascularised hypertrophic cartilage template, and to then assess the capacity of such a construct to support endochondral bone formation in vivo. To this end, we first developed a method for the generation of large numbers of hypertrophic cartilage microtissues using a microwell system, and encapsulated these microtissues into a fibrin-based hydrogel capable of supporting vasculogenesis by human umbilical vein endothelial cells (HUVECs). The microwells supported the formation of bone marrow derived stem/stromal cell (BMSC) aggregates and their differentiation toward a hypertrophic cartilage phenotype over 5 weeks of cultivation, as evident by the development of a matrix rich in sulphated glycosaminoglycan (sGAG), collagen types I, II, and X, and calcium. Prevascularisation of these microtissues, undertaken in vitro 1 week prior to implantation, enhanced their capacity to mineralise, with significantly higher levels of mineralised tissue observed within such implants after 4 weeks in vivo within an ectopic murine model for bone formation. It is also possible to integrate such microtissues into 3D bioprinting systems, thereby enabling the bioprinting of scaled-up, patient-specific prevascularised implants. Taken together, these results demonstrate the development of an effective strategy for prevascularising a tissue engineered construct comprised of multiple individual microtissue “building blocks,” which could potentially be used in the treatment of challenging bone defects.
AUTHOR Falcones, Bryan and Sanz-Fraile, Héctor and Marhuenda, Esther and Mendizábal, Irene and Cabrera-Aguilera, Ignacio and Malandain, Nanthilde and Uriarte, Juan J. and Almendros, Isaac and Navajas, Daniel and Weiss, Daniel J. and Farré, Ramon and Otero, Jorge
Title Bioprintable Lung Extracellular Matrix Hydrogel Scaffolds for 3D Culture of Mesenchymal Stromal Cells [Abstract]
Year 2021
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
Mesenchymal stromal cell (MSC)-based cell therapy in acute respiratory diseases is based on MSC secretion of paracrine factors. Several strategies have proposed to improve this are being explored including pre-conditioning the MSCs prior to administration. We here propose a strategy for improving the therapeutic efficacy of MSCs based on cell preconditioning by growing them in native extracellular matrix (ECM) derived from the lung. To this end, a bioink with tunable stiffness based on decellularized porcine lung ECM hydrogels was developed and characterized. The bioink was suitable for 3D culturing of lung-resident MSCs without the need for additional chemical or physical crosslinking. MSCs showed good viability, and contraction assays showed the existence of cell–matrix interactions in the bioprinted scaffolds. Adhesion capacity and length of the focal adhesions formed were increased for the cells cultured within the lung hydrogel scaffolds. Also, there was more than a 20-fold increase of the expression of the CXCR4 receptor in the 3D-cultured cells compared to the cells cultured in plastic. Secretion of cytokines when cultured in an in vitro model of lung injury showed a decreased secretion of pro-inflammatory mediators for the cells cultured in the 3D scaffolds. Moreover, the morphology of the harvested cells was markedly different with respect to conventionally (2D) cultured MSCs. In conclusion, the developed bioink can be used to bioprint structures aimed to improve preconditioning MSCs for therapeutic purposes.
AUTHOR Burdis, Ross and Chariyev-Prinz, Farhad and Kelly, Daniel J.
Title Bioprinting of biomimetic self-organised cartilage with a supporting joint fixation device [Abstract]
Year 2021
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Despite sustained efforts, engineering truly biomimetic articular cartilage (AC) via traditional top-down approaches remains challenging. Emerging biofabrication strategies, from 3D bioprinting to scaffold-free approaches that leverage principles of cellular self-organisation, are generating significant interest in the field of cartilage tissue engineering as a means of developing biomimetic tissue analogues in vitro. Although such strategies have advanced the quality of engineered cartilage, recapitulation of many key structural features of native AC, in particular a collagen network mimicking the tissue’s ‘Benninghoff arcade’, remains elusive. Additionally, a complete solution to fixating engineered cartilages in situ within damaged synovial joints has yet to be identified. This study sought to address both of these key challenges by engineering biomimetic AC within a device designed to anchor the tissue within a synovial joint defect. We first designed and fabricated a fixation device capable of anchoring engineered cartilage into the subchondral bone. Next, we developed a strategy for inkjet printing porcine mesenchymal stem/stromal cells (MSCs) into this supporting fixation device, which was also designed to provide instructive cues to direct the self-organisation of MSC condensations towards a stratified engineered AC. We found that a higher starting cell-density supported the development of a more zonally defined collagen network within the engineered tissue. Dynamic culture was implemented to further enhance the quality of this engineered tissue, resulting in an approximate 3 fold increase in glycosaminoglycan and collagen accumulation. Ultimately this strategy supported the development of AC that exhibited near-native levels of glycosaminoglycan accumulation (>5% WW), as well as a biomimetic collagen network organisation with a perpendicular to a parallel fibre arrangement (relative to the tissue surface) from the deep to superficial zones via arcading fibres within the middle zone of the engineered tissue. Collectively, this work demonstrates the successful convergence of novel biofabrication methods, bioprinting strategies and culture regimes to engineer a hybrid implant suited to resurfacing AC defects.
AUTHOR Fisch, Philipp and Broguiere, Nicolas and Finkielsztein, Sergio and Linder, Thomas and Zenobi-Wong, Marcy
Title Bioprinting of Cartilaginous Auricular Constructs Utilizing an Enzymatically Crosslinkable Bioink [Abstract]
Year 2021
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract Bioprinting of functional tissues could overcome tissue shortages and allow a more rapid response for treatments. However, despite recent progress in bioprinting, and its outstanding ability to position cells and biomaterials in a precise 3D manner, its success has been limited, due to insufficient maturation of constructs into functional tissue. Here, a novel calcium-triggered enzymatic crosslinking (CTEC) mechanism for bioinks based on the activation cascade of Factor XIII is presented and utilized for the biofabrication of cartilaginous constructs. Hyaluronan transglutaminase (HA-TG), an enzymatically crosslinkable material, has shown excellent characteristics for chondrogenesis and builds the basis of the CTEC bioink. The bioink supports tissue maturation with neocartilage formation and stiffening of constructs up to 400 kPa. Bioprinted constructs remain stable in vivo for 24 weeks and bioprinted auricular constructs transform into cartilaginous grafts. A major limitation of the current study is the deposition of collagen I, indicating the maturation toward fibrocartilage rather than elastic cartilage. Shifting the maturation process toward elastic cartilage will therefore be essential in order for the developed bioinks to offer a novel tissue engineered treatment for microtia patients. CTEC bioprinting furthermore opens up use of enzymatically crosslinkable biopolymers and their modularity to support a multitude of tissues.
AUTHOR Oliveira, H. and Médina, C. and Labrunie, G. and Dusserre, N. and Catros, S. and Magnan, L. and Handschin, C. and Stachowicz, M. L. and Fricain, J.-C. and L’Heureux, N.
Title Cell-assembled extracellular matrix (CAM): a human biopaper for the biofabrication of pre-vascularized tissues able to connect to the host circulation in vivo [Abstract]
Year 2021
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
When considering regenerative approaches, the efficient creation of a functional vasculature, that can support the metabolic needs of bioengineered tissues, is essential for their survival after implantation. However, it is widely recognized that the post-implantation microenvironment of the engineered tissues is often hypoxic due to insufficient vascularization, resulting in ischemia injury and necrosis. This is one of the main limitations of current tissue engineering applications aiming at replacing significant tissue volumes. Here, we have explored the use of a new biomaterial, the cell-assembled extracellular matrix (CAM), as a biopaper to biofabricate a vascular system. CAM sheets are a unique, fully biological and fully human material that has already shown stable long-term implantation in humans. We demonstrated, for the first time, the use of this unprocessed human ECM as a microperforated biopaper. Using microvalve dispensing bioprinting, concentrated human endothelial cells (30 millions ml−1) were deposited in a controlled geometry in CAM sheets and cocultured with HSFs. Following multilayer assembly, thick ECM-based constructs fused and supported the survival and maturation of capillary-like structures for up to 26 d of culture. Following 3 weeks of subcutaneous implantation in a mice model, constructs showed limited degradative response and the pre-formed vasculature successfully connected with the host circulatory system to establish active perfusion.This mechanically resilient tissue equivalent has great potential for the creation of more complex implantable tissues, where rapid anastomosis is sine qua non for cell survival and efficient tissue integration.
AUTHOR Fenelon, Mathilde and Etchebarne, Marion and Siadous, Robin and Grémare, Agathe and Durand, Marlène and Sentilhes, Loic and Catros, Sylvain and Gindraux, Florelle and L'Heureux, Nicolas and Fricain, Jean-Christophe
Title Comparison of amniotic membrane versus the induced membrane for bone regeneration in long bone segmental defects using calcium phosphate cement loaded with BMP-2 [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Thanks to its biological properties, the human amniotic membrane (HAM) combined with a bone substitute could be a single-step surgical alternative to the two-step Masquelet induced membrane (IM) technique for regeneration of critical bone defects. However, no study has directly compared these two membranes. We first designed a 3D-printed scaffold using calcium phosphate cement (CPC). We assessed its suitability in vitro to support human bone marrow mesenchymal stromal cells (hBMSCs) attachment and osteodifferentiation. We then performed a rat femoral critical size defect to compare the two-step IM technique with a single-step approach using the HAM. Five conditions were compared. Group 1 was left empty. Group 2 received the CPC scaffold loaded with rh-BMP2 (CPC/BMP2). Group 3 and 4 received the CPC/BMP2 scaffold covered with lyophilized or decellularized/lyophilized HAM. Group 5 underwent a two- step induced membrane procedure with insertion of a polymethylmethacrylate (PMMA) spacer followed by, after 4 weeks, its replacement with the CPC/BMP2 scaffold wrapped in the IM. Micro-CT and histomorphometric analysis were performed after six weeks. Results showed that the CPC scaffold supported the proliferation and osteodifferentiation of hBMSCs in vitro. In vivo, the CPC/BMP2 scaffold very efficiently induced bone formation and led to satisfactory healing of the femoral defect, in a single-step, without autograft or the need for any membrane covering. In this study, there was no difference between the two-step induced membrane procedure and a single step approach. However, the results indicated that none of the tested membranes further enhanced bone healing compared to the CPC/BMP2 group.
AUTHOR Petretta, Mauro and Gambardella, Alessandro and Boi, Marco and Berni, Matteo and Cavallo, Carola and Marchiori, Gregorio and Maltarello, Maria Cristina and Bellucci, Devis and Fini, Milena and Baldini, Nicola and Grigolo, Brunella and Cannillo, Valeria
Title Composite Scaffolds for Bone Tissue Regeneration Based on PCL and Mg-Containing Bioactive Glasses [Abstract]
Year 2021
Journal/Proceedings Biology
Reftype
DOI/URL DOI
Abstract
Polycaprolactone (PCL) is widely used in additive manufacturing for the construction of scaffolds for tissue engineering because of its good bioresorbability, biocompatibility, and processability. Nevertheless, its use is limited by its inadequate mechanical support, slow degradation rate and the lack of bioactivity and ability to induce cell adhesion and, thus, bone tissue regeneration. In this study, we fabricated 3D PCL scaffolds reinforced with a novel Mg-doped bioactive glass (Mg-BG) characterized by good mechanical properties and biological reactivity. An optimization of the printing parameters and scaffold fabrication was performed; furthermore, an extensive microtopography characterization by scanning electron microscopy and atomic force microscopy was carried out. Nano-indentation tests accounted for the mechanical properties of the scaffolds, whereas SBF tests and cytotoxicity tests using human bone-marrow-derived mesenchymal stem cells (BM-MSCs) were performed to evaluate the bioactivity and in vitro viability. Our results showed that a 50/50 wt% of the polymer-to-glass ratio provides scaffolds with a dense and homogeneous distribution of Mg-BG particles at the surface and roughness twice that of pure PCL scaffolds. Compared to pure PCL (hardness H = 35 ± 2 MPa and Young’s elastic modulus E = 0.80 ± 0.05 GPa), the 50/50 wt% formulation showed H = 52 ± 11 MPa and E = 2.0 ± 0.2 GPa, hence, it was close to those of trabecular bone. The high level of biocompatibility, bioactivity, and cell adhesion encourages the use of the composite PCL/Mg-BG scaffolds in promoting cell viability and supporting mechanical loading in the host trabecular bone.
AUTHOR Bello, Thomas and Paindelli, Claudia and Diaz-Gomez, Luis A. and Melchiorri, Anthony and Mikos, Antonios G. and Nelson, Peter S. and Dondossola, Eleonora and Gujral, Taranjit S.
Title Computational modeling identifies multitargeted kinase inhibitors as effective therapies for metastatic, castration-resistant prostate cancer [Abstract]
Year 2021
Journal/Proceedings Proceedings of the National Academy of Sciences
Reftype
DOI/URL URL DOI
Abstract
Metastatic, castration-resistant prostate cancer (mCRPC) is an advanced prostate cancer with limited therapeutic options and poor patient outcomes. To investigate whether multitargeted kinase inhibitors (KIs) represent an opportunity for mCRPC drug development, we applied machine learning{textendash}based functional screening and identified two KIs, PP121 and SC-1, which demonstrated strong suppression of CRPC growth in vitro and in vivo. Furthermore, we show the marked ability of these KIs to improve on standard-of-care chemotherapy in both tumor response and survival, suggesting that combining multitargeted KIs with chemotherapy represents a promising avenue for mCRPC treatment. Overall, our findings demonstrate the application of a multidisciplinary strategy that blends bench science with machine-learning approaches for rapidly identifying KIs that result in desired phenotypic effects.Castration-resistant prostate cancer (CRPC) is an advanced subtype of prostate cancer with limited therapeutic options. Here, we applied a systems-based modeling approach called kinome regularization (KiR) to identify multitargeted kinase inhibitors (KIs) that abrogate CRPC growth. Two predicted KIs, PP121 and SC-1, suppressed CRPC growth in two-dimensional in vitro experiments and in vivo subcutaneous xenografts. An ex vivo bone mimetic environment and in vivo tibia xenografts revealed resistance to these KIs in bone. Combining PP121 or SC-1 with docetaxel, standard-of-care chemotherapy for late-stage CRPC, significantly reduced tibia tumor growth in vivo, decreased growth factor signaling, and vastly extended overall survival, compared to either docetaxel monotherapy. These results highlight the utility of computational modeling in forming physiologically relevant predictions and provide evidence for the role of multitargeted KIs as chemosensitizers for late-stage, metastatic CRPC.All study data are included in the article and/or supporting information.
AUTHOR Zhang, Xiao and Liu, Yang and Luo, Chunyang and Zhai, Chenjun and Li, Zuxi and Zhang, Yi and Yuan, Tao and Dong, Shilei and Zhang, Jiyong and Fan, Weimin
Title Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
As cartilage tissue lacks the innate ability to mount an adequate regeneration response, damage to it is detrimental to the quality of life of the subject. The emergence of three-dimensional bioprinting (3DBP) technology presents an opportunity to repair articular cartilage defects. However, widespread adoption of this technique has been impeded by difficulty in preparing a suitable bioink and the toxicity inherent in the chemical crosslinking process of most bioinks. Our objective was to develop a crosslinker-free bioink with the same biological activity as the original cartilage extracellular matrix (ECM) and good mechanical strength. We prepared bioinks containing different concentrations of silk fibroin and decellularized extracellular matrix (SF-dECM bioinks) mixed with bone marrow mesenchymal stem cells (BMSCs) for 3D bioprinting. SF and dECM interconnect with each other through physical crosslinking and entanglement. A porous structure was formed by removing the polyethylene glycol from the SF-dECM bioink. The results showed the SF-dECM construct had a suitable mechanical strength and degradation rate, and the expression of chondrogenesis-specific genes was found to be higher than that of the SF control construct group. Finally, we confirmed that a SF-dECM construct that was designed to release TGF-β3 had the ability to promote chondrogenic differentiation of BMSCs and provided a good cartilage repair environment, suggesting it is an ideal scaffold for cartilage tissue engineering.
AUTHOR Puertas-Bartolomé, María and Włodarczyk-Biegun, Małgorzata K. and del Campo, Aránzazu and Vázquez-Lasa, Blanca and San Román, Julio
Title Development of bioactive catechol functionalized nanoparticles applicable for 3D bioprinting [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Efficient wound treatments to target specific events in the healing process of chronic wounds constitute a significant aim in regenerative medicine. In this sense, nanomedicine can offer new opportunities to improve the effectiveness of existing wound therapies. The aim of this study was to develop catechol bearing polymeric nanoparticles (NPs) and to evaluate their potential in the field of wound healing. Thus, NPs wound healing promoting activities, potential for drug encapsulation and controlled release, and further incorporation in a hydrogel bioink formulation to fabricate cell-laden 3D scaffolds are studied. NPs with 2 and 29 M % catechol contents (named NP2 and NP29) were obtained by nanoprecipitation and presented hydrodynamic diameters of 100 and 75 nm respectively. These nanocarriers encapsulated the hydrophobic compound coumarin-6 with 70% encapsulation efficiency values. In cell culture studies, the NPs had a protective effect in RAW 264.7 macrophages against oxidative stress damage induced by radical oxygen species (ROS). They also presented a regulatory effect on the inflammatory response of stimulated macrophages and promoted upregulation of the vascular endothelial growth factor (VEGF) in fibroblasts and endothelial cells. In particular, NP29 were used in a hydrogel bioink formulation using carboxymethyl chitosan and hyaluronic acid as polymeric matrices. Using a reactive mixing bioprinting approach, NP-loaded hydrogel scaffolds with good structural integrity, shape fidelity and homogeneous NPs dispersion, were obtained. The in vitro catechol NPs release profile of the printed scaffolds revealed a sustained delivery. The bioprinted scaffolds supported viability and proliferation of encapsulated L929 fibroblasts over 14 days. We envision that the catechol functionalized NPs and resulting bioactive bioink presented in this work offer promising advantages for wound healing applications, as they: 1) support controlled release of bioactive catechol NPs to the wound site; 2) can incorporate additional therapeutic functions by co-encapsulating drugs; 3) can be printed into 3D scaffolds with tailored geometries based on patient requirements.
AUTHOR Kamdem Tamo, Arnaud and Doench, Ingo and Walter, Lukas and Montembault, Alexandra and Sudre, Guillaume and David, Laurent and Morales-Helguera, Aliuska and Selig, Mischa and Rolauffs, Bernd and Bernstein, Anke and Hoenders, Daniel and Walther, Andreas and Osorio-Madrazo, Anayancy
Title Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues [Abstract]
Year 2021
Journal/Proceedings Polymers
Reftype
DOI/URL DOI
Abstract
Soft tissues are commonly fiber-reinforced hydrogel composite structures, distinguishable from hard tissues by their low mineral and high water content. In this work, we proposed the development of 3D printed hydrogel constructs of the biopolymers chitosan (CHI) and cellulose nanofibers (CNFs), both without any chemical modification, which processing did not incorporate any chemical crosslinking. The unique mechanical properties of native cellulose nanofibers offer new strategies for the design of environmentally friendly high mechanical performance composites. In the here proposed 3D printed bioinspired CNF-filled CHI hydrogel biomaterials, the chitosan serves as a biocompatible matrix promoting cell growth with balanced hydrophilic properties, while the CNFs provide mechanical reinforcement to the CHI-based hydrogel. By means of extrusion-based printing (EBB), the design and development of 3D functional hydrogel scaffolds was achieved by using low concentrations of chitosan (2.0–3.0% (w/v)) and cellulose nanofibers (0.2–0.4% (w/v)). CHI/CNF printed hydrogels with good mechanical performance (Young’s modulus 3.0 MPa, stress at break 1.5 MPa, and strain at break 75%), anisotropic microstructure and suitable biological response, were achieved. The CHI/CNF composition and processing parameters were optimized in terms of 3D printability, resolution, and quality of the constructs (microstructure and mechanical properties), resulting in good cell viability. This work allows expanding the library of the so far used biopolymer compositions for 3D printing of mechanically performant hydrogel constructs, purely based in the natural polymers chitosan and cellulose, offering new perspectives in the engineering of mechanically demanding hydrogel tissues like intervertebral disc (IVD), cartilage, meniscus, among others.
AUTHOR Dai, Michèle and Belaïdi, Jean-Philippe and Fleury, Guillaume and Garanger, Elisabeth and Rielland, Maïté and Schultze, Xavier and Lecommandoux, Sébastien
Title Elastin-like Polypeptide-Based Bioink: A Promising Alternative for 3D Bioprinting
Year 2021
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
AUTHOR Chen, Shengyang and Shi, Qian and Jang, Taesik and Ibrahim, Mohammed Shahrudin Bin and Deng, Jingyu and Ferracci, Gaia and Tan, Wen See and Cho, Nam-Joon and Song, Juha
Title Engineering Natural Pollen Grains as Multifunctional 3D Printing Materials [Abstract]
Year 2021
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract The development of multifunctional 3D printing materials from sustainable natural resources is a high priority in additive manufacturing. Using an eco-friendly method to transform hard pollen grains into stimulus-responsive microgel particles, we engineered a pollen-derived microgel suspension that can serve as a functional reinforcement for composite hydrogel inks and as a supporting matrix for versatile freeform 3D printing systems. The pollen microgel particles enabled the printing of composite inks and improved the mechanical and physiological stabilities of alginate and hyaluronic acid hydrogel scaffolds for 3D cell culture applications. Moreover, the particles endowed the inks with stimulus-responsive controlled release properties. The suitability of the pollen microgel suspension as a supporting matrix for freeform 3D printing of alginate and silicone rubber inks was demonstrated and optimized by tuning the rheological properties of the microgel. Compared with other classes of natural materials, pollen grains have several compelling features, including natural abundance, renewability, affordability, processing ease, monodispersity, and tunable rheological features, which make them attractive candidates to engineer advanced materials for 3D printing applications.
AUTHOR Paindelli, Claudia and Casarin, Stefano and Wang, Feng and Diaz-Gomez, Luis and Zhang, Jianhua and Mikos, Antonios G. and Logothetis, Christopher J. and Friedl, Peter and Dondossola, Eleonora
Title Enhancing Radium 223 treatment efficacy by anti-beta 1 integrin targeting [Abstract]
Year 2021
Journal/Proceedings Journal of Nuclear Medicine
Reftype
DOI/URL URL DOI
Abstract
Radium 223 (223Ra) is an α-emitter approved for the treatment of bone metastatic prostate cancer (PCa), which exerts direct cytotoxicity towards PCa cells near the bone interface, whereas cells positioned in the core respond poorly, due to short α-particle penetrance. β1 integrin (β1I) interference has been shown to increase radiosensitivity and significantly enhance external beam radiation efficiency. We hypothesized that targeting β1I would improve 223Ra outcome. We tested the effect of combining 223Ra and anti-β1I antibody treatment in PC3 and C4-2B PCa cell models expressing high and low β1I levels, respectively. In vivo tumor growth was evaluated through bioluminescence. Cellular and molecular determinants of response were analyzed by ex vivo three-dimensional imaging of bone lesions, proteomic analysis and further confirmed by computational modeling and in vitro functional analysis in tissue-engineered bone mimetic systems. Interference with β1I combined with 223Ra reduced PC3 cell growth in bone and significantly improved overall mouse survival, while no change was achieved in C4-2B tumors. Anti-β1I treatment decreased PC3 tumor cell mitosis index and spatially expanded 223Ra lethal effects two-fold, in vivo and in silico. Regression was paralleled by decreased expression of radio-resistance mediators. Targeting β1I significantly improves 223Ra outcome and points towards combinatorial application in PCa tumors with high β1I expression.
AUTHOR Oliveira, Hugo and Médina, Chantal and Stachowicz, Marie-Laure and Paiva dos Santos, Bruno and Chagot, Lise and Dusserre, Nathalie and Fricain, Jean-Christophe
Title Extracellular matrix (ECM)-derived bioinks designed to foster vasculogenesis and neurite outgrowth: Characterization and bioprinting [Abstract]
Year 2021
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
The field of bioprinting has shown a tremendous development in recent years, focusing on the development of advanced in vitro models and on regeneration approaches. In this scope, the lack of suitable biomaterials that can be efficiently formulated as printable bioinks, while supporting specific cellular events, is currently considered as one of the main limitations in the field. Indeed, extracellular matrix (ECM)-derived biomaterials formulated to enable printability and support cellular response, for instance via integrin binding, are eagerly awaited in the field of bioprinting. Several bioactive laminin sequences, including peptides such as YIGSR and IKVAV, have been identified to promote endothelial cell attachment and/or neurite outgrowth and guidance, respectively. Here, we show the development of two distinct bioinks, designed to foster vasculogenesis or neurogenesis, based on methacrylated collagen and hyaluronic acid (CollMA and HAMA, respectively), both relevant ECM-derived polymers, and on their combination with cysteine-flanked laminin-derived peptides. Using this strategy, it was possible to optimize the bioink printability, by tuning CollMA and HAMA concentration and ratio, and modulate their bioactivity, through adjustments in the cell-active peptide sequence spatial density, without compromising cell viability. We demonstrated that cell-specific bioinks could be customized for the bioprinting of both human umbilical vein cord endothelial cells (HUVECs) or adult rat sensory neurons from the dorsal root ganglia, and could stimulate both vasculogenesis and neurite outgrowth, respectively. This approach holds great potential as it can be tailored to other cellular models, due to its inherent capacity to accommodate different peptide compositions and to generate complex peptide mixtures and/or gradients.
AUTHOR Tan, Edgar Y. S. and Suntornnond, Ratima and Yeong, Wai Yee
Title High-Resolution Novel Indirect Bioprinting of Low-Viscosity Cell-Laden Hydrogels via Model-Support Bioink Interaction [Abstract]
Year 2021
Journal/Proceedings 3D Printing and Additive Manufacturing
Reftype
DOI/URL DOI
Abstract
Abstract Bioprinting of unmodified soft extracellular matrix into complex 3D structures has remained challenging to fabricate. Herein, we established a novel process for the printing of low-viscosity hydrogel by using a unique support technique to retain the structural integrity of the support structure. We demonstrated that this process of printing could be used for different types of hydrogel, ranging from fast crosslinking gelatin methacrylate to slow crosslinking collagen type I. In addition, we evaluated the biocompatibility of the process by observing the effects of the cytotoxicity of L929 and the functionality of the human umbilical vein endothelium primary cells after printing. The results show that the bioprinted construct provided excellent biocompatibility as well as supported cell growth and differentiation. Thus, this is a novel technique that can be potentially used to enhance the resolution of the extrusion-based bioprinter.
AUTHOR Lechner, Annika and Trossmann, Vanessa T. and Scheibel, Thomas
Title Impact of Cell Loading of Recombinant Spider Silk Based Bioinks on Gelation and Printability [Abstract]
Year 2021
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI
Abstract
Abstract Printability of bioinks encompasses considerations concerning rheology and extrudability, characterization of filament formation, shape fidelity, cell viability and post-printing cellular development. Recombinant spider silk based hydrogels might be a suitable material to be used in bioinks, i.e. a formulation of cells and materials to be used for bioprinting. Here, the high shape fidelity of spider silk ink is shown by bioprinting the shape and size of a human aortic valve. Further the influence of the encapsulation of cells has been evaluated on spider silk hydrogel formation, hydrogel mechanics, and shape fidelity upon extrusion based bioprinting. It is shown that the presence of cells impacts gelation of spider silk proteins differently depending on the used silk variant. RGD-modified spider silk hydrogels are physically crosslinked by the cells, while there is no active interaction between cells and un-tagged spider silk proteins. Strikingly, even at cell densities up to ten million cells/ml, cell viability is high after extrusion based printing which is a significant prerequisite for future applications. Shape fidelity of the printed constructs is demonstrated using a filament collapse test in absence and presence of human cells. This article is protected by copyright. All rights reserved
AUTHOR e Silva, Edney P. and Huang, Boyang and Helaehil, Júlia V. and Nalesso, Paulo R. L. and Bagne, Leonardo and de Oliveira, Maraiara A. and Albiazetti, Gabriela C. C. and Aldalbahi, Ali and El-Newehy, Mohamed and Santamaria-Jr, Milton and Mendonça, Fernanda A. S. and Bártolo, Paulo and Caetano, Guilherme F.
Title In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering [Abstract]
Year 2021
Journal/Proceedings Bio-Design and Manufacturing
Reftype e Silva2021
DOI/URL DOI
Abstract
Critical bone defects are considered one of the major clinical challenges in reconstructive bone surgery. The combination of 3D printed conductive scaffolds and exogenous electrical stimulation (ES) is a potential favorable approach for bone tissue repair. In this study, 3D conductive scaffolds made with biocompatible and biodegradable polycaprolactone (PCL) and multi-walled carbon nanotubes (MWCNTs) were produced using the extrusion-based additive manufacturing to treat large calvary bone defects in rats. Histology results show that the use of PCL/MWCNTs scaffolds and ES contributes to thicker and increased bone tissue formation within the bone defect. Angiogenesis and mineralization are also significantly promoted using high concentration of MWCNTs (3 wt%) and ES. Moreover, scaffolds favor the tartrate-resistant acid phosphatase (TRAP) positive cell formation, while the addition of MWCNTs seems to inhibit the osteoclastogenesis but present limited effects on the osteoclast functionalities (receptor activator of nuclear factor κβ ligand (RANKL) and osteoprotegerin (OPG) expressions). The use of ES promotes the osteoclastogenesis and RANKL expressions, showing a dominant effect in the bone remodeling process. These results indicate that the combination of 3D printed conductive PCL/MWCNTs scaffold and ES is a promising strategy to treat critical bone defects and provide a cue to establish an optimal protocol to use conductive scaffolds and ES for bone tissue engineering.
AUTHOR Zamani, Yasaman and Amoabediny, Ghassem and Mohammadi, Javad and Zandieh-Doulabi, Behrouz and Klein-Nulend, Jenneke and Helder, Marco N.
Title Increased Osteogenic Potential of Pre-Osteoblasts on Three-Dimensional Printed Scaffolds Compared to Porous Scaffolds for Bone Regeneration [Abstract]
Year 2021
Journal/Proceedings Iranian Biomedical Journal
Reftype
DOI/URL URL DOI
Abstract
Background: One of the main challenges with conventional scaffold fabrication methods is the inability to control scaffold architecture. Recently, scaffolds with controlled shape and architecture have been fabricated using three-dimensional printing (3DP). Herein, we aimed to determine whether the much tighter control of microstructure of 3DP poly(lactic-co-glycolic) acid/β-tricalcium phosphate (PLGA/β-TCP) scaffolds is more effective in promoting osteogenesis than porous scaffolds produced by solvent casting/porogen leaching. Methods: Physical and mechanical properties of porous and 3DP scaffolds were studied. The response of pre-osteoblasts to the scaffolds was analyzed after 14 days. Results: The 3DP scaffolds had a smoother surface (Ra: 22 ± 3 µm) relative to the highly rough surface of porous scaffolds (Ra: 110 ± 15 µm). Water contact angle was 112 ± 4° on porous and 76 ± 6° on 3DP scaffolds. Porous and 3DP scaffolds had the pore size of 408 ± 90 and 315 ± 17 µm and porosity of 85 ± 5% and 39 ± 7%, respectively. Compressive strength of 3DP scaffolds (4.0 ± 0.3 MPa) was higher than porous scaffolds (1.7 ± 0.2 MPa). Collagenous matrix deposition was similar on both scaffolds. Cells proliferated from day 1 to day 14 by fourfold in porous and by 3.8-fold in 3DP scaffolds. Alkaline phosphatase (ALP) activity was 21-fold higher in 3DP scaffolds than porous scaffolds. Conclusion: The 3DP scaffolds show enhanced mechanical properties and ALP activity compared to porous scaffolds in vitro, suggesting that 3DP PLGA/β-TCP scaffolds are possibly more favorable for bone formation.
AUTHOR Daskalakis, Evangelos and Liu, Fengyuan and Huang, Boyang and Acar, Anil A. and Cooper, Glen and Weightman, Andrew and Blunn, Gordon and Koç, Bahattin and Bartolo, Paulo
Title Investigating the Influence of Architecture and Material Composition of 3D Printed Anatomical Design Scaffolds for Large Bone Defects [Abstract]
Year 2021
Journal/Proceedings International Journal of Bioprinting; Vol 7, No 2 (2021)
Reftype
DOI/URL URL
Abstract
There is a significant unmet clinical need to prevent amputations due to large bone loss injuries. We are addressing this problem by developing a novel, cost-effective osseointegrated prosthetic solution based on the use of modular pieces, bone bricks, made with biocompatible and biodegradable materials that fit together in a Lego-like way to form the prosthesis. This paper investigates the anatomical designed bone bricks with different architectures, pore size gradients, and material compositions. Polymer and polymer-composite 3D printed bone bricks are extensively morphological, mechanical, and biological characterized. Composite bone bricks were produced by mixing polycaprolactone (PCL) with different levels of hydroxyapatite (HA) and β-tri-calcium phosphate (TCP). Results allowed to establish a correlation between bone bricks architecture and material composition and bone bricks performance. Reinforced bone bricks showed improved mechanical and biological results. Best mechanical properties were obtained with PCL/TCP bone bricks with 38 double zig-zag filaments and 14 spiral-like pattern filaments, while the best biological results were obtained with PCL/HA bone bricks based on 25 double zig-zag filaments and 14 spiral-like pattern filaments.
AUTHOR Wang, Weiguang and Chen, Jun-Xiang and Hou, Yanhao and Bartolo, Paulo and Chiang, Wei-Hung
Title Investigations of Graphene and Nitrogen-Doped Graphene Enhanced Polycaprolactone 3D Scaffolds for Bone Tissue Engineering [Abstract]
Year 2021
Journal/Proceedings Nanomaterials
Reftype
DOI/URL URL DOI
Abstract
Scaffolds play a key role in tissue engineering applications. In the case of bone tissue engineering, scaffolds are expected to provide both sufficient mechanical properties to withstand the physiological loads, and appropriate bioactivity to stimulate cell growth. In order to further enhance cell–cell signaling and cell–material interaction, electro-active scaffolds have been developed based on the use of electrically conductive biomaterials or blending electrically conductive fillers to non-conductive biomaterials. Graphene has been widely used as functioning filler for the fabrication of electro-active bone tissue engineering scaffolds, due to its high electrical conductivity and potential to enhance both mechanical and biological properties. Nitrogen-doped graphene, a unique form of graphene-derived nanomaterials, presents significantly higher electrical conductivity than pristine graphene, and better surface hydrophilicity while maintaining a similar mechanical property. This paper investigates the synthesis and use of high-performance nitrogen-doped graphene as a functional filler of poly(ɛ-caprolactone) (PCL) scaffolds enabling to develop the next generation of electro-active scaffolds. Compared to PCL scaffolds and PCL/graphene scaffolds, these novel scaffolds present improved in vitro biological performance.
AUTHOR Trucco, Diego and Sharma, Aarushi and Manferdini, Cristina and Gabusi, Elena and Petretta, Mauro and Desando, Giovanna and Ricotti, Leonardo and Chakraborty, Juhi and Ghosh, Sourabh and Lisignoli, Gina
Title Modeling and Fabrication of Silk Fibroin-Gelatin-Based Constructs Using Extrusion-Based Three-Dimensional Bioprinting [Abstract]
Year 2021
Journal/Proceedings ACS Biomater. Sci. Eng.
Reftype
DOI/URL DOI
Abstract
Robotic dispensing-based 3D bioprinting represents one of the most powerful technologies to develop hydrogel-based 3D constructs with enormous potential in the field of regenerative medicine. The optimization of hydrogel printing parameters, proper geometry and internal architecture of the constructs, and good cell viability during the bioprinting process are the essential requirements. In this paper, an analytical model based on the hydrogel rheological properties was developed to predict the extruded filament width in order to maximize the printed structure’s fidelity to the design. Viscosity data of two natural hydrogels were imputed to a power-law model to extrapolate the filament width. Further, the model data were validated by monitoring the obtained filament width as the output. Shear stress values occurring during the bioprinting process were also estimated. Human mesenchymal stromal cells (hMSCs) were encapsulated in the silk fibroin-gelatin (G)-based hydrogel, and a 3D bioprinting process was performed to produce cell-laden constructs. Live and dead assay allowed estimating the impact of needle shear stress on cell viability after the bioprinting process. Finally, we tested the potential of hMSCs to undergo chondrogenic differentiation by evaluating the cartilaginous extracellular matrix production through immunohistochemical analyses. Overall, the use of the proposed analytical model enables defining the optimal printing parameters to maximize the fabricated constructs’ fidelity to design parameters before the process execution, enabling to achieve more controlled and standardized products than classical trial-and-error approaches in the biofabrication of engineered constructs. Employing modeling systems exploiting the rheological properties of the hydrogels might be a valid tool in the future for guaranteeing high cell viability and for optimizing tissue engineering approaches in regenerative medicine applications. Robotic dispensing-based 3D bioprinting represents one of the most powerful technologies to develop hydrogel-based 3D constructs with enormous potential in the field of regenerative medicine. The optimization of hydrogel printing parameters, proper geometry and internal architecture of the constructs, and good cell viability during the bioprinting process are the essential requirements. In this paper, an analytical model based on the hydrogel rheological properties was developed to predict the extruded filament width in order to maximize the printed structure’s fidelity to the design. Viscosity data of two natural hydrogels were imputed to a power-law model to extrapolate the filament width. Further, the model data were validated by monitoring the obtained filament width as the output. Shear stress values occurring during the bioprinting process were also estimated. Human mesenchymal stromal cells (hMSCs) were encapsulated in the silk fibroin-gelatin (G)-based hydrogel, and a 3D bioprinting process was performed to produce cell-laden constructs. Live and dead assay allowed estimating the impact of needle shear stress on cell viability after the bioprinting process. Finally, we tested the potential of hMSCs to undergo chondrogenic differentiation by evaluating the cartilaginous extracellular matrix production through immunohistochemical analyses. Overall, the use of the proposed analytical model enables defining the optimal printing parameters to maximize the fabricated constructs’ fidelity to design parameters before the process execution, enabling to achieve more controlled and standardized products than classical trial-and-error approaches in the biofabrication of engineered constructs. Employing modeling systems exploiting the rheological properties of the hydrogels might be a valid tool in the future for guaranteeing high cell viability and for optimizing tissue engineering approaches in regenerative medicine applications.
AUTHOR Petretta, Mauro and Gambardella, Alessandro and Desando, Giovanna and Cavallo, Carola and Bartolotti, Isabella and Shelyakova, Tatiana and Goranov, Vitaly and Brucale, Marco and Dediu, Valentin Alek and Fini, Milena and Grigolo, Brunella
Title Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering [Abstract]
Year 2021
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
Multifunctional and resistant 3D structures represent a great promise and a great challenge in bone tissue engineering. This study addresses this problem by employing polycaprolactone (PCL)-based scaffolds added with hydroxyapatite (HAp) and superparamagnetic iron oxide nanoparticles (SPION), able to drive on demand the necessary cells and other bioagents for a high healing efficiency. PCL-HAp-SPION scaffolds with different concentrations of the superparamagnetic component were developed through the 3D-printing technology and the specific topographical features were detected by Atomic Force and Magnetic Force Microscopy (AFM-MFM). AFM-MFM measurements confirmed a homogenous distribution of HAp and SPION throughout the surface. The magnetically assisted seeding of cells in the scaffold resulted most efficient for the 1% SPION concentration, providing good cell entrapment and adhesion rates. Mesenchymal Stromal Cells (MSCs) seeded onto PCL-HAp-1% SPION showed a good cell proliferation and intrinsic osteogenic potential, indicating no toxic effects of the employed scaffold materials. The performed characterizations and the collected set of data point on the inherent osteogenic potential of the newly developed PCL-HAp-1% SPION scaffolds, endorsing them towards next steps of in vitro and in vivo studies and validations.
AUTHOR Korpershoek, Jasmijn V. and Ruijter, Mylène de and Terhaard, Bastiaan F. and Hagmeijer, Michella H. and Saris, Daniël B.F. and Castilho, Miguel and Malda, Jos and Vonk, Lucienne A.
Title Potential of Melt Electrowritten Scaffolds Seeded with Meniscus Cells and Mesenchymal Stromal Cells [Abstract]
Year 2021
Journal/Proceedings International Journal of Molecular Sciences
Reftype
DOI/URL URL DOI
Abstract
Meniscus injury and meniscectomy are strongly related to osteoarthritis, thus there is a clinical need for meniscus replacement. The purpose of this study is to create a meniscus scaffold with micro-scale circumferential and radial fibres suitable for a one-stage cell-based treatment. Poly-caprolactone-based scaffolds with three different architectures were made using melt electrowriting (MEW) technology and their in vitro performance was compared with scaffolds made using fused-deposition modelling (FDM) and with the clinically used Collagen Meniscus Implants® (CMI®). The scaffolds were seeded with meniscus and mesenchymal stromal cells (MSCs) in fibrin gel and cultured for 28 d. A basal level of proteoglycan production was demonstrated in MEW scaffolds, the CMI®, and fibrin gel control, yet within the FDM scaffolds less proteoglycan production was observed. Compressive properties were assessed under uniaxial confined compression after 1 and 28 d of culture. The MEW scaffolds showed a higher Young’s modulus when compared to the CMI® scaffolds and a higher yield point compared to FDM scaffolds. This study demonstrates the feasibility of creating a wedge-shaped meniscus scaffold with MEW using medical-grade materials and seeding the scaffold with a clinically-feasible cell number and -type for potential translation as a one-stage treatment.
AUTHOR Lotz, Benedict and Bothe, Friederike and Deubel, Anne-Kathrin and Hesse, Eliane and Renz, Yvonne and Werner, Carsten and Schäfer, Simone and Böck, Thomas and Groll, Jürgen and von Rechenberg, Brigitte and Richter, Wiltrud and Hagmann, Sebastien
Title Preclinical Testing of New Hydrogel Materials for Cartilage Repair: Overcoming Fixation Issues in a Large Animal Model [Abstract]
Year 2021
Journal/Proceedings International Journal of Biomaterials
Reftype
DOI/URL DOI
Abstract
Reinforced hydrogels represent a promising strategy for tissue engineering of articular cartilage. They can recreate mechanical and biological characteristics of native articular cartilage and promote cartilage regeneration in combination with mesenchymal stromal cells. One of the limitations of in vivo models for testing the outcome of tissue engineering approaches is implant fixation. The high mechanical stress within the knee joint, as well as the concave and convex cartilage surfaces, makes fixation of reinforced hydrogel challenging. Methods. Different fixation methods for full-thickness chondral defects in minipigs such as fibrin glue, BioGlue®, covering, and direct suturing of nonenforced and enforced constructs were compared. Because of insufficient fixation in chondral defects, superficial osteochondral defects in the femoral trochlea, as well as the femoral condyle, were examined using press-fit fixation. Two different hydrogels (starPEG and PAGE) were compared by 3D-micro-CT (μCT) analysis as well as histological analysis. Results. Our results showed fixation of below 50% for all methods in chondral defects. A superficial osteochondral defect of 1 mm depth was necessary for long-term fixation of a polycaprolactone (PCL)-reinforced hydrogel construct. Press-fit fixation seems to be adapted for a reliable fixation of 95% without confounding effects of glue or suture material. Despite the good integration of our constructs, especially in the starPEG group, visible bone lysis was detected in micro-CT analysis. There was no significant difference between the two hydrogels (starPEG and PAGE) and empty control defects regarding regeneration tissue and cell integration. However, in the starPEG group, more cell-containing hydrogel fragments were found within the defect area. Conclusion. Press-fit fixation in a superficial osteochondral defect in the medial trochlear groove of adult minipigs is a promising fixation method for reinforced hydrogels. To avoid bone lysis, future approaches should focus on multilayered constructs recreating the zonal cartilage as well as the calcified cartilage and the subchondral bone plate.
AUTHOR Plou, Javier and Charconnet, Mathias and García, Isabel and Calvo, Javier and Liz-Marzán, Luis M.
Title Preventing Memory Effects in Surface-Enhanced Raman Scattering Substrates by Polymer Coating and Laser-Activated Deprotection [Abstract]
Year 2021
Journal/Proceedings ACS Nano
Reftype
DOI/URL DOI
Abstract
The development of continuous monitoring systems requires in situ sensors that are capable of screening multiple chemical species and providing real-time information. Such in situ measurements, in which the sample is analyzed at the point of interest, are hindered by underlying problems derived from the recording of successive measurements within complex environments. In this context, surface-enhanced Raman scattering (SERS) spectroscopy appears as a noninvasive technology with the ability of identifying low concentrations of chemical species as well as resolving dynamic processes under different conditions. To this aim, the technique requires the use of a plasmonic substrate, typically made of nanostructured metals such as gold or silver, to enhance the Raman signal of adsorbed molecules (the analyte). However, a common source of uncertainty in real-time SERS measurements originates from the irreversible adsorption of (analyte) molecules onto the plasmonic substrate, which may interfere in subsequent measurements. This so-called “SERS memory effect” leads to measurements that do not accurately reflect varying conditions of the sample over time. We introduce herein the design of plasmonic substrates involving a nonpermeable poly(lactic-co-glycolic acid) (PLGA) thin layer on top of the plasmonic nanostructure, toward controlling the adsorption of molecules at different times. The polymeric layer can be locally degraded by irradiation with the same laser used for SERS measurements (albeit at a higher fluence), thereby creating a micrometer-sized window on the plasmonic substrate available to molecules present in solution at a selected measurement time. Using SERS substrates coated with such thermolabile polymer layers, we demonstrate the possibility of performing over 10,000 consecutive measurements per substrate as well as accurate continuous monitoring of analytes in microfluidic channels and biological systems. The development of continuous monitoring systems requires in situ sensors that are capable of screening multiple chemical species and providing real-time information. Such in situ measurements, in which the sample is analyzed at the point of interest, are hindered by underlying problems derived from the recording of successive measurements within complex environments. In this context, surface-enhanced Raman scattering (SERS) spectroscopy appears as a noninvasive technology with the ability of identifying low concentrations of chemical species as well as resolving dynamic processes under different conditions. To this aim, the technique requires the use of a plasmonic substrate, typically made of nanostructured metals such as gold or silver, to enhance the Raman signal of adsorbed molecules (the analyte). However, a common source of uncertainty in real-time SERS measurements originates from the irreversible adsorption of (analyte) molecules onto the plasmonic substrate, which may interfere in subsequent measurements. This so-called “SERS memory effect” leads to measurements that do not accurately reflect varying conditions of the sample over time. We introduce herein the design of plasmonic substrates involving a nonpermeable poly(lactic-co-glycolic acid) (PLGA) thin layer on top of the plasmonic nanostructure, toward controlling the adsorption of molecules at different times. The polymeric layer can be locally degraded by irradiation with the same laser used for SERS measurements (albeit at a higher fluence), thereby creating a micrometer-sized window on the plasmonic substrate available to molecules present in solution at a selected measurement time. Using SERS substrates coated with such thermolabile polymer layers, we demonstrate the possibility of performing over 10,000 consecutive measurements per substrate as well as accurate continuous monitoring of analytes in microfluidic channels and biological systems.
AUTHOR Moghaddam, Abolfazl Salehi and Khonakdar, Hossein Ali and Arjmand, Mohammad and Jafari, Seyed Hassan and Bagher, Zohreh and Moghaddam, Zahra Salehi and Chimerad, Mohammadreza and Sisakht, Mahsa Mollapour and Shojaei, Shahrokh
Title Review of Bioprinting in Regenerative Medicine: Naturally Derived Bioinks and Stem Cells [Abstract]
Year 2021
Journal/Proceedings ACS Appl. Bio Mater.
Reftype
DOI/URL DOI
Abstract
Regenerative medicine offers the potential to repair or substitute defective tissues by constructing active tissues to address the scarcity and demands for transplantation. The method of forming 3D constructs made up of biomaterials, cells, and biomolecules is called bioprinting. Bioprinting of stem cells provides the ability to reliably recreate tissues, organs, and microenvironments to be used in regenerative medicine. 3D bioprinting is a technique that uses several biomaterials and cells to tailor a structure with clinically relevant geometries and sizes. This technique’s promise is demonstrated by 3D bioprinted tissues, including skin, bone, cartilage, and cardiovascular, corneal, hepatic, and adipose tissues. Several bioprinting methods have been combined with stem cells to effectively produce tissue models, including adult stem cells, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and differentiation techniques. In this review, technological challenges of printed stem cells using prevalent naturally derived bioinks (e.g., carbohydrate polymers and protein-based polymers, peptides, and decellularized extracellular matrix), recent advancements, leading companies, and clinical trials in the field of 3D bioprinting are delineated. Regenerative medicine offers the potential to repair or substitute defective tissues by constructing active tissues to address the scarcity and demands for transplantation. The method of forming 3D constructs made up of biomaterials, cells, and biomolecules is called bioprinting. Bioprinting of stem cells provides the ability to reliably recreate tissues, organs, and microenvironments to be used in regenerative medicine. 3D bioprinting is a technique that uses several biomaterials and cells to tailor a structure with clinically relevant geometries and sizes. This technique’s promise is demonstrated by 3D bioprinted tissues, including skin, bone, cartilage, and cardiovascular, corneal, hepatic, and adipose tissues. Several bioprinting methods have been combined with stem cells to effectively produce tissue models, including adult stem cells, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and differentiation techniques. In this review, technological challenges of printed stem cells using prevalent naturally derived bioinks (e.g., carbohydrate polymers and protein-based polymers, peptides, and decellularized extracellular matrix), recent advancements, leading companies, and clinical trials in the field of 3D bioprinting are delineated.
AUTHOR Chawla, Shikha and Desando, Giovanna and Gabusi, Elena and Sharma, Aarushi and Trucco, Diego and Chakraborty, Juhi and Manferdini, Cristina and Petretta, Mauro and Lisignoli, Gina and Ghosh, Sourabh
Title The effect of silk-gelatin bioink and TGF-β3 on mesenchymal stromal cells in 3D bioprinted chondrogenic constructs: A proteomic study [Abstract]
Year 2021
Journal/Proceedings Journal of Materials Research
Reftype Chawla2021
DOI/URL DOI
Abstract
Major limitation of 3D bioprinting is the poor understanding of the role of bioink in modulating molecular signaling pathways. Phenotypically stable engineered articular cartilage was fabricated using silk fibroin-gelatin (SF-G) bioink and progenitor cells or mature articular chondrocytes. In the current study, role of SF-G bioink in modulating in vitro chondrogenic signaling pathways in human bone marrow-derived stromal cells (hMSCs) is elucidated. The interaction between SF-G bioink and hMSCs augmented several chondrogenic pathways, including Wnt, HIF-1, and Notch. We explored the debatable role of TGF-β signaling, by assessing the differential protein expression by hMSCs-laden bioprinted constructs in the presence and absence of TGF-β3. hMSCs-laden bioprinted constructs contained a large percentage of collagen type II and Filamin-B, typical to the native articular cartilage. Hypertrophy markers were not identified following TGF-β3 addition. This is first detailed proteomics analysis to identify articular cartilage-specific pathways in SF-G-based 3D bioprinted construct.
AUTHOR Göckler, Tobias and Haase, Sonja and Kempter, Xenia and Pfister, Rebecca and Maciel, Bruna R. and Grimm, Alisa and Molitor, Tamara and Willenbacher, Norbert and Schepers, Ute
Title Tuning Superfast Curing Thiol-Norbornene-Functionalized Gelatin Hydrogels for 3D Bioprinting [Abstract]
Year 2021
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Photocurable gelatin-based hydrogels have established themselves as powerful bioinks in tissue engineering due to their excellent biocompatibility, biodegradability, light responsiveness, thermosensitivity and bioprinting properties. While gelatin methacryloyl (GelMA) has been the gold standard for many years, thiol-ene hydrogel systems based on norbornene-functionalized gelatin (GelNB) and a thiolated crosslinker have recently gained increasing importance. In this paper, a highly reproducible water-based synthesis of GelNB is presented, avoiding the use of dimethyl sulfoxide (DMSO) as organic solvent and covering a broad range of degrees of functionalization (DoF: 20% to 97%). Mixing with thiolated gelatin (GelS) results in the superfast curing photoclick hydrogel GelNB/GelS. Its superior properties over GelMA, such as substantially reduced amounts of photoinitiator (0.03% (w/v)), superfast curing (1–2 s), higher network homogeneity, post-polymerization functionalization ability, minimal cross-reactivity with cellular components, and improved biocompatibility of hydrogel precursors and degradation products lead to increased survival of primary cells in 3D bioprinting. Post-printing viability analysis revealed excellent survival rates of > 84% for GelNB/GelS bioinks of varying crosslinking density, while cell survival for GelMA bioinks is strongly dependent on the DoF. Hence, the semisynthetic and easily accessible GelNB/GelS hydrogel is a highly promising bioink for future medical applications and other light-based biofabrication techniques.
AUTHOR De Moor, Lise and Minne, Mendy and Tytgat, Liesbeth and Vercruysse, Chris and Dubruel, Peter and Van Vlierberghe, Sandra and Declercq, Heidi
Title Tuning the Phenotype of Cartilage Tissue Mimics by Varying Spheroid Maturation and Methacrylamide-Modified Gelatin Hydrogel Characteristics [Abstract]
Year 2021
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI
Abstract
Abstract In hybrid bioprinting of cartilage tissue constructs, spheroids are used as cellular building blocks and combined with biomaterials for dispensing. However, biomaterial intrinsic cues can deeply affect cell fate and to date, the influence of hydrogel encapsulation on spheroid viability and phenotype has received limited attention. This study assesses this need and unravels 1) how the phenotype of spheroid-laden constructs can be tuned through adjusting the hydrogel physico–chemical properties and 2) if the spheroid maturation stage prior to encapsulation is a determining factor for the construct phenotype. Articular chondrocyte spheroids with a cartilage specific extracellular matrix (ECM) are generated and different maturation stages, early-, mid-, and late-stage (3, 7, and 14 days, respectively), are harvested and encapsulated in 10, 15, or 20 w/v% methacrylamide-modified gelatin (gelMA) for 14 days. The encapsulation of immature spheroids do not lead to a cartilage-like ECM production but when more mature mid- or late-stage spheroids are combined with a certain concentration of gelMA, a fibrocartilage-like as well as a hyaline cartilage-like phenotype can be induced. As a proof of concept, late-stage spheroids are bioprinted using a 10 w/v% gelMA–Irgacure 2959 solution with the aim to test the processing potential of the spheroid-laden bioink.
AUTHOR Hamid, Omar A. and Eltaher, Hoda M. and Sottile, Virginie and Yang, Jing
Title 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair [Abstract]
Year 2020
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Development of a biomimetic tubular scaffold capable of recreating developmental neurogenesis using pluripotent stem cells offers a novel strategy for the repair of spinal cord tissues. Recent advances in 3D printing technology have facilitated biofabrication of complex biomimetic environments by precisely controlling the 3D arrangement of various acellular and cellular components (biomaterials, cells and growth factors). Here, we present a 3D printing method to fabricate a complex, patterned and embryoid body (EB)-laden tubular scaffold composed of polycaprolactone (PCL) and hydrogel (alginate or gelatine methacrylate (GelMA)). Our results revealed 3D printing of a strong, macro-porous PCL/hydrogel tubular scaffold with a high capacity to control the porosity of the PCL scaffold, wherein the maximum porosity in the PCL wall was 15%. The method was equally employed to create spatiotemporal protein concentration within the scaffold, demonstrating its ability to generate linear and opposite gradients of model molecules (fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA) and rhodamine). 3D bioprinting of EBs-laden GelMA was introduced as a novel 3D printing strategy to incorporate EBs in a hydrogel matrix. Cell viability and proliferation were measured post-printing. Following the bioprinting of EBs-laden 5% GelMA hydrogel, neural differentiation of EBs was induced using 1 μM retinoic acid (RA). The differentiated EBs contained βIII-tubulin positive neurons displaying axonal extensions and cells migration. Finally, 3D bioprinting of EBs-laden PCL/GelMA tubular scaffold successfully supported EBs neural differentiation and patterning in response to co-printing with 1 μM RA. 3D printing of a complex heterogeneous tubular scaffold that can encapsulate EBs, spatially controlled protein concentration and promote neuronal patterning will help in developing more biomimetic scaffolds capable of replicating the neural patterning which occurs during neural tube development.
AUTHOR Chen, Shengyang and Jang, Tae-Sik and Pan, Houwen Matthew and Jung, Hyun-Do and Sia, Ming Wei and Xie, Shuying and Hang, Yao and Chong, Seow and Wong, Dongan
Title 3D Freeform Printing of Nanocomposite Hydrogels through in situ Precipitation in Reactive Viscous Fluid
Year 2020
Journal/Proceedings International Journal of Bioprinting
Reftype
DOI/URL DOI
AUTHOR Lin, Che-Wei and Su, Yu-Feng and Lee, Chih-Yun and Kang, Lin and Wang, Yan-Hsiung and Lin, Sung-Yen and Wang, Chih-Kuang
Title 3D printed bioceramics fabricated using negative thermoresponsive hydrogels and silicone oil sealing to promote bone formation in calvarial defects [Abstract]
Year 2020
Journal/Proceedings Ceramics International
Reftype
DOI/URL URL DOI
Abstract
The purpose of the present work was to investigate the potential for application and the effectiveness of osteoconductive scaffolds with bicontinuous phases of 3D printed bioceramics (3DP-BCs) based on reverse negative thermoresponsive hydrogels (poly[(N-isopropylacrylamide)-co-(methacrylic acid)]; p(NiPAAm-MAA)). 3DP-BCs have bioceramic objects and microchannel pores when created using robotic deposition additive manufacturing. We evaluated the benefits of silicone oil sealing on the 3DP-BC green body during the sintering process in terms of densification and structural stability. The shrinkage, density, porosity, element composition, phase structure and microstructural analyses and compression strength measurements of sintered 3DP-BC objects are presented and discussed in this study. In addition, the results of cell viability assays and bone healing analyses of the calvarial bone defects in a rabbit model were used to evaluate 3DP-BC performance. The main results indicated that these 3DP-BC scaffolds have optimal continuous pores and adequate compressive strength, which can enable the protection of calvarial defects and provide an environment for cell growth. Therefore, 3DP-BC scaffolds have better new bone regeneration efficiency in rabbit calvarial bone defect models than empty scaffolds and mold-forming bioceramic scaffolds (MF-BCs).
AUTHOR Critchley, Susan and Sheehy, Eamon J. and Cunniffe, Gráinne and Diaz-Payno, Pedro and Carroll, Simon F. and Jeon, Oju and Alsberg, Eben and Brama, Pieter A. J. and Kelly, Daniel J.
Title 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects [Abstract]
Year 2020
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
Successful osteochondral defect repair requires regenerating the subchondral bone whilst simultaneously promoting the development of an overlying layer of articular cartilage that is resistant to vascularization and endochondral ossification. During skeletal development articular cartilage also functions as a surface growth plate, which postnatally is replaced by a more spatially complex bone-cartilage interface. Motivated by this developmental process, the hypothesis of this study is that bi-phasic, fibre-reinforced cartilaginous templates can regenerate both the articular cartilage and subchondral bone within osteochondral defects created in caprine joints. To engineer mechanically competent implants, we first compared a range of 3D printed fibre networks (PCL, PLA and PLGA) for their capacity to mechanically reinforce alginate hydrogels whilst simultaneously supporting mesenchymal stem cell (MSC) chondrogenesis in vitro. These mechanically reinforced, MSC-laden alginate hydrogels were then used to engineer the endochondral bone forming phase of bi-phasic osteochondral constructs, with the overlying chondral phase consisting of cartilage tissue engineered using a co-culture of infrapatellar fat pad derived stem/stromal cells (FPSCs) and chondrocytes. Following chondrogenic priming and subcutaneous implantation in nude mice, these bi-phasic cartilaginous constructs were found to support the development of vascularised endochondral bone overlaid by phenotypically stable cartilage. These fibre-reinforced, bi-phasic cartilaginous templates were then evaluated in clinically relevant, large animal (caprine) model of osteochondral defect repair. Although the quality of repair was variable from animal-to-animal, in general more hyaline-like cartilage repair was observed after 6 months in animals treated with bi-phasic constructs compared to animals treated with commercial control scaffolds. This variability in the quality of repair points to the need for further improvements in the design of 3D bioprinted implants for joint regeneration. Statement of Significance Successful osteochondral defect repair requires regenerating the subchondral bone whilst simultaneously promoting the development of an overlying layer of articular cartilage. In this study, we hypothesised that bi-phasic, fibre-reinforced cartilaginous templates could be leveraged to regenerate both the articular cartilage and subchondral bone within osteochondral defects. To this end we used 3D printed fibre networks to mechanically reinforce engineered transient cartilage, which also contained an overlying layer of phenotypically stable cartilage engineered using a co-culture of chondrocytes and stem cells. When chondrogenically primed and implanted into caprine osteochondral defects, these fibre-reinforced bi-phasic cartilaginous grafts were shown to spatially direct tissue development during joint repair. Such developmentally inspired tissue engineering strategies, enabled by advances in biofabrication and 3D printing, could form the basis of new classes of regenerative implants in orthopaedic medicine.
AUTHOR Wibowo, Arie and Vyas, Cian and Cooper, Glen and Qulub, Fitriyatul and Suratman, Rochim and Mahyuddin, Andi Isra and Dirgantara, Tatacipta and Bartolo, Paulo
Title 3D Printing of Polycaprolactone-Polyaniline Electroactive Scaffolds for Bone Tissue Engineering. [Abstract]
Year 2020
Journal/Proceedings Materials
Reftype
DOI/URL DOI
Abstract
Electrostimulation and electroactive scaffolds can positively influence and guide cellular behaviour and thus has been garnering interest as a key tissue engineering strategy. The development of conducting polymers such as polyaniline enables the fabrication of conductive polymeric composite scaffolds. In this study, we report on the initial development of a polycaprolactone scaffold incorporating different weight loadings of a polyaniline microparticle filler. The scaffolds are fabricated using screw-assisted extrusion-based 3D printing and are characterised for their morphological, mechanical, conductivity, and preliminary biological properties. The conductivity of the polycaprolactone scaffolds increases with the inclusion of polyaniline. The in vitro cytocompatibility of the scaffolds was assessed using human adipose-derived stem cells to determine cell viability and proliferation up to 21 days. A cytotoxicity threshold was reached at 1% wt. polyaniline loading. Scaffolds with 0.1% wt. polyaniline showed suitable compressive strength (6.45 ± 0.16 MPa) and conductivity (2.46 ± 0.65 × 10(-4) S/cm) for bone tissue engineering applications and demonstrated the highest cell viability at day 1 (88%) with cytocompatibility for up to 21 days in cell culture.
AUTHOR García-Astrain, Clara and Lenzi, Elisa and Jimenez de Aberasturi, Dorleta and Henriksen-Lacey, Malou and Binelli, Marco R. and Liz-Marzán, Luis M.
Title 3D-Printed Biocompatible Scaffolds with Built-In Nanoplasmonic Sensors [Abstract]
Year 2020
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract 3D printing strategies have acquired great relevance toward the design of 3D scaffolds with precise macroporous structures, for supported mammalian cell growth. Despite advances in 3D model designs, there is still a shortage of detection tools to precisely monitor in situ cell behavior in 3D, thereby allowing a better understanding of the progression of diseases or to test the efficacy of drugs in a more realistic microenvironment. Even if the number of available inks has exponentially increased, they do not necessarily offer the required functionalities to be used as internal sensors. Herein the potential of surface-enhanced Raman scattering (SERS) spectroscopy for the detection of biorelevant analytes within a plasmonic hydrogel-based, 3D-printed scaffold is demonstrated. Such SERS-active scaffolds allow for the 3D detection of model molecules, such as 4-mercaptobenzoic acid. Flexibility in the choice of plasmonic nanoparticles is demonstrated through the use of gold nanoparticles with different morphologies, gold nanorods showing the best balance between SERS enhancement and scaffold transparency. Detection of the biomarker adenosine is also demonstrated as a proof-of-concept toward the use of these plasmonic scaffolds for SERS sensing of cell-secreted molecules over extended periods of time.
AUTHOR Mancini, I. A. D. and Schmidt, S. and Brommer, H. and Pouran, B. and Schäfer, S. and Tessmar, J. and Mensinga, A. and van Rijen, M. H. P. and Groll, J. and Blunk, T. and Levato, R. and Malda, J. and van Weeren, P. R.
Title A composite hydrogel-3D printed thermoplast osteochondral anchor as example for a zonal approach to cartilage repair: in vivo performance in a long-term equine model [Abstract]
Year 2020
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Recent research has been focusing on the generation of living personalized osteochondral constructs for joint repair. Native articular cartilage has a zonal structure, which is not reflected in current constructs and which may be a cause of the frequent failure of these repair attempts. Therefore, we investigated the performance of a composite implant that further reflects the zonal distribution of cellular component both in vitro and in vivo in a long-term equine model. Constructs constituted of a 3D-printed poly(ϵ-caprolactone) (PCL) bone anchor from which reinforcing fibers protruded into the chondral part of the construct over which two layers of a thiol-ene cross-linkable hyaluronic acid/poly(glycidol) hybrid hydrogel (HA-SH/P(AGE-co-G)) were fabricated. The top layer contained Articular Cartilage Progenitor Cells (ACPCs) derived from the superficial layer of native cartilage tissue, the bottom layer contained mesenchymal stromal cells (MSCs). The chondral part of control constructs were homogeneously filled with MSCs. After six months in vivo, microtomography revealed significant bone growth into the anchor. Histologically, there was only limited production of cartilage-like tissue (despite persistency of hydrogel) both in zonal and non-zonal constructs. There were no differences in histological scoring; however, the repair tissue was significantly stiffer in defects repaired with zonal constructs. The sub-optimal quality of the repair tissue may be related to several factors, including early loss of implanted cells, or inappropriate degradation rate of the hydrogel. Nonetheless, this approach may be promising and research into further tailoring of biomaterials and of construct characteristics seems warranted.
AUTHOR Wang, Zehao and Hui, Aiping and Zhao, Hongbin and Ye, Xiaohan and Zhang, Chao and Wang, Aiqin and Zhang, Changqing
Title A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration [Abstract]
Year 2020
Journal/Proceedings International Journal of Nanomedicine
Reftype
DOI/URL URL
Abstract
BACKGROUND: Natural clay nanomaterials are an emerging class of biomaterial with great potential for tissue engineering and regenerative medicine applications, most notably for osteogenesis. MATERIALS AND METHODS: Herein, for the first time, novel tissue engineering scaffolds were prepared by 3D bioprinter using nontoxic and bioactive natural attapulgite (ATP) nanorods as starting materials, with polyvinyl alcohol as binder, and then sintered to obtain final scaffolds. The microscopic morphology and structure of ATP particles and scaffolds were observed by transmission electron microscope and scanning electron microscope. In vitro biocompatibility and osteogenesis with osteogenic precursor cell (hBMSCs) were assayed using MTT method, Live/Dead cell staining, alizarin red staining and RT-PCR. In vivo bone regeneration was evaluated with micro-CT and histology analysis in rat cranium defect model. RESULTS: We successfully printed a novel porous nano-ATP scaffold designed with inner channels with a dimension of 500 µm and wall structures with a thickness of 330 µm. The porosity of current 3D-printed scaffolds ranges from 75% to 82% and the longitudinal compressive strength was up to 4.32±0.52 MPa. We found firstly that nano-ATP scaffolds with excellent biocompatibility for hBMSCscould upregulate the expression of osteogenesis-related genes bmp2 and runx2 and calcium deposits in vitro. Interestingly, micro-CT and histology analysis revealed abundant newly formed bone was observed along the defect margin, even above and within the 3D bioprinted porous ATP scaffolds in a rat cranial defect model. Furthermore, histology analysis demonstrated that bone was formed directly following a process similar to membranous ossification without any intermediate cartilage formation and that many newly formed blood vessels are within the pores of 3D-printed scaffolds at four and eight weeks. CONCLUSION: These results suggest that the 3D-printed porous nano-ATP scaffolds are promising candidates for bone tissue engineering by osteogenesis and angiogenesis.
AUTHOR Moxon, Sam and Ferreira, Miguel and Santos, Patricia and Popa, Bogdan and Gloria, Antonio and Katsarava, Ramaz and Tugushi, David and Serra, Armenio and Hooper, Nigel and Kimber, Susan and Fonseca, Ana and Domingos, Marco
Title A Preliminary Evaluation of the Pro-Chondrogenic Potential of 3D-Bioprinted Poly(ester Urea) Scaffolds
Year 2020
Journal/Proceedings Polymers
Reftype
DOI/URL DOI
AUTHOR Li, Zuxi and Zhang, Xiao and Yuan, Tao and Zhang, Yi and Luo, Chunyang and Zhang, Jiyong and Liu, Yang and Fan, Weimin
Title Addition of Platelet-Rich Plasma to Silk Fibroin Hydrogel Bioprinting for Cartilage Regeneration [Abstract]
Year 2020
Journal/Proceedings Tissue Engineering Part A
Reftype
DOI/URL DOI
Abstract
The recent advent of 3D bioprinting of biopolymers provides a novel method for fabrication of tissue-engineered scaffolds and also offers a potentially promising avenue in cartilage regeneration. Silk fibroin (SF) is one of the most popular biopolymers used for 3D bioprinting, but further application of SF is hindered by its limited biological activities. Incorporation of growth factors (GFs) has been identified as a solution to improve biological function. Platelet-rich plasma (PRP) is an autologous resource of GFs, which has been widely used in clinic. In this study, we have developed SF-based bioinks incorporated with different concentrations of PRP (12.5%, 25%, and 50%; vol/vol). Release kinetic studies show that SF-PRP bioinks could achieve controlled release of GFs. Subsequently, SF-PRP bioinks were successfully fabricated into scaffolds by bioprinting. Our results revealed that SF-PRP scaffolds possessed proper internal pore structure, good biomechanical properties, and a suitable degradation rate for cartilage regeneration. Live/dead staining showed that 3D, printed SF-PRP scaffolds were biocompatible. Moreover, in vitro studies revealed that tissue-engineered cartilage from the SF-PRP group exhibited improved qualities compared with the pure SF controls, according to histological and immunohistochemical findings. Biochemical evaluations confirmed that SF-PRP (50% PRP, v/v) scaffolds allowed the largest increases in collagen and glycosaminoglycan concentrations, when compared with the pure SF group. These findings suggest that 3D, printed SF-PRP scaffolds could be potential candidates for cartilage tissue engineering.
AUTHOR Huang, Boyang and Vyas, Cian and Byun, Jae Jong and El-Newehy, Mohamed and Huang, Zhucheng and Bártolo, Paulo
Title Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation [Abstract]
Year 2020
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
The development of highly biomimetic scaffolds in terms of composition and structures, to repair or replace damaged bone tissues, is particularly relevant for tissue engineering. This paper investigates a 3D printed porous scaffold containing aligned multi-walled carbon nanotubes (MWCNTs) and nano-hydroxyapatite (nHA), mimicking the natural bone tissue from the nanoscale to macroscale level. MWCNTs with similar dimensions as collagen fibres are coupled with nHA and mixed within a polycaprolactone (PCL) matrix to produce scaffolds using a screw-assisted extrusion-based additive manufacturing system. Scaffolds with different material compositions were extensively characterised from morphological, mechanical and biological points of views. Transmission electron microscopy and polarised Raman spectroscopy confirm the presence of aligned MWCNTs within the printed filaments. The PCL/HA/MWCNTs scaffold are similar to the nanostructure of native bone and shows overall increased mechanical properties, cell proliferation, osteogenic differentiation and scaffold mineralisation, indicating a promising approach for bone tissue regeneration.
AUTHOR Estermann, Manuela and Bisig, Christoph and Septiadi, Dedy and Petri-Fink, Alke and Rothen-Rutishauser, Barbara
Title Bioprinting for Human Respiratory and Gastrointestinal In Vitro Models [Abstract]
Year 2020
Journal/Proceedings
Reftype
DOI/URL DOI
Abstract
Increasing ethical and biological concerns require a paradigm shift toward animal-free testing strategies for drug testing and hazard assessments. To this end, the application of bioprinting technology in the field of biomedicine is driving a rapid progress in tissue engineering. In particular, standardized and reproducible in vitro models produced by three-dimensional (3D) bioprinting technique represent a possible alternative to animal models, enabling in vitro studies relevant to in vivo conditions. The innovative approach of 3D bioprinting allows a spatially controlled deposition of cells and biomaterial in a layer-by-layer fashion providing a platform for engineering reproducible models. However, despite the promising and revolutionizing character of 3D bioprinting technology, standardized protocols providing detailed instructions are lacking. Here, we provide a protocol for the automatized printing of simple alveolar, bronchial, and intestine epithelial cell layers as the basis for more complex respiratory and gastrointestinal tissue models. Such systems will be useful for high-throughput toxicity screening and drug efficacy evaluation.
AUTHOR Zamani, Yasaman and Mohammadi, Javad and Amoabediny, Ghassem and Helder, Marco N. and Zandieh-Doulabi, Behrouz and Klein-Nulend, Jenneke
Title Bioprinting of Alginate-Encapsulated Pre-osteoblasts in PLGA/β-TCP Scaffolds Enhances Cell Retention but Impairs Osteogenic Differentiation Compared to Cell Seeding after 3D-Printing [Abstract]
Year 2020
Journal/Proceedings Regenerative Engineering and Translational Medicine
Reftype Zamani2020
DOI/URL DOI
Abstract
In tissue engineering, cellularization of scaffolds has typically been performed by seeding the cells after scaffold fabrication. 3D-printing technology now allows bioprinting of cells encapsulated in a hydrogel simultaneously with the scaffold material. Here, we aimed to investigate whether bioprinting or cell seeding post-printing is more effective in enhancing responses of pre-osteoblastic MC3T3-E1 cell line derived from mouse calvaria.
AUTHOR Huang, Yen-Lin and Liang, Ching-Yeu and Ritz, Danilo and Coelho, Ricardo and Septiadi, Dedy and Estermann, Manuela and Cumin, Cécile and Rimmer, Natalie and Schötzau, Andreas and Núñez López, Mónica and Fedier, André and Konantz, Martina and Vlajnic, Tatjana and Calabrese, Diego and Lengerke, Claudia and David, Leonor and Rothen-Rutishauser, Barbara and Jacob, Francis and Heinzelmann-Schwarz, Viola
Title Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis [Abstract]
Year 2020
Journal/Proceedings eLife
Reftype
DOI/URL DOI
Abstract
The extracellular matrix (ECM) plays critical roles in tumor progression and metastasis. However, the contribution of ECM proteins to early metastatic onset in the peritoneal cavity remains unexplored. Here, we suggest a new route of metastasis through the interaction of integrin alpha 2 (ITGA2) with collagens enriched in the tumor coinciding with poor outcome in patients with ovarian cancer. Using multiple gene-edited cell lines and patient-derived samples, we demonstrate that ITGA2 triggers cancer cell adhesion to collagen, promotes cell migration, anoikis resistance, mesothelial clearance, and peritoneal metastasis in vitro and in vivo. Mechanistically, phosphoproteomics identify an ITGA2-dependent phosphorylation of focal adhesion kinase and mitogen-activated protein kinase pathway leading to enhanced oncogenic properties. Consequently, specific inhibition of ITGA2-mediated cancer cell-collagen interaction or targeting focal adhesion signaling may present an opportunity for therapeutic intervention of metastatic spread in ovarian cancer.
AUTHOR Diloksumpan, Paweena and de Ruijter, Myl{`{e}}ne and Castilho, Miguel and Gbureck, Uwe and Vermonden, Tina and van Weeren, P. Ren{'{e}} and Malda, Jos and Levato, Riccardo
Title Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces [Abstract]
Year 2020
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Multi-material 3D printing technologies that resolve features at different lengths down to the microscale open new avenues for regenerative medicine, particularly in the engineering of tissue interfaces. Herein, extrusion printing of a bone-biomimetic ceramic ink and melt electrowriting (MEW) of spatially organized polymeric microfibres are integrated for the biofabrication of an osteochondral plug, with a mechanically reinforced bone-to-cartilage interface. A printable physiological temperature-setting bioceramic, based on α-tricalcium phosphate, nanohydroxyapatite and a custom-synthesized biodegradable and crosslinkable poloxamer, was developed as bone support. The mild setting reaction of the bone ink enabled us to print directly within melt electrowritten polycaprolactone meshes, preserving their micro-architecture. Ceramic-integrated MEW meshes protruded into the cartilage region of the composite plug, and were embedded with mechanically soft gelatin-based hydrogels, laden with articular cartilage chondroprogenitor cells. Such interlocking design enhanced the hydrogel-to-ceramic adhesion strength >6.5-fold, compared with non-interlocking fibre architectures, enabling structural stability during handling and surgical implantation in osteochondral defects ex vivo. Furthermore, the MEW meshes endowed the chondral compartment with compressive properties approaching those of native cartilage (20-fold reinforcement versus pristine hydrogel). The osteal and chondral compartment supported osteogenesis and cartilage matrix deposition in vitro, and the neo-synthesized cartilage matrix further contributed to the mechanical reinforcement at the ceramic-hydrogel interface. This multi-material, multi-scale 3D printing approach provides a promising strategy for engineering advanced composite constructs for the regeneration of musculoskeletal and connective tissue interfaces.
AUTHOR Müller, Michael and Fisch, Philipp and Molnar, Marc and Eggert, Sebastian and Binelli, Marco and Maniura-Weber, Katharina and Zenobi-Wong, Marcy
Title Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering [Abstract]
Year 2020
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Achieving reproducibility in the 3D printing of biomaterials requires a robust polymer synthesis method to reduce batch-to-batch variation as well as methods to assure a thorough characterization throughout the manufacturing process. Particularly biomaterial inks containing large solid fractions such as ceramic particles, often required for bone tissue engineering applications, are prone to inhomogeneity originating from inadequate mixing or particle aggregation which can lead to inconsistent printing results. The production of such an ink for bone tissue engineering consisting of gellan gum methacrylate (GG-MA), hyaluronic acid methacrylate and hydroxyapatite (HAp) particles was therefore optimized in terms of GG-MA synthesis and ink preparation process, and the ink's printability was thoroughly characterized to assure homogeneous and reproducible printing results. A new buffer mediated synthesis method for GG-MA resulted in consistent degrees of substitution which allowed the creation of large 5 g batches. We found that both the new synthesis as well as cryomilling of the polymer components of the ink resulted in a decrease in viscosity from 113 kPa·s to 11.3 kPa·s at a shear rate of 0.1 s−1 but increased ink homogeneity. The ink homogeneity was assessed through thermogravimetric analysis and a newly developed extrusion force measurement setup. The ink displayed strong inter-layer adhesion between two printed ink layers as well as between a layer of ink with and a layer without HAp. The large polymer batch production along with the characterization of the ink during the manufacturing process allows ink production in the gram scale and could be used in applications such as the printing of osteochondral grafts.
AUTHOR Zhang, Hua and Cong, Yang and Osi, Amarachi Rosemary and Zhou, Yang and Huang, Fangcheng and Zaccaria, Remo P. and Chen, Jing and Wang, Rong and Fu, Jun
Title Direct 3D Printed Biomimetic Scaffolds Based on Hydrogel Microparticles for Cell Spheroid Growth [Abstract]
Year 2020
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract Biocompatible hydrogel inks with shear-thinning, appropriate yield strength, and fast self-healing are desired for 3D bioprinting. However, the lack of ideal 3D bioprinting inks with outstanding printability and high structural fidelity, as well as cell-compatibility, has hindered the progress of extrusion-based 3D bioprinting for tissue engineering. In this study, novel self-healable pre-cross-linked hydrogel microparticles (pcHμPs) of chitosan methacrylate (CHMA) and polyvinyl alcohol (PVA) hybrid hydrogels are developed and used as bioinks for extrusion-based 3D printing of scaffolds with high fidelity and biocompatibility. The pcHμPs display excellent shear thinning when injected through a syringe and subsequently self-heal into gels as shear forces are removed. Numerical simulations indicate that the pcHμPs experience a plug flow in the nozzle with minimal disturbance, which favors a steady and continuous printing. Moreover, the pcHμPs show a self-supportive yield strength (540 Pa), which is critical for the fidelity of printed constructs. A series of biomimetic constructs with very high aspect ratio and delicate fine structures are directly printed by using the pcHμP ink. The 3D printed scaffolds support the growth of bone-marrow-derived mesenchymal stem cells and formation of cell spheroids, which are most important for tissue engineering.
AUTHOR Huang, Boyang and Aslan, Enes and Jiang, Zhengyi and Daskalakis, Evangelos and Jiao, Mohan and Aldalbahi, Ali and Vyas, Cian and Bártolo, Paulo
Title Engineered dual-scale poly (ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration [Abstract]
Year 2020
Journal/Proceedings Additive Manufacturing
Reftype
DOI/URL URL DOI
Abstract
Large bone defects due to trauma or disease present a significant clinical challenge with limited efficacy of current therapies. A key aim is to develop biomimetic scaffolds that reflect the native tissue structure with 3D printing being an important enabling technology. However, the incorporation of multiple length scales and anisotropic features, mimicking the native architecture, is difficult with current processes. In this study, we propose a simple and versatile hybrid printing process using a screw-assisted additive manufacturing technique combined with rotational electrospinning to fabricate dual-scale anisotropic scaffolds. 3D microscale porous polycaprolactone (PCL) structures with highly aligned nanoscale fibres were successfully produced layer-by-layer. The scaffolds were morphological, mechanical and biological characterised. Human adipose-derived stem cells (hADSCs) were seeded on the hybrid scaffold to evaluate the effects of structural and anisotropic topographic cues on cell attachment, proliferation and osteogenesis differentiation. Results show that the 3D printed microscale structures have uniform and well-defined geometries and the alignment of nanoscale electrospun fibres increases by increasing the electrospinning rotational velocity. Mechanical results show that there is no significant difference between 3D printed scaffolds with or without electrospun meshes. In vitro results show higher cell seeding efficiency and proliferation in dual-scale scaffolds with high density electrospun meshes. A more stretched and elongated cell morphology was observed in aligned nanofibre scaffolds showing higher anisotropic cytoskeletal organization than 3D printed PCL scaffolds without electrospun meshes. The dual-scale scaffolds present improved overall osteogenic markers expressions (COL-1, ALP and OCN). However, no statistical difference between normalised osteogenic marker expressions were observed between dual-scale scaffolds and 3D printed scaffolds. This might be attributed to the poor bioactivity of the substrate material, PCL, suggesting topographical cues might not be sufficient to stimulate cell fate towards to an osteogenic linage. The results suggest that the proposed fabrication strategy is a promising approach for the design of novel bone scaffolds to modulate cell fates by integrating the topographic cue reported in this paper with biochemical cues associated to the use of more bioactive materials.
AUTHOR Lee, Jia Min and Yeong, Wai Yee
Title Engineering macroscale cell alignment through coordinated toolpath design using support-assisted 3D bioprinting [Abstract]
Year 2020
Journal/Proceedings Journal of The Royal Society Interface
Reftype
DOI/URL DOI
Abstract
Aligned cells provide direction-dependent mechanical properties that influence biological and mechanical function in native tissues. Alignment techniques such as casting and uniaxial stretching cannot fully replicate the complex fibre orientation of native tissue such as the heart. In this study, bioprinting is used to direct the orientation of cell alignment. A 0°–90° grid structure was printed to assess the robustness of the support-assisted bioprinting technique. The variation in the angles of the grid pattern is designed to mimic the differences in fibril orientation of native tissues, where angles of cell alignment vary across the different layers. Through bioprinting of a cell–hydrogel mixture, C2C12 cells displayed directed alignment along the longitudinal axis of printed struts. Cell alignment is induced through firstly establishing structurally stable constructs (i.e. distinct 0°–90° structures) and secondly, allowing cells to dynamically remodel the bioprinted construct. Herein reports a method of inducing a macroscale level of controlled cell alignment with angle variation. This was not achievable both in terms of methods (i.e. conventional alignment techniques such as stretching and electrical stimulation) and magnitude (i.e. hydrogel features with less than 100 µm features).
AUTHOR Song, Jie-Liang and Fu, Xin-Ye and Raza, Ali and Shen, Nai-An and Xue, Ya-Qi and Wang, Hua-Jie and Wang, Jin-Ye
Title Enhancement of mechanical strength of TCP-alginate based bioprinted constructs [Abstract]
Year 2020
Journal/Proceedings Journal of the Mechanical Behavior of Biomedical Materials
Reftype
DOI/URL URL DOI
Abstract
To overcome the mechanical drawback of bioink, we proposed a supporter model to enhance the mechanical strength of bioprinted 3D constructs, in which a unit-assembly idea was involved. Based on Computed Tomography images of critical-sized rabbit bone defect, the 3D re-construction was accomplished by a sequenced process using Mimics 17.0, BioCAM and BioCAD software. 3D constructs were bioprinted using polycaprolactone (PCL) ink for the outer supporter under extrusion mode, and cell-laden tricalcium phosphate (TCP)/alginate bioink for the inner filler under air pressure dispensing mode. The relationship of viscosity of bioinks, 3D bioprinting pressure, TCP/alginate ratio and cell survival were investigated by the shear viscosities analysis, live/dead cell test and cell-counting kit 8 measurement. The viscosity of bioinks at 1.0 s−1-shear rate could be adjusted within the range of 1.75 ± 0.29 Pa·s to 155.65 ± 10.86 Pa·s by changing alginate concentration, corresponding to 10 kPa–130 kPa of printing pressure. This design with PCL supporter could significantly enhance the compressive strength and compressive modulus of standardized 3D mechanical testing specimens up to 2.15 ± 0.14 MPa to 2.58 ± 0.09 MPa, and 42.83 ± 4.75 MPa to 53.12 ± 1.19 MPa, respectively. Cells could maintain the high viability (over 80%) under the given printing pressure but cell viability declined with the increase of TCP content. Cell survival after experiencing 7 days of cell culture could be achieved when the ratio of TCP/alginate was 1 : 4. All data supported the feasibility of the supporter and unit-assembly model to enhance mechanical properties of bioprinted 3D constructs.
AUTHOR Dubey, Nileshkumar and Ferreira, Jessica A. and Malda, Jos and Bhaduri, Sarit B. and Bottino, Marco C.
Title Extracellular Matrix/Amorphous Magnesium Phosphate Bioink for 3D Bioprinting of Craniomaxillofacial Bone Tissue [Abstract]
Year 2020
Journal/Proceedings ACS Applied Materials & Interfaces
Reftype
DOI/URL DOI
Abstract
Bioprinting, a promising field in regenerative medicine, holds great potential to create three-dimensional, defect-specific vascularized bones with tremendous opportunities to address unmet craniomaxillofacial reconstructive challenges. A cytocompatible bioink is a critical prerequisite to successfully regenerate functional bone tissue. Synthetic self-assembling peptides have a nanofibrous structure resembling the native extracellular matrix (ECM), making them an excellent bioink component. Amorphous magnesium phosphates (AMPs) have shown greater levels of resorption while maintaining high biocompatibility, osteoinductivity, and low inflammatory response, as compared to their calcium phosphate counterparts. Here, we have established a novel bioink formulation (ECM/AMP) that combines an ECM-based hydrogel containing 2% octapeptide FEFEFKFK and 98% water with AMP particles to realize high cell function with desirable bioprintability. We analyzed the osteogenic differentiation of dental pulp stem cells (DPSCs) encapsulated in the bioink, as well as in vivo bone regeneration, to define the potential of the formulated bioink as a growth factor-free bone-forming strategy. Cell-laden AMP-modified bioprinted constructs showed an improved cell morphology but similar cell viability (∼90%) compared to their AMP-free counterpart. In functional assays, the cell-laden bioprinted constructs modified with AMP exhibited a high level of mineralization and osteogenic gene expression without the use of growth factors, thus suggesting that the presence of AMP-triggered DPSCs’ osteogenic differentiation. Cell-free ECM-based bioprinted constructs were implanted in vivo. In comparison with the ECM group, bone volume per total volume for ECM/1.0AMP was approximately 1.7- and 1.4-fold higher at 4 and 8 weeks, respectively. Further, a significant increase in the bone density was observed in ECM/1.0AMP from 4 to 8 weeks. These results demonstrate that the presence of AMP in the bioink significantly increased bone formation, thus showing promise for in situ bioprinting strategies. We foresee significant potential in translating this innovative bioink toward the regeneration of patient-specific bone tissue for regenerative dentistry. Bioprinting, a promising field in regenerative medicine, holds great potential to create three-dimensional, defect-specific vascularized bones with tremendous opportunities to address unmet craniomaxillofacial reconstructive challenges. A cytocompatible bioink is a critical prerequisite to successfully regenerate functional bone tissue. Synthetic self-assembling peptides have a nanofibrous structure resembling the native extracellular matrix (ECM), making them an excellent bioink component. Amorphous magnesium phosphates (AMPs) have shown greater levels of resorption while maintaining high biocompatibility, osteoinductivity, and low inflammatory response, as compared to their calcium phosphate counterparts. Here, we have established a novel bioink formulation (ECM/AMP) that combines an ECM-based hydrogel containing 2% octapeptide FEFEFKFK and 98% water with AMP particles to realize high cell function with desirable bioprintability. We analyzed the osteogenic differentiation of dental pulp stem cells (DPSCs) encapsulated in the bioink, as well as in vivo bone regeneration, to define the potential of the formulated bioink as a growth factor-free bone-forming strategy. Cell-laden AMP-modified bioprinted constructs showed an improved cell morphology but similar cell viability (∼90%) compared to their AMP-free counterpart. In functional assays, the cell-laden bioprinted constructs modified with AMP exhibited a high level of mineralization and osteogenic gene expression without the use of growth factors, thus suggesting that the presence of AMP-triggered DPSCs’ osteogenic differentiation. Cell-free ECM-based bioprinted constructs were implanted in vivo. In comparison with the ECM group, bone volume per total volume for ECM/1.0AMP was approximately 1.7- and 1.4-fold higher at 4 and 8 weeks, respectively. Further, a significant increase in the bone density was observed in ECM/1.0AMP from 4 to 8 weeks. These results demonstrate that the presence of AMP in the bioink significantly increased bone formation, thus showing promise for in situ bioprinting strategies. We foresee significant potential in translating this innovative bioink toward the regeneration of patient-specific bone tissue for regenerative dentistry.
AUTHOR Somasekharan, Lakshmi and Kasoju, Naresh and Raju, Riya and Bhatt, Anugya
Title Formulation and Characterization of Alginate Dialdehyde, Gelatin, and Platelet-Rich Plasma-Based Bioink for Bioprinting Applications [Abstract]
Year 2020
Journal/Proceedings Bioengineering
Reftype
DOI/URL URL DOI
Abstract
Layer-by-layer additive manufacturing process has evolved into three-dimensional (3D) “bio-printing” as a means of constructing cell-laden functional tissue equivalents. The process typically involves the mixing of cells of interest with an appropriate hydrogel, termed as “bioink”, followed by printing and tissue maturation. An ideal bioink should have adequate mechanical, rheological, and biological features of the target tissues. However, native extracellular matrix (ECM) is made of an intricate milieu of soluble and non-soluble extracellular factors, and mimicking such a composition is challenging. To this end, here we report the formulation of a multi-component bioink composed of gelatin and alginate -based scaffolding material, as well as a platelet-rich plasma (PRP) suspension, which mimics the insoluble and soluble factors of native ECM respectively. Briefly, sodium alginate was subjected to controlled oxidation to yield alginate dialdehyde (ADA), and was mixed with gelatin and PRP in various volume ratios in the presence of borax. The formulation was systematically characterized for its gelation time, swelling, and water uptake, as well as its morphological, chemical, and rheological properties; furthermore, blood- and cytocompatibility were assessed as per ISO 10993 (International Organization for Standardization). Printability, shape fidelity, and cell-laden printing was evaluated using the RegenHU 3D Discovery bioprinter. The results indicated the successful development of ADA–gelatin–PRP based bioink for 3D bioprinting and biofabrication applications.
AUTHOR Abu Awwad, Hosam Al-Deen M. and Thiagarajan, Lalitha and Kanczler, Janos M. and Amer, Mahetab H. and Bruce, Gordon and Lanham, Stuart and Rumney, Robin M. H. and Oreffo, Richard O. C. and Dixon, James E.
Title Genetically-programmed, mesenchymal stromal cell-laden & mechanically strong 3D bioprinted scaffolds for bone repair [Abstract]
Year 2020
Journal/Proceedings Journal of Controlled Release
Reftype
DOI/URL URL DOI
Abstract
Additive manufacturing processes used to create regenerative bone tissue engineered implants are not biocompatible, thereby restricting direct use with stem cells and usually require cell seeding post-fabrication. Combined delivery of stem cells with the controlled release of osteogenic factors, within a mechanically-strong biomaterial combined during manufacturing would replace injectable defect fillers (cements) and allow personalized implants to be rapidly prototyped by 3D bioprinting. Through the use of direct genetic programming via the sustained release of an exogenously delivered transcription factor RUNX2 (delivered as recombinant GET-RUNX2 protein) encapsulated in PLGA microparticles (MPs), we demonstrate that human mesenchymal stromal (stem) cells (hMSCs) can be directly fabricated into a thermo-sintered 3D bioprintable material and achieve effective osteogenic differentiation. Importantly we observed osteogenic programming of gene expression by released GET-RUNX2 (8.2-, 3.3- and 3.9-fold increases in OSX, RUNX2 and OPN expression, respectively) and calcification (von Kossa staining) in our scaffolds. The developed biodegradable PLGA/PEG paste formulation augments high-density bone development in a defect model (~2.4-fold increase in high density bone volume) and can be used to rapidly prototype clinically-sized hMSC-laden implants within minutes using mild, cytocompatible extrusion bioprinting. The ability to create mechanically strong 'cancellous bone-like’ printable implants for tissue repair that contain stem cells and controlled-release of programming factors is innovative, and will facilitate the development of novel localized delivery approaches to direct cellular behaviour for many regenerative medicine applications including those for personalized bone repair.
AUTHOR Eltaher, Hoda M. and Abukunna, Fatima E. and Ruiz-Cantu, Laura and Stone, Zack and Yang, Jing and Dixon, James E.
Title Human-scale tissues with patterned vascular networks by additive manufacturing of sacrificial sugar-protein composites [Abstract]
Year 2020
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
Combating necrosis, by supplying nutrients and removing waste, presents the major challenge for engineering large three-dimensional (3D) tissues. Previous elegant work used 3D printing with carbohydrate glass as a cytocompatible sacrificial template to create complex engineered tissues with vascular networks (Miller et al. 2012, Nature Materials). The fragile nature of this material compounded with the technical complexity needed to create high-resolution structures led us to create a flexible sugar-protein composite, termed Gelatin-sucrose matrix (GSM), to achieve a more robust and applicable material. Here we developed a low-range (25–37˚C) temperature sensitive formulation that can be moulded with micron-resolution features or cast during 3D printing to produce complex flexible filament networks forming sacrificial vessels. Using the temperature-sensitivity, we could control filament degeneration meaning GSM can be used with a variety of matrices and crosslinking strategies. Furthermore by incorporation of biocompatible crosslinkers into GSM directly, we could create thin endothelialized vessel walls and generate patterned tissues containing multiple matrices and cell-types. We also demonstrated that perfused vascular channels sustain metabolic function of a variety of cell-types including primary human cells. Importantly, we were able to construct vascularized human noses which otherwise would have been necrotic. Our material can now be exploited to create human-scale tissues for regenerative medicine applications. Statement of Significance Authentic and engineered tissues have demands for mass transport, exchanging nutrients and oxygen, and therefore require vascularization to retain viability and inhibit necrosis. Basic vascular networks must be included within engineered tissues intrinsically. Yet, this has been unachievable in physiologically-sized constructs with tissue-like cell densities until recently. Sacrificial moulding is an alternative in which networks of rigid lattices of filaments are created to prevent subsequent matrix ingress. Our study describes a biocompatible sacrificial sugar-protein formulation; GSM, made from mixtures of inexpensive and readily available bio-grade materials. GSM can be cast/moulded or bioprinted as sacrificial filaments that can rapidly dissolve in an aqueous environment temperature-sensitively. GSM material can be used to engineer viable and vascularized human-scale tissues for regenerative medicine applications.
AUTHOR Hauptstein, Julia and Böck, Thomas and Bartolf-Kopp, Michael and Forster, Leonard and Stahlhut, Philipp and Nadernezhad, Ali and Blahetek, Gina and Zernecke-Madsen, Alma and Detsch, Rainer and Jüngst, Tomasz and Groll, Jürgen and Teßmar, Jörg and Blunk, Torsten
Title Hyaluronic Acid-Based Bioink Composition Enabling 3D Bioprinting and Improving Quality of Deposited Cartilaginous Extracellular Matrix [Abstract]
Year 2020
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract In 3D bioprinting, bioinks with high concentrations of polymeric materials are frequently used to enable fabrication of 3D cell-hydrogel constructs with sufficient stability. However, this is often associated with restricted cell bioactivity and an inhomogeneous distribution of newly produced extracellular matrix (ECM). Therefore, this study investigates bioink compositions based on hyaluronic acid (HA), an attractive material for cartilage regeneration, which allow for reduction of polymer content. Thiolated HA and allyl-modified poly(glycidol) in varying concentrations are UV-crosslinked. To adapt bioinks to poly(ε-caprolactone) (PCL)-supported 3D bioprinting, the gels are further supplemented with 1 wt% unmodified high molecular weight HA (hmHA) and chondrogenic differentiation of incorporated human mesenchymal stromal cells is assessed. Strikingly, addition of hmHA to gels with a low polymer content (3 wt%) results in distinct increase of construct quality with a homogeneous ECM distribution throughout the constructs, independent of the printing process. Improved ECM distribution in those constructs is associated with increased construct stiffness after chondrogenic differentiation, as compared to higher concentrated constructs (10 wt%), which only show pericellular matrix deposition. The study contributes to effective bioink development, demonstrating dual function of a supplement enabling PCL-supported bioprinting and at the same time improving biological properties of the resulting constructs.
AUTHOR De Moor, Lise and Fernandez, Sélina and Vercruysse, Chris and Tytgat, Liesbeth and Asadian, Mahtab and De Geyter, Nathalie and Van Vlierberghe, Sandra and Dubruel, Peter and Declercq, Heidi
Title Hybrid Bioprinting of Chondrogenically Induced Human Mesenchymal Stem Cell Spheroids [Abstract]
Year 2020
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
To date, the treatment of articular cartilage lesions remains challenging. A promising strategy for the development of new regenerative therapies is hybrid bioprinting, combining the principles of developmental biology, biomaterial science, and 3D bioprinting. In this approach, scaffold-free cartilage microtissues with small diameters are used as building blocks, combined with a photo-crosslinkable hydrogel and subsequently bioprinted. Spheroids of human bone marrow-derived mesenchymal stem cells (hBM-MSC) are created using a high-throughput microwell system and chondrogenic differentiation is induced during 42 days by applying chondrogenic culture medium and low oxygen tension (5%). Stable and homogeneous cartilage spheroids with a mean diameter of 116 ± 2.80 μm, which is compatible with bioprinting, were created after 14 days of culture and a glycosaminoglycans (GAG)- and collagen II-positive extracellular matrix (ECM) was observed. Spheroids were able to assemble at random into a macrotissue, driven by developmental biology tissue fusion processes, and after 72 h of culture, a compact macrotissue was formed. In a directed assembly approach, spheroids were assembled with high spatial control using the bio-ink based extrusion bioprinting approach. Therefore, 14-day spheroids were combined with a photo-crosslinkable methacrylamide-modified gelatin (gelMA) as viscous printing medium to ensure shape fidelity of the printed construct. The photo-initiators Irgacure 2959 and Li-TPO-L were evaluated by assessing their effect on bio-ink properties and the chondrogenic phenotype. The encapsulation in gelMA resulted in further chondrogenic maturation observed by an increased production of GAG and a reduction of collagen I. Moreover, the use of Li-TPO-L lead to constructs with lower stiffness which induced a decrease of collagen I and an increase in GAG and collagen II production. After 3D bioprinting, spheroids remained viable and the cartilage phenotype was maintained. Our findings demonstrate that hBM-MSC spheroids are able to differentiate into cartilage microtissues and display a geometry compatible with 3D bioprinting. Furthermore, for hybrid bioprinting of these spheroids, gelMA is a promising material as it exhibits favorable properties in terms of printability and it supports the viability and chondrogenic phenotype of hBM-MSC microtissues. Moreover, it was shown that a lower hydrogel stiffness enhances further chondrogenic maturation after bioprinting.
AUTHOR López-Carrasco, Amparo and Martín-Vañó, Susana and Burgos-Panadero, Rebeca and Monferrer, Ezequiel and Berbegall, Ana P. and Fernández-Blanco, Beatriz and Navarro, Samuel and Noguera, Rosa
Title Impact of extracellular matrix stiffness on genomic heterogeneity in MYCN-amplified neuroblastoma cell line [Abstract]
Year 2020
Journal/Proceedings Journal of Experimental & Clinical Cancer Research
Reftype López-Carrasco2020
DOI/URL DOI
Abstract
Increased tissue stiffness is a common feature of malignant solid tumors, often associated with metastasis and poor patient outcomes. Vitronectin, as an extracellular matrix anchorage glycoprotein related to a stiff matrix, is present in a particularly increased quantity and specific distribution in high-risk neuroblastoma. Furthermore, as cells can sense and transform the proprieties of the extracellular matrix into chemical signals through mechanotransduction, genotypic changes related to stiffness are possible.
AUTHOR Fisch, Philipp and Holub, Martin and Zenobi-Wong, Marcy
Title Improved accuracy and precision of bioprinting through progressive cavity pump-controlled extrusion [Abstract]
Year 2020
Journal/Proceedings bioRxiv
Reftype
DOI/URL URL DOI
Abstract
3D bioprinting has seen a tremendous growth in recent years in a variety of fields such as tissue and organ models, drug testing and regenerative medicine. This growth has led researchers and manufacturers to continuously advance and develop novel bioprinting techniques and materials. Although new bioprinting methods are emerging (e.g. contactless and volumetric bioprinting), micro-extrusion bioprinting remains the most widely used method. Micro-extrusion bioprinting, however, is still largely dependent on the conventional pneumatic extrusion process, which relies heavily on homogenous biomaterial inks and bioinks to maintain a constant material flowrate. Augmenting the functionality of the bioink with the addition of nanoparticles, cells or biopolymers can induce inhomogeneities resulting in uneven material flow during printing and/or clogging of the nozzle, leading to defects in the printed construct. In this work, we evaluated a novel extrusion technique based on a miniaturized progressive cavity pump. We compared the accuracy and precision of this system to the pneumatic extrusion system and tested both for their effect on cell viability after extrusion. The progressive cavity pump achieved a significantly higher accuracy and precision compared to the pneumatic system while maintaining good viability and was able to maintain its reliability independently of the bioink composition, printing speed or nozzle size. Progressive cavity pumps are a promising tool for bioprinting and could help provide standardized and validated bioprinted constructs while leaving the researcher more freedom in the design of the bioinks with increased functionality.
AUTHOR Hou, Yanhao and Wang, Weiguang and Bartolo, Paulo Jorge Da Silva
Title Investigating the Effect of Carbon Nanomaterials Reinforcing Poly(Ε-Caprolactone) Scaffolds for Bone Repair Applications [Abstract]
Year 2020
Journal/Proceedings International Journal of Bioprinting
Reftype
DOI/URL URL
Abstract
Scaffolds, three-dimensional (3D) substrates providing appropriate mechanical support and biological environments for new tissue formation, are the most common approaches in tissue engineering. To improve scaffold properties such as mechanical properties, surface characteristics, biocompatibility and biodegradability, different types of fillers have been used reinforcing biocompatible and biodegradable polymers. This paper investigates and compares the mechanical and biological behaviors of 3D printed poly(ε-caprolactone) scaffolds reinforced with graphene (G) and graphene oxide (GO) at different concentrations. Results show that contrary to G which improves mechanical properties and enhances cell attachment and proliferation, GO seems to show some cytotoxicity, particular at high contents.
AUTHOR Šimková, Kateřina and Thormann, Ursula and Imanidis, Georgios
Title Investigation of drug dissolution and uptake from low-density DPI formulations in an impactor–integrated cell culture model [Abstract]
Year 2020
Journal/Proceedings European Journal of Pharmaceutics and Biopharmaceutics
Reftype
DOI/URL URL DOI
Abstract
Besides deposition, pulmonary bioavailability is determined by dissolution of particles in the scarce epithelial fluid and by cellular API uptake. In the present work, we have developed an experimental in vitro model, which is combining the state-of-the-art next generation impactor (NGI), used for aerodynamic performance assessment of inhalation products, with a culture of human alveolar A549 epithelial cells to study the fate of inhaled drugs following lung deposition. The goal was to investigate five previously developed nano-milled and spray-dried budesonide formulations and to examine the suitability of the in vitro test model. The NGI dissolution cups of stages 3, 4, and 5 were transformed to accommodate cell culture inserts while assuring minimal interference with the air flow. A549 cells were cultivated at the air–liquid interface on Corning® Matrigel® -coated inserts. After deposition of aerodynamically classified powders on the cell cultures, budesonide amount was determined on the cell surface, in the interior of the cell monolayer, and in the basal solution for four to eight hours. Significant differences in the total deposited drug amount and the amount remaining on the cell surface at the end of the experiment were found between different formulations and NGI stages. Roughly 50% of budesonide was taken up by the cells and converted to a large extent to its metabolic conjugate with oleic acid for all formulations and stages. Prolonged time required for complete drug dissolution and cell uptake in case of large deposited powder amounts suggested initial drug saturation of the surfactant layer of the cell surface. Discrimination between formulations with respect to time scale of dissolution and cell uptake was possible with the present test model providing useful insights into the biopharmaceutical performance of developed formulations that may be relevant for predicting local bioavailability. The absolute quantitative result of cell uptake and permeation into the systemic compartment is unreliable, though, because of partly compromised cell membrane integrity due to particle impaction and professed leakiness of A549 monolayer tight junctions, respectively.
AUTHOR Ruiz-Cantu, Laura and Gleadall, Andrew and Faris, Callum and Segal, Joel and Shakesheff, Kevin and Yang, Jing
Title Multi-material 3D bioprinting of porous constructs for cartilage regeneration [Abstract]
Year 2020
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
The current gold standard for nasal reconstruction after rhinectomy or severe trauma includes transposition of autologous cartilage grafts in conjunction with coverage using an autologous skin flap. Harvesting autologous cartilage requires a major additional procedure that may create donor site morbidity. Major nasal reconstruction also requires sculpting autologous cartilages to form a cartilage framework, which is complex, highly skill-demanding and very time consuming. These limitations have prompted facial reconstructive surgeons to explore different techniques such as tissue engineered cartilage. This work explores the use of multi-material 3D bioprinting with chondrocyte-laden gelatin methacrylate (GelMA) and polycaprolactone (PCL) to fabricate constructs that can potentially be used for nasal reconstruction. In this study, we have investigated the effect of 3D manufacturing parameters including temperature, needle gauge, UV exposure time, and cell carrier formulation (GelMA) on the viability and functionality of chondrocytes in bioprinted constructs. Furthermore, we printed chondrocyte-laden GelMA and PCL into composite constructs to combine biological and mechanical properties. It was found that 20% w/v GelMA was the best concentration for the 3D bioprinting of the chondrocytes without comprising the scaffold's porous structure and cell functionality. In addition, the 3D bioprinted constructs showed neocartilage formation and similar mechanical properties to nasal alar cartilage after a 50-day culture period. Neocartilage formation was also observed in the composite constructs evidenced by the presence of glycosaminoglycans and collagen type II. This study shows the feasibility of manufacturing neocartilage using chondrocytes/GelMA/PCL 3D bioprinted porous constructs which could be applied as a method for fabricating implants for nose reconstruction.
AUTHOR Plou, Javier and García, Isabel and Charconnet, Mathias and Astobiza, Ianire and García-Astrain, Clara and Matricardi, Cristiano and Mihi, Agustín and Carracedo, Arkaitz and Liz-Marzán, Luis M.
Title Multiplex SERS Detection of Metabolic Alterations in Tumor Extracellular Media [Abstract]
Year 2020
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract The composition and intercellular interactions of tumor cells in the tissues dictate the biochemical and metabolic properties of the tumor microenvironment. The metabolic rewiring has a profound impact on the properties of the microenvironment, to an extent that monitoring such perturbations could harbor diagnostic and therapeutic relevance. A growing interest in these phenomena has inspired the development of novel technologies with sufficient sensitivity and resolution to monitor metabolic alterations in the tumor microenvironment. In this context, surface-enhanced Raman scattering (SERS) can be used for the label-free detection and imaging of diverse molecules of interest among extracellular components. Herein, the application of nanostructured plasmonic substrates comprising Au nanoparticles, self-assembled as ordered superlattices, to the precise SERS detection of selected tumor metabolites, is presented. The potential of this technology is first demonstrated through the analysis of kynurenine, a secreted immunomodulatory derivative of the tumor metabolism and the related molecules tryptophan and purine derivatives. SERS facilitates the unambiguous identification of trace metabolites and allows the multiplex detection of their characteristic fingerprints under different conditions. Finally, the effective plasmonic SERS substrate is combined with a hydrogel-based three-dimensional cancer model, which recreates the tumor microenvironment, for the real-time imaging of metabolite alterations and cytotoxic effects on tumor cells.
AUTHOR Lee, Mihyun and Bae, Kraun and Levinson, Clara and Zenobi-Wong, Marcy
Title Nanocomposite bioink exploits dynamic covalent bonds between nanoparticles and polysaccharides for precision bioprinting [Abstract]
Year 2020
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
The field of bioprinting has made significant recent progress towards engineering tissues with increasing complexity and functionality. It remains challenging, however, to develop bioinks with optimal biocompatibility and good printing fidelity. Here, we demonstrate enhanced printability of a polymer-based bioink based on dynamic covalent linkages between nanoparticles (NPs) and polymers, which retains good biocompatibility. Amine-presenting silica NPs (ca. 45 nm) were added to a polymeric ink containing oxidized alginate (OxA). The formation of reversible imine bonds between amines on the NPs and aldehydes of OxA lead to significantly improved rheological properties and high printing fidelity. In particular, the yield stress increased with increasing amounts of NPs (14.5 Pa without NPs, 79 Pa with 2 wt% NPs). In addition, the presence of dynamic covalent linkages in the gel provided improved mechanical stability over 7 d compared to ionically crosslinked gels. The nanocomposite ink retained high printability and mechanical strength, resulting in generation of centimeter-scale porous constructs and an ear structure with overhangs and high structural fidelity. Furthermore, the nanocomposite ink supported both in vitro and in vivo maturation of bioprinted gels containing chondrocytes. This approach based on simple oxidation can be applied to any polysaccharide, thus the widely applicability of the method is expected to advance the field towards the goal of precision bioprinting.
AUTHOR Hou, Yanhao and Wang, Weiguang and Bártolo, Paulo
Title Novel Poly(ɛ-caprolactone)/Graphene Scaffolds for Bone Cancer Treatment and Bone Regeneration [Abstract]
Year 2020
Journal/Proceedings 3D Printing and Additive Manufacturing
Reftype
DOI/URL DOI
Abstract
Scaffold-based bone tissue engineering is the most relevant approach for critical-sized bone defects. It is based on the use of three-dimensional substrates to provide the appropriate biomechanical environment for bone regeneration. Despite some successful results previously reported, scaffolds were never designed for disease treatment applications. This article proposes a novel dual-functional scaffold for cancer applications, comprising both treatment and regeneration functions. These functions are achieved by combining a biocompatible and biodegradable polymer and graphene. Results indicate that high concentrations of graphene enhance the mechanical properties of the scaffolds, also increasing the inhibition on cancer cell viability and proliferation.
AUTHOR Lim, Khoon S. and Abinzano, Florencia and Bernal, Paulina Nuñez and Albillos Sanchez, Ane and Atienza-Roca, Pau and Otto, Iris A. and Peiffer, Quentin C. and Matsusaki, Michiya and Woodfield, Tim B. F. and Malda, Jos and Levato, Riccardo
Title One-Step Photoactivation of a Dual-Functionalized Bioink as Cell Carrier and Cartilage-Binding Glue for Chondral Regeneration [Abstract]
Year 2020
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Cartilage defects can result in pain, disability, and osteoarthritis. Hydrogels providing a chondroregeneration-permissive environment are often mechanically weak and display poor lateral integration into the surrounding cartilage. This study develops a visible-light responsive gelatin ink with enhanced interactions with the native tissue, and potential for intraoperative bioprinting. A dual-functionalized tyramine and methacryloyl gelatin (GelMA-Tyr) is synthesized. Photo-crosslinking of both groups is triggered in a single photoexposure by cell-compatible visible light in presence of tris(2,2′-bipyridyl)dichlororuthenium(II) and sodium persulfate as initiators. Neo-cartilage formation from embedded chondroprogenitor cells is demonstrated in vitro, and the hydrogel is successfully applied as bioink for extrusion-printing. Visible light in situ crosslinking in cartilage defects results in no damage to the surrounding tissue, in contrast to the native chondrocyte death caused by UV light (365–400 nm range), commonly used in biofabrication. Tyramine-binding to proteins in native cartilage leads to a 15-fold increment in the adhesive strength of the bioglue compared to pristine GelMA. Enhanced adhesion is observed also when the ink is extruded as printable filaments into the defect. Visible-light reactive GelMA-Tyr bioinks can act as orthobiologic carriers for in situ cartilage repair, providing a permissive environment for chondrogenesis, and establishing safe lateral integration into chondral defects.
AUTHOR Athanasiadis, Markos and Afanasenkau, Dzmitry and Derks, Wouter and Tondera, Christoph and Murganti, Francesca and Busskamp, Volker and Bergmann, Olaf and Minev, Ivan R.
Title Printed elastic membranes for multimodal pacing and recording of human stem-cell-derived cardiomyocytes [Abstract]
Year 2020
Journal/Proceedings npj Flexible Electronics
Reftype Athanasiadis2020
DOI/URL DOI
Abstract
Bioelectronic interfaces employing arrays of sensors and bioactuators are promising tools for the study, repair and engineering of cardiac tissues. They are typically constructed from rigid and brittle materials processed in a cleanroom environment. An outstanding technological challenge is the integration of soft materials enabling a closer match to the mechanical properties of biological cells and tissues. Here we present an algorithm for direct writing of elastic membranes with embedded electrodes, optical waveguides and microfluidics using a commercial 3D printing system and a palette of silicone elastomers. As proof of principle, we demonstrate interfacing of cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs), which are engineered to express Channelrhodopsin-2. We demonstrate electrical recording of cardiomyocyte field potentials and their concomitant modulation by optical and pharmacological stimulation delivered via the membrane. Our work contributes a simple prototyping strategy with potential applications in organ-on-chip or implantable systems that are multi-modal and mechanically soft.
AUTHOR Figueiredo, Lara and Le Visage, Catherine and Weiss, Pierre and Yang, Jing
Title Quantifying Oxygen Levels in 3D Bioprinted Cell-Laden Thick Constructs with Perfusable Microchannel Networks [Abstract]
Year 2020
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
The survival and function of thick tissue engineered implanted constructs depends on pre-existing, embedded, functional, vascular-like structures that are able to integrate with the host vasculature. Bioprinting was employed to build perfusable vascular-like networks within thick constructs. However, the improvement of oxygen transportation facilitated by these vascular-like networks was directly quantified. Using an optical fiber oxygen sensor, we measured the oxygen content at different positions within 3D bioprinted constructs with and without perfusable microchannel networks. Perfusion was found to play an essential role in maintaining relatively high oxygen content in cell-laden constructs and, consequently, high cell viability. The concentration of oxygen changes following switching on and off the perfusion. Oxygen concentration depletes quickly after pausing perfusion but recovers rapidly after resuming the perfusion. The quantification of oxygen levels within cell-laden hydrogel constructs could provide insight into channel network design and cellular responses.
AUTHOR Schipani, Rossana and Scheurer, Stefan and Florentin, Romain and Critchley, Susan E. and Kelly, Daniel John
Title Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites [Abstract]
Year 2020
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Engineering constructs that mimic the complex structure, composition and biomechanics of the articular cartilage represents a promising route to joint regeneration. Such tissue engineering strategies require the development of biomaterials that mimic the mechanical properties of articular cartilage whilst simultaneously providing an environment supportive of chondrogenesis. Here three-dimensional (3D) bioprinting is used to develop polycaprolactone (PCL) fibre networks to mechanically reinforce interpenetrating network (IPN) hydrogels consisting of alginate and gelatin methacryloyl (GelMA). Inspired by the significant tension-compression nonlinearity of the collagen network in articular cartilage, we printed reinforcing PCL networks with different ratios of tensile to compressive modulus. Synergistic increases in compressive modulus were observed when IPN hydrogels were reinforced with PCL networks that were relatively soft in compression and stiff in tension. The resulting composites possessed equilibrium and dynamic mechanical properties that matched or approached that of native articular cartilage. Finite Element (FE) modelling revealed that the reinforcement of IPN hydrogels with specific PCL networks limited radial expansion and increased the hydrostatic pressure generated within the IPN upon the application of compressive loading. Next, multiple-tool biofabrication techniques were used to 3D bioprint PCL reinforced IPN hydrogels laden with a co-culture of bone marrow-derived stromal cells (BMSCs) and chondrocytes (CCs). The bioprinted biomimetic composites were found to support robust chondrogenesis, with encapsulated cells producing hyaline-like cartilage that stained strongly for sGAG and type II collagen deposition, and negatively for type X collagen and calcium deposition. Taken together, these results demonstrate how 3D bioprinting can be used to engineer constructs that are both pro-chondrogenic and biomimetic of the mechanical properties of articular cartilage.
AUTHOR Sanz-Fraile, Hector and Amorós, Susana and Mendizabal, Irene Isabel and Gálvez-Montón, Carolina and Prat-Vidal, Cristina and Bayés-Genís, Antoni and Navajas, Daniel and Farre, Ramon and Otero, Jorge
Title Silk-reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture [Abstract]
Year 2020
Journal/Proceedings Tissue Engineering Part A
Reftype
DOI/URL DOI
Abstract
Type I collagen hydrogels are of high interest in tissue engineering. With the evolution of 3D bioprinting technologies, a high number of collagen-based scaffolds have been reported for the development of 3D cell cultures. A recent proposal was to mix collagen with silk fibroin derived from Bombyx Mori silkworm. Nevertheless, due to the difficulties in the preparation and the characteristics of the protein, several problems like phase separation and collagen denaturation appears during the procedure. Therefore, the common solution is to diminish the concentration of collagen although in that way the most biologically relevant component is reduced. In the present work, we present a new, simple and effective method to develop a collagen-silk hybrid hydrogel with high collagen concentration and with increased stiffness approaching that of natural tissues, which could be of high interest for the development of cardiac patches for myocardial regeneration and for preconditioning of mesenchymal stem cells to improve their therapeutic potential. Sericin in the silk was preserved by using a physical solubilizing procedure which results in a preserved fibrous structure of type I collagen, as shown by ultrastructural imaging. The macro- and micromechanical properties of the hybrid hydrogels measured by tensile stretch and Atomic Force Microscopy respectively, showed a more than two-fold stiffening as compared with collagen-only hydrogels. Rheological measurements showed improved printability properties for the developed biomaterial. The suitability of the hydrogels for 3D cell culture was assessed by 3D bioprinting bone marrow-derived mesenchymal stem cells cultured within the scaffolds. The result was a biomaterial with improved printability characteristics that better resembled the mechanical properties of natural soft tissues while preserving biocompatibility owing to the high concentration of collagen.
AUTHOR Li, Huijun and Tan, Yu Jun and Kiran, Raj and Tor, Shu Beng and Zhou, Kun
Title Submerged and non-submerged 3D bioprinting approaches for the fabrication of complex structures with the hydrogel pair GelMA and alginate/methylcellulose [Abstract]
Year 2020
Journal/Proceedings Additive Manufacturing
Reftype
DOI/URL URL DOI
Abstract
The extrusion-based bioprinting of hydrogels such as gelatin methacrylate (GelMA) into structures with complex shape suffers from poor printability due to their low viscosity. The present study deals with hydrogel materials by using the mixture of cell-laden photopolymerizable GelMA as a main printing material and the mixture of alginate and methylcellulose (Alg/MC) as a support material because of its high viscosity and good thixotropic property. One extrusion-based approach is developed by printing the two mixtures into structures in an alternating layer-by-layer manner, with the electrostatic interactions between polycationic GelMA and polyanionic Alg/MC contributing to the integrity of the structures. The final printed structures are exposed to ultraviolet (UV) light to form crosslinks in GelMA through photopolymerization for further structural strengthening. The one-time UV exposure minimizes cell damage in cell-GelMA, demonstrating an advantage over those in previously reported studies that required repeated UV exposures upon the printing of each layer of a structure. The other approach is developed by submerging the extrusion nozzle into a bath of Alg/MC to print cell-laden GelMA structures, which, upon printing completion, are also subject to one-time UV exposure before the removal of the support material Alg/MC. A flower with living cells is printed to demonstrate the capability of the second approach of fabricating structures with geometric complexity. The structures printed using both approaches demonstrate a well-maintained shape fidelity, structural integrity and cell viability of over 93% up to five culturing days. The proposed two printing approaches based on the cell-GelMA and Alg/MC pair will be beneficial for exploring new opportunities in bioprinting.
AUTHOR Prasopthum, Aruna and Deng, Zexing and Khan, Ilyas M. and Yin, Zhanhai and Guo, Baolin and Yang, Jing
Title Three dimensional printed degradable and conductive polymer scaffolds promote chondrogenic differentiation of chondroprogenitor cells [Abstract]
Year 2020
Journal/Proceedings Biomaterials Science
Reftype
DOI/URL DOI
Abstract
Conductive polymers have been used for various biomedical applications including biosensors{,} tissue engineering and regenerative medicine. However{,} the poor processability and brittleness of these polymers hinder the fabrication of three-dimensional structures with desirable geometries. Moreover{,} their application in tissue engineering and regenerative medicine has been so far limited to excitable cells such as neurons and muscle cells. To enable their wider adoption in tissue engineering and regenerative medicine{,} new materials and formulations that overcome current limitations are required. Herein{,} a biodegradable conductive block copolymer{,} tetraaniline-b-polycaprolactone-b-tetraaniline (TPT){,} is synthesised and 3D printed for the first time into porous scaffolds with defined geometries. Inks are formulated by combining TPT with PCL in solutions which are then directly 3D printed to generate porous scaffolds. TPT and PCL are both biodegradable. The combination of TPT with PCL increases the flexibility of the hybrid material compared to pure TPT{,} which is critical for applications that need mechanical robustness of the scaffolds. The highest TPT content shows the lowest tensile failure strain. Moreover{,} the absorption of a cell adhesion-promoting protein (fibronectin) and chondrogenic differentiation of chondroprogenitor cells are found to be dependent on the amount of TPT in the blends. Higher content of TPT in the blends increases both fibronectin adsorption and chondrogenic differentiation{,} though the highest concentration of TPT in the blends is limited by its solubility in the ink. Despite the contradicting effects of TPT concentration on flexibility and chondrogenic differentiation{,} a concentration that strikes a balance between the two factors is still available. It is worth noting that the effect on chondrogenic differentiation is found in scaffolds without external electric stimulation. Our work demonstrates the possibility of 3D printing flexible conductive and biodegradable scaffolds and their potential use in cartilage tissue regeneration{,} and opens up future opportunities in using electric stimulation to control chondrogenesis in these scaffolds.
AUTHOR Vyas, Cian and Ates, Gokhan and Aslan, Enes and Hart, Jack and Huang, Boyang and Bartolo, Paulo
Title Three-Dimensional Printing and Electrospinning Dual-Scale Polycaprolactone Scaffolds with Low-Density and Oriented Fibers to Promote Cell Alignment [Abstract]
Year 2020
Journal/Proceedings 3D Printing and Additive Manufacturing
Reftype
DOI/URL DOI
Abstract
Complex and hierarchically functionalized scaffolds composed of micro- and nanoscale structures are a key goal in tissue engineering. The combination of three-dimensional (3D) printing and electrospinning enables the fabrication of these multiscale structures. This study presents a polycaprolactone 3D-printed and electrospun scaffold with multiple mesh layers and fiber densities. The results show successful fabrication of a dual-scale scaffold with the 3D-printed scaffold acting as a gap collector with the printed microfibers as the electrodes and the pores a series of insulating gaps resulting in aligned nanofibers. The electrospun fibers are highly aligned perpendicular to the direction of the printed fiber and form aligned meshes within the pores of the scaffold. Mechanical testing showed no significant difference between the number of mesh layers whereas the hydrophobicity of the scaffold increased with increasing fiber density. Biological results indicate that increasing the number of mesh layers improves cell proliferation, migration, and adhesion. The aligned nanofibers within the microscale pores allowed enhanced cell bridging and cell alignment that was not observed in the 3D-printed only scaffold. These results demonstrate a facile method of incorporating low-density and aligned fibers within a 3D-printed scaffold that is a promising development in multiscale hierarchical scaffolds where alignment of cells can be desirable.
AUTHOR Schwab, Andrea and Helary, Christophe and Richards, Geoff and Alini, Mauro and Eglin, David and D{textquoteright}Este, Matteo
Title Tissue mimetic hyaluronan bio-ink containing oriented collagen fibers to modulate hMSC spreading and differentiation [Abstract]
Year 2020
Journal/Proceedings bioRxiv
Reftype
DOI/URL URL DOI
Abstract
Biofabrication is providing scientists and clinicians the ability to produce engineered tissues with desired shapes, chemical and biological gradients. Typical resolutions achieved with extrusion-based bioprinting are at the macroscopic level. However, for capturing the fibrillar nature of the extracellular matrix (ECM), it is necessary to arrange ECM components at smaller scales, down to the sub-micron and the molecular level.In this study, we introduce a (bio)ink containing hyaluronan (HA) as tyramine derivative (THA) and collagen (Col). Similarly to other connective tissues, in this (bio)ink Col is present in fibrillar form and HA as viscoelastic space filler. THA was enzymatically crosslinked under mild conditions allowing simultaneous Col fibrillogenesis, thus achieving a homogeneous distribution of Col fibrils within the viscoelastic HA-based matrix. THA-Col composite displayed synergistic properties in terms of storage modulus and shear-thinning, translating into good printability.Shear-induced alignment of the Col fibrils along the printing direction was achieved and quantified via immunofluorescence and second harmonic generation.Cell-free and cell-laden constructs were printed and characterized, analyzing the influence of the controlled microscopic anisotropy on cell behavior and chondrogenic differentiation.THA-Col showed cell instructive properties modulating hMSC adhesion, morphology and sprouting from spheroids stimulated by the presence and the orientation of Col fibers. Actin filament staining showed that hMSCs embedded into aligned constructs displayed increased cytoskeleton alignment along the fibril direction. Based on gene expression of cartilage/bone markers and matrix production, hMSCs embedded into the bioink displayed chondrogenic differentiation comparable or superior to standard pellet culture by means of proteoglycan production (Safranin O staining and proteoglycan quantification) as well as increase in cartilage related genes.The possibility of printing matrix components with control over microscopic alignment brings biofabrication one step closer to capturing the complexity of native tissues.
AUTHOR Nasim Golafshan and Elke Vorndran and Stefan Zaharievski and Harold Brommer and Firoz Babu Kadumudi and Alireza Dolatshahi-Pirouz and Uwe Gbureck and René {van Weeren} and Miguel Castilho and Jos Malda
Title Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model [Abstract]
Year 2020
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
One of the important challenges in bone tissue engineering is the development of biodegradable bone substitutes with appropriate mechanical and biological properties for the treatment of larger defects and those with complex shapes. Recently, magnesium phosphate (MgP) doped with biologically active ions like strontium (Sr2+) have shown to significantly enhance bone formation when compared with the standard calcium phosphate-based ceramics. However, such materials can hardly be shaped into large and complex geometries and more importantly lack the adequate mechanical properties for the treatment of load-bearing bone defects. In this study, we have fabricated bone implants through extrusion assisted three-dimensional (3D) printing of MgP ceramics modified with Sr2+ ions (MgPSr) and a medical grade polycaprolactone (PCL) polymer phase. MgPSr with 30 wt% PCL (MgPSr-PCL30) allowed the printability of relevant size structures (>780 mm3) at room temperature with an interconnected macroporosity of approximately 40%. The printing resulted in implants with a compressive strength of 4.3 MPa, which were able to support up to 50 cycles of loading without plastic deformation. Notably, MgPSr-PCL30 scaffolds were able to promote in vitro bone formation in medium without the supplementation with osteo-inducing components. In addition, long-term in vivo performance of the 3D printed scaffolds was investigated in an equine tuber coxae model over 6 months. The micro-CT and histological analysis showed that implantation of MgPSr-PCL30 induced bone regeneration, while no bone formation was observed in the empty defects. Overall, the novel polymer modified MgP ceramic material and extrusion-based 3D printing process presented here greatly improved the shape ability and load bearing properties of MgP-based ceramics with simultaneously induction of new bone formation.
AUTHOR Shapira, Assaf and Noor, Nadav and Oved, Hadas and Dvir, Tal
Title Transparent support media for high resolution 3D printing of volumetric cell-containing ECM structures [Abstract]
Year 2020
Journal/Proceedings Biomedical Materials
Reftype
DOI/URL DOI
Abstract
3D bioprinting may revolutionize the field of tissue engineering by allowing fabrication of bio-structures with high degree of complexity, fine architecture and heterogeneous composition. The printing substances in these processes are mostly based on biomaterials and living cells. As such, they generally possess weak mechanical properties and thus must be supported during fabrication in order to prevent the collapse of large, volumetric multi-layered printouts. In this work, we characterize a uniquely formulated media used to support printing of extracellular matrix-based biomaterials. We show that a hybrid material, comprised of calcium-alginate nanoparticles and xanthan gum, presents superb qualities that enable printing at high resolution of down to 10 microns, allowing fabrication of complex constructs and cellular structures. This hybrid also presents an exclusive combination of desirable properties such as biocompatibility, high transparency, stability at a wide range of temperatures and amenability to delicate extraction procedures. Moreover, as fabrication of large, volumetric biological structures may require hours and even days to accomplish, we have demonstrated that the hybrid medium can support prolonged, precise printing for at least 18 hours. All these qualities make it a promising support medium for 3D printing of tissues and organs.
AUTHOR Shen, Jie and Wang, Wenhao and Zhai, Xinyun and Chen, Bo and Qiao, Wei and Li, Wan and Li, Penghui and Zhao, Ying and Meng, Yuan and Qian, Shi and Liu, Xuanyong and Chu, Paul K. and Yeung, Kelvin W. K.
Title 3D-printed nanocomposite scaffolds with tunable magnesium ionic microenvironment induce in situ bone tissue regeneration [Abstract]
Year 2019
Journal/Proceedings Applied Materials Today
Reftype
DOI/URL URL DOI
Abstract
Local tissue microenvironment is able to regulate cell-to-cell interaction that leads to effective tissue repair. This study aims to demonstrate a tunable magnesium ionic (Mg2+) microenvironment in bony tissue that can significantly induce bone defect repair. The concept can be realized by using a newly fabricated nanocomposite comprising of custom-made copolymer polycaprolactone-co-poly(ethylene glycol)-co-polycaprolactone (PCL-PEG-PCL) and surface-modified magnesium oxide (MgO) nanoparticles. In this study, additive manufacturing (AM) technology had been adopted to help design the porous three-dimensional (3D) scaffolds with tunable Mg2+ microenvironment. We found that the wettability and printability of new copolymer had been improved as compared with that of PCL polymer. Additionally, when MgO nanoparticles incorporated into the newly synthesized hydrophilic copolymer matrix, it could lead to increased compressive moduli significantly. In the in vitro studies, the fabricated nanocomposite scaffold with low concentration of Mg2+ microenvironment not only demonstrated better cytocompatibility, but also remarkably enhanced osteogenic differentiation in vitro as compared with the pure PCL and PCL-PEG-PCL co-polymer controls. In the animal studies, we also found that superior and early bone formation and tissue mineralization could be observed in the same 3D printed scaffold. However, the nanocomposite scaffold with high concentration of Mg2+ jeopardized the in situ bony tissue regeneration capability due to excessive magnesium ions in bone tissue microenvironment. Lastly, this study demonstrates that the nanocomposite 3D scaffold with controlled magnesium concentration in bone tissue microenvironment can effectively promote bone defect repair.
AUTHOR Wang, Weiguang and Huang, Boyang and Byun, Jae Jong and Bártolo, Paulo
Title Assessment of PCL/carbon material scaffolds for bone regeneration [Abstract]
Year 2019
Journal/Proceedings Journal of the Mechanical Behavior of Biomedical Materials
Reftype
DOI/URL URL DOI
Abstract
Biomanufacturing is a relatively new research domain focusing on the use of additive manufacturing technologies, biomaterials, cells and biomolecular signals to produce tissue constructs for tissue engineering. For bone regeneration, researchers are focusing on the use of polymeric and polymer/ceramic scaffolds seeded with osteoblasts or mesenchymal stem cells. However, the design of high-performance scaffolds in terms of mechanical, cell-stimulation and biological performance is still required. This is the first paper investigating the use of an extrusion additive manufacturing system to produce poly(ε-caprolactone) (PCL), PCL/graphene nanosheet (GNS) and PCL/carbon nanotube (CNT) scaffolds for bone applications. Scaffolds with regular and reproducible architecture were produced and evaluated from chemical, physical and biological points of view. Results suggest that the addition of both graphene and CNT allow the fabrication of scaffolds with improved properties. It also shows that scaffolds containing graphene present better mechanical properties and high cell-affinity improving cell attachment, proliferation and differentiation.
AUTHOR Freeman, F. E. and Browe, D. C. and Nulty, J. and Von Euw, S. and Grayson, W. L. and Kelly, D. J.
Title Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering. [Abstract]
Year 2019
Journal/Proceedings European Cells and Materials Journal
Reftype
DOI/URL URL DOI
Abstract
Interconnected porosity is critical to the design of regenerative scaffolds, as it permits cell migration, vascularisation and diffusion of nutrients and regulatory molecules inside the scaffold. 3D printing is a promising strategy to achieve this as it allows the control over scaffold pore size, porosity and interconnectivity. Thus, the aim of the present study was to integrate distinct biofabrication strategies to develop a multiscale porous scaffold that was not only mechanically functional at the time of implantation, but also facilitated rapid vascularisation and provided stem cells with appropriate cues to enable their differentiation into osteoblasts. To achieve this, polycaprolactone (PCL) was functionalised with decellularised bone extracellular matrix (ECM), to produce osteoinductive filaments for 3D printing. The addition of bone ECM to the PCL not only increased the mechanical properties of the resulting scaffold, but also increased cellular attachment and enhanced osteogenesis of mesenchymal stem cells (MSCs). In vivo, scaffold pore size determined the level of vascularisation, with a larger filament spacing supporting faster vessel in-growth and more new bone formation. By freeze-drying solubilised bone ECM within these 3D-printed scaffolds, it was possible to introduce a matrix network with microscale porosity that further enhanced cellular attachment in vitro and increased vessel infiltration and overall levels of new bone formation in vivo. To conclude, an "off-the-shelf" multiscale bone-ECM-derived scaffold was developed that was mechanically stable and, once implanted in vivo, will drive vascularisation and, ultimately, lead to bone regeneration.
AUTHOR Cofiño, Carla and Perez-Amodio, Soledad and Semino, Carlos E. and Engel, Elisabeth and Mateos-Timoneda, Miguel A.
Title Development of a Self-Assembled Peptide/Methylcellulose-Based Bioink for 3D Bioprinting [Abstract]
Year 2019
Journal/Proceedings Macromolecular Materials and Engineering
Reftype
DOI/URL DOI
Abstract
Abstract The introduction of 3D bioprinting to fabricate living constructs with tailored architecture has provided a new paradigm for biofabrication, with the potential to overcome several drawbacks of conventional scaffold-based tissue regeneration strategies. Hydrogel-based materials are suitable candidates regarding cell biocompatibility but often display poor mechanical properties. Self-assembling peptides are a promising source of biomaterials to be used as 3D scaffolds based on their similarity to extracellular matrices (structurally and mechanically). In this study, an advanced bioink for biofabrication is presented based on the optimization of a RAD16-I-based biomaterial. The strategy followed to build 3D predefined structures by 3D printing is based on an enhancement of bioink viscosity by adding methylcellulose (MC) to a RAD16-I solution. The resultant constructs display high shape fidelity and stability and embedded human mesenchymal stem cells present high viability after 7 days of culture. Moreover, cells are also able to differentiate to the adipogenic lineage, suggesting the suitability of this novel biomaterial for soft tissue engineering applications.
AUTHOR Wang, Weiguang and Junior, José Roberto Passarini and Nalesso, Paulo Roberto Lopes and Musson, David and Cornish, Jillian and Mendonça, Fernanda and Caetano, Guilherme Ferreira and Bártolo, Paulo
Title Engineered 3D printed poly(ɛ-caprolactone)/graphene scaffolds for bone tissue engineering [Abstract]
Year 2019
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Scaffolds are important physical substrates for cell attachment, proliferation and differentiation. Multiple factors could influence the optimal design of scaffolds for a specific tissue, such as the geometry, the materials used to modulate cell proliferation and differentiation, its biodegradability and biocompatibility. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes. Previous studies of human adipose-derived stem cells (hADSCs) seeded on poly(ε-caprolactone) (PCL)/graphene scaffolds have proved that the addition of small concentrations of graphene to PCL scaffolds improves cell proliferation. Based on such results, this paper further investigates, for the first time, both in vitro and in vivo characteristics of 3D printed PCL/graphene scaffolds. Scaffolds were evaluated from morphological, biological and short term immune response points of view. Results show that the produced scaffolds induce an acceptable level of immune response, suggesting high potential for in vivo applications. Finally, the scaffolds were used to treat a rat calvaria critical size defect with and without applying micro electrical stimulation (10 μA). Quantification of connective and new bone tissue formation and the levels of ALP, RANK, RANKL, OPG were considered. Results show that the use of scaffolds containing graphene and electrical stimulation seems to increase cell migration and cell influx, leading to new tissue formation, well-organized tissue deposition and bone remodelling.
AUTHOR Huang, Boyang and Vyas, Cian and Roberts, Iwan and Poutrel, Quentin-Arthur and Chiang, Wei-Hung and Blaker, Jonny J. and Huang, Zhucheng and Bártolo, Paulo
Title Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration [Abstract]
Year 2019
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Carbon nanotubes (CNTs) with exceptional physical and chemical properties are attracting significant interest in the field of tissue engineering. Several reports investigated CNTs biocompatibility and their impact in terms of cell attachment, proliferation and differentiation mainly using polymer/CNTs membranes. However, these 2D membranes are not able to emulate the complex in vivo environment. In this paper, additive manufacturing (3D printing) is used to create composite 3D porous scaffolds containing different loadings of multi-walled carbon nanotubes (MWCNT) (0.25, 0.75 and 3 wt%) for bone tissue regeneration. Pre-processed and processed materials were extensively characterised in terms of printability, morphological and topographic characteristics and thermal, mechanical and biological properties. Scaffolds with pore sizes ranging between 366 μm and 397 μm were successfully produced and able to sustain early-stage human adipose-derived mesenchymal stem cells attachment and proliferation. Results show that MWCNTs enhances protein adsorption, mechanical and biological properties. Composite scaffolds, particularly the 3 wt% loading of MWCNTs, seem to be good candidates for bone tissue regeneration.
AUTHOR Rathan, Swetha and Dejob, Léa and Schipani, Rossana and Haffner, Benjamin and Möbius, Matthias E. and Kelly, Daniel J.
Title Fiber Reinforced Cartilage ECM Functionalized Bioinks for Functional Cartilage Tissue Engineering [Abstract]
Year 2019
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Focal articular cartilage (AC) defects, if left untreated, can lead to debilitating diseases such as osteoarthritis. While several tissue engineering strategies have been developed to promote cartilage regeneration, it is still challenging to generate functional AC capable of sustaining high load-bearing environments. Here, a new class of cartilage extracellular matrix (cECM)-functionalized alginate bioink is developed for the bioprinting of cartilaginous tissues. The bioinks are 3D-printable, support mesenchymal stem cell (MSC) viability postprinting and robust chondrogenesis in vitro, with the highest levels of COLLII and ACAN expression observed in bioinks containing the highest concentration of cECM. Enhanced chondrogenesis in cECM-functionalized bioinks is also associated with progression along an endochondral-like pathway, as evident by increases in RUNX2 expression and calcium deposition in vitro. The bioinks loaded with MSCs and TGF-β3 are also found capable of supporting robust chondrogenesis, opening the possibility of using such bioinks for direct “print-and-implant” cartilage repair strategies. Finally, it is demonstrated that networks of 3D-printed polycaprolactone fibers with compressive modulus comparable to native AC can be used to mechanically reinforce these bioinks, with no loss in cell viability. It is envisioned that combinations of such biomaterials can be used in multiple-tool biofabrication strategies for the bioprinting of biomimetic cartilaginous implants.
AUTHOR Mestre, Rafael and Patiño, Tania and Barceló, Xavier and Anand, Shivesh and Pérez-Jiménez, Ariadna and Sánchez, Samuel
Title Force Modulation and Adaptability of 3D-Bioprinted Biological Actuators Based on Skeletal Muscle Tissue [Abstract]
Year 2019
Journal/Proceedings Advanced Materials Technologies
Reftype
DOI/URL DOI
Abstract
Abstract The integration of biological systems into robotic devices might provide them with capabilities acquired from natural systems and significantly boost their performance. These abilities include real-time bio-sensing, self-organization, adaptability, or self-healing. As many muscle-based bio-hybrid robots and bio-actuators arise in the literature, the question of whether these features can live up to their expectations becomes increasingly substantial. Herein, the force generation and adaptability of skeletal-muscle-based bio-actuators undergoing long-term training protocols are analyzed. The 3D-bioprinting technique is used to fabricate bio-actuators that are functional, responsive, and have highly aligned myotubes. The bio-actuators are 3D-bioprinted together with two artificial posts, allowing to use it as a force measuring platform. In addition, the force output evolution and dynamic gene expression of the bio-actuators are studied to evaluate their degree of adaptability according to training protocols of different frequencies and mechanical stiffness, finding that their force generation could be modulated to different requirements. These results shed some light into the fundamental mechanisms behind the adaptability of muscle-based bio-actuators and highlight the potential of using 3D bioprinting as a rapid and cost-effective tool for the fabrication of custom-designed soft bio-robots.
AUTHOR Tondera, Christoph and Akbar, Teuku Fawzul and Thomas, Alvin Kuriakose and Lin, Weilin and Werner, Carsten and Busskamp, Volker and Zhang, Yixin and Minev, Ivan R.
Title Highly Conductive, Stretchable, and Cell-Adhesive Hydrogel by Nanoclay Doping [Abstract]
Year 2019
Journal/Proceedings Small
Reftype
DOI/URL DOI
Abstract
Abstract Electrically conductive materials that mimic physical and biological properties of tissues are urgently required for seamless brain–machine interfaces. Here, a multinetwork hydrogel combining electrical conductivity of 26 S m−1, stretchability of 800%, and tissue-like elastic modulus of 15 kPa with mimicry of the extracellular matrix is reported. Engineering this unique set of properties is enabled by a novel in-scaffold polymerization approach. Colloidal hydrogels of the nanoclay Laponite are employed as supports for the assembly of secondary polymer networks. Laponite dramatically increases the conductivity of in-scaffold polymerized poly(ethylene-3,4-diethoxy thiophene) in the absence of other dopants, while preserving excellent stretchability. The scaffold is coated with a layer containing adhesive peptide and polysaccharide dextran sulfate supporting the attachment, proliferation, and neuronal differentiation of human induced pluripotent stem cells directly on the surface of conductive hydrogels. Due to its compatibility with simple extrusion printing, this material promises to enable tissue-mimetic neurostimulating electrodes.
AUTHOR Apelgren, Peter and Karabulut, Erdem and Amoroso, Matteo and Mantas, Athanasios and Martínez Ávila, Héctor and Kölby, Lars and Kondo, Tetsuo and Toriz, Guillermo and Gatenholm, Paul
Title In Vivo Human Cartilage Formation in Three-Dimensional Bioprinted Constructs with a Novel Bacterial Nanocellulose Bioink [Abstract]
Year 2019
Journal/Proceedings ACS Biomaterials Science & Engineering
Reftype
DOI/URL DOI
Abstract
Bacterial nanocellulose (BNC) is a 3D network of nanofibrils exhibiting excellent biocompatibility. Here, we present the aqueous counter collision (ACC) method of BNC disassembly to create bioink with suitable properties for cartilage-specific 3D-bioprinting. BNC was disentangled by ACC, and fibril characteristics were analyzed. Bioink printing fidelity and shear-thinning properties were evaluated. Cell-laden bioprinted grid constructs (5 × 5 × 1 mm3) containing human nasal chondrocytes (10 M mL-1) were implanted in nude mice and explanted after 30 and 60 days. Both ACC and hydrolysis resulted in significantly reduced fiber lengths, with ACC resulting in longer fibrils and fewer negative charges relative to hydrolysis. Moreover, ACC-BNC bioink showed outstanding printability, postprinting mechanical stability, and structural integrity. In vivo, cell-laden structures were rapidly integrated, maintained structural integrity, and showed chondrocyte proliferation, with 32.8 ± 13.8 cells per mm2 observed after 30 days and 85.6 ± 30.0 cells per mm2 at day 60 (p = 0.002). Furthermore, a full-thickness skin graft was attached and integrated completely on top of the 3D-bioprinted construct. The novel ACC disentanglement technique makes BNC biomaterial highly suitable for 3D-bioprinting and clinical translation, suggesting cell-laden 3D-bioprinted ACC-BNC as a promising solution for cartilage repair. Bacterial nanocellulose (BNC) is a 3D network of nanofibrils exhibiting excellent biocompatibility. Here, we present the aqueous counter collision (ACC) method of BNC disassembly to create bioink with suitable properties for cartilage-specific 3D-bioprinting. BNC was disentangled by ACC, and fibril characteristics were analyzed. Bioink printing fidelity and shear-thinning properties were evaluated. Cell-laden bioprinted grid constructs (5 × 5 × 1 mm3) containing human nasal chondrocytes (10 M mL-1) were implanted in nude mice and explanted after 30 and 60 days. Both ACC and hydrolysis resulted in significantly reduced fiber lengths, with ACC resulting in longer fibrils and fewer negative charges relative to hydrolysis. Moreover, ACC-BNC bioink showed outstanding printability, postprinting mechanical stability, and structural integrity. In vivo, cell-laden structures were rapidly integrated, maintained structural integrity, and showed chondrocyte proliferation, with 32.8 ± 13.8 cells per mm2 observed after 30 days and 85.6 ± 30.0 cells per mm2 at day 60 (p = 0.002). Furthermore, a full-thickness skin graft was attached and integrated completely on top of the 3D-bioprinted construct. The novel ACC disentanglement technique makes BNC biomaterial highly suitable for 3D-bioprinting and clinical translation, suggesting cell-laden 3D-bioprinted ACC-BNC as a promising solution for cartilage repair.
AUTHOR Sharma, Aarushi and Desando, Giovanna and Petretta, Mauro and Chawla, Shikha and Bartolotti, Isabella and Manferdini, Cristina and Paolella, Francesca and Gabusi, Elena and Trucco, Diego and Ghosh, Sourabh and Lisignoli, Gina
Title Investigating the Role of Sustained Calcium Release in Silk-Gelatin-Based Three-Dimensional Bioprinted Constructs for Enhancing the Osteogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stromal Cells
Year 2019
Journal/Proceedings ACS Biomaterials Science & Engineering
Reftype
DOI/URL DOI
AUTHOR Romanazzo, Sara and Nemec, Stephanie and Roohani, Iman
Title iPSC Bioprinting: Where are We at? [Abstract]
Year 2019
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
Here, we present a concise review of current 3D bioprinting technologies applied to induced pluripotent stem cells (iPSC). iPSC have recently received a great deal of attention from the scientific and clinical communities for their unique properties, which include abundant adult cell sources, ability to indefinitely self-renew and differentiate into any tissue of the body. Bioprinting of iPSC and iPSC derived cells combined with natural or synthetic biomaterials to fabricate tissue mimicked constructs, has emerged as a technology that might revolutionize regenerative medicine and patient-specific treatment. This review covers the advantages and disadvantages of bioprinting techniques, influence of bioprinting parameters and printing condition on cell viability, and commonly used iPSC sources, and bioinks. A clear distinction is made for bioprinting techniques used for iPSC at their undifferentiated stage or when used as adult stem cells or terminally differentiated cells. This review presents state of the art data obtained from major searching engines, including Pubmed/MEDLINE, Google Scholar, and Scopus, concerning iPSC generation, undifferentiated iPSC, iPSC bioprinting, bioprinting techniques, cartilage, bone, heart, neural tissue, skin, and hepatic tissue cells derived from iPSC.
AUTHOR Zhuang, Pei and Ng, Wei Long and An, Jia and Chua, Chee Kai and Tan, Lay Poh
Title Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications [Abstract]
Year 2019
Journal/Proceedings PLOS ONE
Reftype
DOI/URL DOI
Abstract
One of the major challenges in the field of soft tissue engineering using bioprinting is fabricating complex tissue constructs with desired structure integrity and mechanical property. To accomplish such requirements, most of the reported works incorporated reinforcement materials such as poly(ϵ-caprolactone) (PCL) polymer within the 3D bioprinted constructs. Although this approach has made some progress in constructing soft tissue-engineered scaffolds, the mechanical compliance mismatch and long degradation period are not ideal for soft tissue engineering. Herein, we present a facile bioprinting strategy that combines the rapid extrusion-based bioprinting technique with an in-built ultraviolet (UV) curing system to facilitate the layer-by-layer UV curing of bioprinted photo-curable GelMA-based hydrogels to achieve soft yet stable cell-laden constructs with high aspect ratio for soft tissue engineering. GelMA is supplemented with a viscosity enhancer (gellan gum) to improve the bio-ink printability and shape fidelity while maintaining the biocompatibility before crosslinking via a layer-by-layer UV curing process. This approach could eventually fabricate soft tissue constructs with high aspect ratio (length to diameter) of ≥ 5. The effects of UV source on printing resolution and cell viability were also studied. As a proof-of-concept, small building units (3D lattice and tubular constructs) with high aspect ratio are fabricated. Furthermore, we have also demonstrated the ability to perform multi-material printing of tissue constructs with high aspect ratio along both the longitudinal and transverse directions for potential applications in tissue engineering of soft tissues. This layer-by-layer ultraviolet assisted extrusion-based (UAE) Bioprinting may provide a novel strategy to develop soft tissue constructs with desirable structure integrity.
AUTHOR Zhou, Miaomiao and Lee, Bae Hoon and Tan, Yu Jun and Tan, Lay Poh
Title Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing [Abstract]
Year 2019
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Gelatin methacryloyl (GelMA) is a versatile biomaterial that has been shown to possess many advantages such as good biocompatibility, support for cell growth, tunable mechanical properties, photocurable capability, and low material cost. Due to these superior properties, much research has been carried out to develop GelMA as a bioink for bioprinting. However, there are still many challenges, and one major challenge is the control of its rheological properties to yield good printability. Herein, this study presents a strategy to control the rheology of GelMA through partial enzymatic crosslinking. Unlike other enzymatic crosslinking strategies where the rheological properties could not be controlled once reaction takes place, we could, to a large extent, keep the rheological properties stable by introducing a deactivation step after obtaining the optimized rheological properties. Ca2+-independent microbial transglutaminase (MTGase) was introduced to partially catalyze covalent bond formation between chains of GelMA. The enzyme was then deactivated to prevent further uncontrolled crosslinking that would render the hydrogel not printable. After printing, a secondary post-printing crosslinking step (photo crosslinking) was then introduced to ensure long-term stability of the printed structure for subsequent cell studies. Biocompatibility studies carried out using cells encapsulated in the printed structure showed excellent cell viability for at least 7 d. This strategy for better control of rheological properties of GelMA could more significantly enhance the usability of this material as bioink for bioprinting of cell-laden structures for soft tissue engineering.
AUTHOR Xu, Yichi and Peng, Jiang and Richards, Geoff and Lu, Shibi and Eglin, David
Title Optimization of electrospray fabrication of stem cell–embedded alginate–gelatin microspheres and their assembly in 3D-printed poly(ε-caprolactone) scaffold for cartilage tissue engineering [Abstract]
Year 2019
Journal/Proceedings Journal of Orthopaedic Translation
Reftype
DOI/URL URL DOI
Abstract
Objective Our study reports the optimization of electrospray human bone marrow stromal cell (hBMSCs)–embedded alginate–gelatin (Alg-Gel, same as following) microspheres for the purpose of their assembly in 3D-printed poly(ε-caprolactone) (PCL) scaffold for the fabrication of a mechanically stable and biological supportive tissue engineering cartilage construct. Methods The fabrication of the Alg-Gel microspheres using an electrospray technique was optimized in terms of polydispersity, yield of microspheres and circularity and varying fabrication conditions. PCL scaffolds were designed and printed by melt extrusion. Then, four groups were set: Alg-hBMSC microspheres cultured in the 2D well plate (Alg-hBMSCs+2D) group, Alg-Gel-hBMSC microspheres cultured in the 2D well plate (Alg-Gel-hBMSCs+2D) group, Alg-Gel-hBMSC microspheres embedded in PCL scaffold cultured in the 2D well plate (Alg-Gel-hBMSCs+2D) group and Alg-Gel-hBMSCs microspheres cultured in the 3D bioreactor (Alg-Gel-hBMSCs+3D) group. Cell viability, proliferation and chondrogenic differentiation were evaluated, and mechanical test was performed. Results Nonaggregated, low polydispersity and almost spherical microspheres of average diameter of 200–300 μm were produced with alginate 1.5 w: v%, gelatin (Type B) concentration of 0.5 w: v % and CaCl2 coagulating bath concentration of 3.0 w: v %, using 30G needle size and 8 kV and 0.6 bar voltage and air pressure, respectively. Alginate with gelatin hydrogel improved viability and promoted hBMSC proliferation better than alginate microspheres. Interestingly, hBMSCs embedded in microspheres assembled in 3D-printed PCL scaffold and cultured in a 3D bioreactor were more proliferative in comparison to the previous two groups (p < 0.05). Similarly, the GAG content, GAG/DNA ratio as well as Coll 2 and Aggr gene expression were increased in the last two groups. Conclusion Optimization of hBMSC-embedded Alg-Gel microspheres produced by electrospray has been performed. The Alg-Gel composition selected allows conservation of hBMSC viability and supports proliferation and matrix deposition. The possibility to seed and assemble microspheres in designed 3D-printed PCL scaffolds for the fabrication of a mechanically stable and biological supportive tissue engineering cartilage construct was demonstrated. Translational potential of this article We optimize and demonstrate that electrospray microsphere fabrication is a cytocompatible and facile process to produce the hBMSC-embedded microsize tissue-like particles that can easily be assembled into a stable construct. This finding could have application in the development of mechanically competent stem cell–based tissue engineering of cartilage regeneration.
AUTHOR Filardo, G. and Petretta, M. and Cavallo, C. and Roseti, L. and Durante, S. and Albisinni, U. and Grigolo, B.
Title Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold [Abstract]
Year 2019
Journal/Proceedings Bone and Joint Research
Reftype
DOI/URL DOI
Abstract
Objectives Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting technology. Methods A 3D model of bioengineered medial meniscus tissue was created, based on MRI scans of a human volunteer. The Digital Imaging and Communications in Medicine (DICOM) data from these MRI scans were processed using dedicated software, in order to obtain an STL model of the structure. The chosen 3D Discovery printing tool was a microvalve-based inkjet printhead. Primary mesenchymal stem cells (MSCs) were isolated from bone marrow and embedded in a collagen-based bio-ink before printing. LIVE/DEAD assay was performed on realized cell-laden constructs carrying MSCs in order to evaluate cell distribution and viability. Results This study involved the realization of a human cell-laden collagen meniscus using 3D bioprinting. The meniscus prototype showed the biological potential of this technology to provide an anatomically shaped, patient-specific construct with viable cells on a biocompatible material. Conclusion This paper reports the preliminary findings of the production of a custom-made, cell-laden, collagen-based human meniscus. The prototype described could act as the starting point for future developments of this collagen-based, tissue-engineered structure, which could aid the optimization of implants designed to replace damaged menisci. Cite this article: G. Filardo, M. Petretta, C. Cavallo, L. Roseti, S. Durante, U. Albisinni, B. Grigolo. Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone Joint Res 2019;8:101–106. DOI: 10.1302/2046-3758.82.BJR-2018-0134.R1.
AUTHOR Pan, Houwen Matthew and Chen, Shengyang and Jang, Tae-Sik and Han, Win Tun and Jung, Hyun-do and Li, Yaning and Song, Juha
Title Plant seed-inspired cell protection, dormancy, and growth for large-scale biofabrication [Abstract]
Year 2019
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Biofabrication technologies have endowed us with the capability to fabricate complex biological constructs. However, cytotoxic biofabrication conditions have been a major challenge for their clinical application, leading to a trade-off between cell viability and scalability of biofabricated constructs. Taking inspiration from nature, we proposed a cell protection strategy which mimicks the protected and dormant state of plant seeds in adverse external conditions and their germination in response to appropriate environmental cues. Applying this bioinspired strategy to biofabrication, we successfully preserved cell viability and enhanced the seeding of cell-laden biofabricated constructs via a cytoprotective pyrogallol (PG)-alginate encapsulation system. Our cytoprotective encapsulation technology utilizes PG-triggered sporulation and germination processes to preserve cells, is mechanically robust, chemically resistant, and highly customizable to adequately match cell protectability with cytotoxicity of biofabrication conditions. More importantly, the facile and tunable decapsulation of our PG-alginate system allows for effective germination of dormant cells, under typical culture conditions. With this approach, we have successfully achieved a biofabrication process which is reproducible, scalable, and provided a practical solution for off-the-shelf availability, shipping and temporary storage of fabricated bio-constructs.
AUTHOR Gloria, Antonio and Frydman, B. and Lamas, Miguel L. and Serra, Armenio C. and Martorelli, Massimo and Coelho, Jorge F. J. and Fonseca, Ana C. and Domingos, M.
Title The influence of poly(ester amide) on the structural and functional features of 3D additive manufactured poly(ε-caprolactone) scaffolds [Abstract]
Year 2019
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
The current research reports for the first time the use of blends of poly(ε-caprolactone) (PCL) and poly(ester amide) (PEA) for the fabrication of 3D additive manufactured scaffolds. Tailor made PEA was synthesized to afford fully miscible blends of PCL and PEA using different percentages (5, 10, 15 and 20% w/w). Stability, characteristic temperatures and material's compatibility were studied through thermal analyses (i.e., TGA, DSC). Even though DMTA and static compression tests demonstrated the possibility to improve the storage modulus, Young's modulus and maximum stress by increasing the amount of PEA, a decrease of hardness was found beyond a threshold concentration of PEA as the lowest values were achieved for PCL/PEA (20% w/w) scaffolds (from 0.39 ± 0.03 GPa to 0.21 ± 0.02 GPa in the analysed load range). The scaffolds presented a controlled morphology and a fully interconnected network of internal channels. The water contact angle measurements showed a clear increase of hydrophilicity resulting from the addition of PEA. This result was further corroborated with the improved adhesion and proliferation of human mesenchymal stem cells (hMSCs). The presence of PEA also influenced the cell morphology. Better cell spreading and a much higher and homogenous number of cells were observed for PCL/PEA scaffolds when compared to PCL ones.
AUTHOR Caetano, Guilherme and Wang, Weiguang and Murashima, Adriana and Passarini, José Roberto and Bagne, Leonardo and Leite, Marcel and Hyppolito, Miguel and Al-Deyab, Salem and El-Newehy, Mohamed and Bártolo, Paulo and Frade, Marco Andrey Cipriani
Title Tissue Constructs with Human Adipose-Derived Mesenchymal Stem Cells to Treat Bone Defects in Rats [Abstract]
Year 2019
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
The use of porous scaffolds created by additive manufacturing is considered a viable approach for the regeneration of critical-size bone defects. This paper investigates the xenotransplantation of polycaprolactone (PCL) tissue constructs seeded with differentiated and undifferentiated human adipose-derived mesenchymal stem cells (hADSCs) to treat calvarial critical-sized defect in Wistar rats. PCL scaffolds without cells were also considered. In vitro and in vivo biological evaluations were performed to assess the feasibility of these different approaches. In the case of cell seeded scaffolds, it was possible to observe the presence of hADSCs in the rat tissue contributing directly (osteoblasts) and indirectly (stimulation by paracrine factors) to tissue formation, organization and mineralization. The presence of bone morphogenetic protein-2 (BMP-2) in the rat tissue treated with cell-seeded PCL scaffolds suggests that the paracrine factors of undifferentiated hADSC cells could stimulate BMP-2 production by surrounding cells, leading to osteogenesis. Moreover, BMP-2 acts synergistically with growth factors to induce angiogenesis, leading to higher numbers of blood vessels in the groups containing undifferentiated and differentiated hADSCs.
AUTHOR Gretzinger, Sarah and Beckert, Nicole and Gleadall, Andrew and Lee-Thedieck, Cornelia and Hubbuch, Jürgen
Title 3D bioprinting – Flow cytometry as analytical strategy for 3D cell structures [Abstract]
Year 2018
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
The importance of 3D printing technologies increased significantly over the recent years. They are considered to have a huge impact in regenerative medicine and tissue engineering, since 3D bioprinting enables the production of cell-laden 3D scaffolds. Transition from academic research to pharmaceutical industry or clinical applications, however, is highly dependent on developing a robust and well-known process, while maintaining critical cell characteristics. Hence, a directed and systematic approach to 3D bioprinting process development is required, which also allows for the monitoring of these cell characteristics. This work presents the development of a flow cytometry-based analytical strategy as a tool for 3D bioprinting research. The development was based on a model process using a commercially available alginate-based bioink, the β-cell line INS-1E, and direct dispensing as 3D bioprinting method. We demonstrated that this set-up enabled viability and proliferation analysis. Additionally, use of an automated sampler facilitated high-throughput screenings. Finally, we showed that each process step, e.g. suspension of cells in bioink or 3D printing, cross-linking of the alginate scaffold after printing, has a crucial impact on INS-1E viability. This reflects the importance of process optimization in 3D bioprinting and the usefulness of the flow cytometry-based analytical strategy described here. The presented strategy has a great potential as a cell characterisation tool for 3D bioprinting and may contribute to a more directed process development.
AUTHOR Petta, D. and Armiento, A. R. and Grijpma, D. and Alini, M. and Eglin, D. and D'Este, M.
Title 3D bioprinting of a hyaluronan bioink through enzymatic-and visible light-crosslinking [Abstract]
Year 2018
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Extrusion-based three-dimensional bioprinting relies on bioinks engineered to combine viscoelastic properties for extrusion and shape retention, and biological properties for cytocompatibility and tissue regeneration. To satisfy these conflicting requirements, bioinks often utilize either complex mixtures or complex modifications of biopolymers. In this paper we introduce and characterize a bioink exploiting a dual crosslinking mechanism, where an enzymatic reaction forms a soft gel suitable for cell encapsulation and extrusion, while a visible light photo-crosslinking allows shape retention of the printed construct. The influence of cell density and cell type on the rheological and printability properties was assessed correlating the printing outcomes with the damping factor, a rheological characteristic independent of the printing system. Stem cells, chondrocytes and fibroblasts were encapsulated, and their viability was assessed up to 14 days with live/dead, alamar blue and trypan blue assays. Additionally, the impact of the printing parameters on cell viability was investigated. Owing to its straightforward preparation, low modification, presence of two independent crosslinking mechanisms for tuning shear-thinning independently of the final shape fixation, the use of visible green instead of UV light, the possibility of encapsulating and sustaining the viability of different cell types, the hyaluronan bioink here presented is a valid biofabrication tool for producing 3D printed tissue-engineered constructs.
AUTHOR Aied, Ahmed and Song, Wenhui and Wang, Wenxin and Baki, Abdulrahman and Sigen, A.
Title 3D Bioprinting of stimuli-responsive polymers synthesised from DE-ATRP into soft tissue replicas [Abstract]
Year 2018
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Synthetic polymers possess more reproducible physical and chemical properties than their naturally occurring counterparts. They have also emerged as an important alternative for fabricating tissue substitutes because they can be molecularly tailored to have vast array of molecular weights, block structures, active functional groups, and mechanical properties. To this date however, there has been very few successful and fully functional synthetic tissue and organ substitutes and with the rapidly spreading 3D printing technology beginning to reshape the tissue engineering and regenerative field, the need for an effective, safe, and bio printable biomaterial is becoming more and more urgent. Here, we have developed a synthetic polymer from controlled living radical polymerisation that can be printed into well-defined structures. The polymer showed low cytotoxicity before and after printing. Additionally, the incorporation of gelatine-methacrylate coated PLGA microparticles within the hydrogel provided cell adhesion surfaces for cell proliferation. The results point to possible application of the microparticle seeded, synthetic hydrogel as a direct printable tissue or organ substitute.
AUTHOR Caetano, Guilherme Ferreira and Wang, Weiguang and Chiang, Wei-Hung and Cooper, Glen and Diver, Carl and Blaker, Jonny James and Frade, Marco Andrey and Bártolo, Paulo
Title 3D-Printed Poly(ɛ-caprolactone)/Graphene Scaffolds Activated with P1-Latex Protein for Bone Regeneration [Abstract]
Year 2018
Journal/Proceedings 3D Printing and Additive Manufacturing
Reftype
DOI/URL DOI
Abstract
Abstract Biomanufacturing is a relatively new research domain focusing on the use of additive manufacturing technologies, biomaterials, cells, and biomolecular signals to produce tissue constructs for tissue engineering. For bone regeneration, researchers are focusing on the use of polymeric and polymer/ceramic scaffolds seeded with osteoblasts or mesenchymal stem cells. However, high-performance scaffolds in terms of mechanical, cell stimulation, and biological performance are still required. This article investigates the use of an extrusion additive manufacturing system to produce poly(ɛ-caprolactone) (PCL) and PCL/graphene nanosheet scaffolds for bone applications. Scaffolds with regular and reproducible architecture and uniform dispersion of graphene were produced and coated with P1-latex protein extracted from the Hevea brasiliensis rubber tree. Results show that the obtained scaffolds cultivated with human adipose-derived stem cells present no toxicity effects. The presence of graphene nanosheet and P1-latex protein in the scaffolds increased cell proliferation compared with PCL scaffolds. Moreover, the presence of P1-latex protein promotes earlier osteogenic differentiation, suggesting that PCL/graphene/P1-latex protein scaffolds are suitable for bone regeneration applications.
AUTHOR Shi, Pujiang and Tan, Yong Sheng Edgar and Yeong, Wai Yee and Li, Hoi Yeung and Laude, Augustinus
Title A bilayer photoreceptor‐retinal tissue model with gradient cell density design: A study of microvalve‐based bioprinting [Abstract]
Year 2018
Journal/Proceedings Journal of Tissue Engineering and Regenerative Medicine
Reftype
DOI/URL DOI
Abstract
Abstract ARPE‐19 and Y79 cells were precisely and effectively delivered to form an in vitro retinal tissue model via 3D cell bioprinting technology. The samples were characterized by cell viability assay, haematoxylin and eosin and immunofluorescent staining, scanning electrical microscopy and confocal microscopy, and so forth. The bioprinted ARPE‐19 cells formed a high‐quality cell monolayer in 14 days. Manually seeded ARPE‐19 cells were poorly controlled during and after cell seeding, and they aggregated to form uneven cell layer. The Y79 cells were subsequently bioprinted on the ARPE‐19 cell monolayer to form 2 distinctive patterns. The microvalve‐based bioprinting is efficient and accurate to build the in vitro tissue models with the potential to provide similar pathological responses and mechanism to human diseases, to mimic the phenotypic endpoints that are comparable with clinical studies, and to provide a realistic prediction of clinical efficacy.
AUTHOR Agarwala, Shweta and Lee, Jia Min and Ng, Wei Long and Layani, Michael and Yeong, Wai Yee and Magdassi, Shlomo
Title A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform [Abstract]
Year 2018
Journal/Proceedings Biosensors and Bioelectronics
Reftype
DOI/URL URL DOI
Abstract
Abstract Bioelectronics platforms are gaining widespread attention as they provide a template to study the interactions between biological species and electronics. Decoding the effect of the electrical signals on the cells and tissues holds the promise for treating the malignant tissue growth, regenerating organs and engineering new-age medical devices. This work is a step forward in this direction, where bio- and electronic materials co-exist on one platform without any need for post processing. We fabricate a freestanding and flexible hydrogel based platform using 3D bioprinting. The fabrication process is simple, easy and provides a flexible route to print materials with preferred shapes, size and spatial orientation. Through the design of interdigitated electrodes and heating coil, the platform can be tailored to print various circuits for different functionalities. The biocompatibility of the printed platform is tested using C2C12 murine myoblasts cell line. Furthermore, normal human dermal fibroblasts (primary cells) are also seeded on the platform to ascertain the compatibility.
AUTHOR Tognato, Riccardo and Armiento, Angela R. and Bonfrate, Valentina and Levato, Riccardo and Malda, Jos and Alini, Mauro and Eglin, David and Giancane, Gabriele and Serra, Tiziano
Title A Stimuli-Responsive Nanocomposite for 3D Anisotropic Cell-Guidance and Magnetic Soft Robotics [Abstract]
Year 2018
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract Stimuli-responsive materials have the potential to enable the generation of new bioinspired devices with unique physicochemical properties and cell-instructive ability. Enhancing biocompatibility while simplifying the production methodologies, as well as enabling the creation of complex constructs, i.e., via 3D (bio)printing technologies, remains key challenge in the field. Here, a novel method is presented to biofabricate cellularized anisotropic hybrid hydrogel through a mild and biocompatible process driven by multiple external stimuli: magnetic field, temperature, and light. A low-intensity magnetic field is used to align mosaic iron oxide nanoparticles (IOPs) into filaments with tunable size within a gelatin methacryloyl matrix. Cells seeded on top or embedded within the hydrogel align to the same axes of the IOPs filaments. Furthermore, in 3D, C2C12 skeletal myoblasts differentiate toward myotubes even in the absence of differentiation media. 3D printing of the nanocomposite hydrogel is achieved and creation of complex heterogeneous structures that respond to magnetic field is demonstrated. By combining the advanced, stimuli-responsive hydrogel with the architectural control provided by bioprinting technologies, 3D constructs can also be created that, although inspired by nature, express functionalities beyond those of native tissue, which have important application in soft robotics, bioactuators, and bionic devices.
AUTHOR Li, Huijun and Tan, Yu Jun and Li, Lin
Title A strategy for strong interface bonding by 3D bioprinting of oppositely charged κ-carrageenan and gelatin hydrogels [Abstract]
Year 2018
Journal/Proceedings Carbohydrate Polymers
Reftype
DOI/URL URL
Abstract
A promising approach for improving the interfacial bonding of a three-dimensionally (3D) printed multilayered structure has been investigated by taking advantage of the electrostatic interactions between two hydrogels with oppositely charges. Here, two hydrogels namely gelatin and κ-carrageenan, which are the cationic and anionic hydrogels respectively, are used. It is found that the interfacial bonding strength between these two oppositely charged hydrogels is significantly higher than that of a bilayered gelatin or a bilayered κ-carrageenan. The bioprinted multilayered κ-carrageenan-gelatin hydrogel construct demonstrates a very good biocompatibility and a good structure integrity at 37 °C. Our strategy also overcomes the limitation of using gelatin for bio-fabrication at 37 °C, without further post crosslinking.
AUTHOR Fortunato, Gabriele Maria and Maria, Carmelo De and Eglin, David and Serra, Tiziano and Vozzi, Giovanni
Title An ink-jet printed electrical stimulation platform for muscle tissue regeneration [Abstract]
Year 2018
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Conducting polymeric materials have been used to modulate response of cells seeded on their surfaces. However, there is still major improvement to be made related to their biocompatibility, conductivity, stability in biological milieu, and processability toward truly tissue engineered functional device. In this work, conductive polymer, poly(3,4-ethylene-dioxythiophene):polystyrene-sulfonate (PEDOT:PSS), and its possible applications in tissue engineering were explored. In particular PEDOT:PSS solution was inkjet printed onto a gelatin substrate for obtaining a conductive structure. Mechanical and electrical characterizations, structural stability by swelling and degradation tests were carried out on different PEDOT-based samples obtained by varying the number of printed PEDOT layers from 5 to 50 on gelatin substrate. Biocompatibility of substrates was investigated on C2C12 myoblasts, through metabolic activity assay and imaging analysis during a 7-days culture period, to assess cell morphology, differentiation and alignment. The results of this first part allowed to proceed with the second part of the study in which these substrates were used for the design of an electrical stimulation device, with the aim of providing the external stimulus (3 V amplitude square wave at 1 and 2 Hz frequency) to guide myotubes alignment and enhance differentiation, having in this way promising applications in the field of muscle tissue engineering.
AUTHOR Ng, Wei Long and Goh, Min Hao and Yeong, Wai Yee and Naing, May Win
Title Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs [Abstract]
Year 2018
Journal/Proceedings Biomaterials Science
Reftype
DOI/URL DOI
Abstract
Native tissues and/or organs possess complex hierarchical porous structures that confer highly-specific cellular functions. Despite advances in fabrication processes{,} it is still very challenging to emulate the hierarchical porous collagen architecture found in most native tissues. Hence{,} the ability to recreate such hierarchical porous structures would result in biomimetic tissue-engineered constructs. Here{,} a single-step drop-on-demand (DOD) bioprinting strategy is proposed to fabricate hierarchical porous collagen-based hydrogels. Printable macromolecule-based bio-inks (polyvinylpyrrolidone{,} PVP) have been developed and printed in a DOD manner to manipulate the porosity within the multi-layered collagen-based hydrogels by altering the collagen fibrillogenesis process. The experimental results have indicated that hierarchical porous collagen structures could be achieved by controlling the number of macromolecule-based bio-ink droplets printed on each printed collagen layer. This facile single-step bioprinting process could be useful for the structural design of collagen-based hydrogels for various tissue engineering applications.
AUTHOR Mouser, Vivian H. M. and Levato, Riccardo and Mensinga, Anneloes and Dhert, Wouter J. A. and Gawlitta, Debby and Malda, Jos
Title Bio-ink development for three-dimensional bioprinting of hetero-cellular cartilage constructs [Abstract]
Year 2018
Journal/Proceedings Connective Tissue Research
Reftype
DOI/URL DOI
Abstract
ABSTRACTBioprinting is a promising tool to fabricate organized cartilage. This study aimed to investigate the printability of gelatin-methacryloyl/gellan gum (gelMA/gellan) hydrogels with and without methacrylated hyaluronic acid (HAMA), and to explore (zone-specific) chondrogenesis of chondrocytes, articular cartilage progenitor cells (ACPCs), and multipotent mesenchymal stromal cells (MSCs) embedded in these bio-inks.The incorporating of HAMA in gelMA/gellan bio-ink increased filament stability, as measured using a filament collapse assay, but did not influence (zone-specific) chondrogenesis of any of the cell types. Highest chondrogenic potential was observed for MSCs, followed by ACPCs, which displayed relatively high proteoglycan IV mRNA levels. Therefore, two-zone constructs were printed with gelMA/gellan/HAMA containing ACPCs in the superficial region and MSCs in the middle/deep region. Chondrogenic differentiation was confirmed, however, printing influence cellular differentiation.ACPC- and MSC-laden gelMA/gellan/HAMA hydrogels are of interest for the fabrication of cartilage constructs. Nevertheless, this study underscores the need for careful evaluation of the effects of printing on cellular differentiation.
AUTHOR García-Lizarribar, Andrea and Fernández-Garibay, Xiomara and Velasco-Mallorquí, Ferran and G. Castaño, Albert and Samitier, Josep and Ramón-Azcón, Javier
Title Composite Biomaterials as Long-Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue
Year 2018
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI
AUTHOR Visscher, D. O. and Gleadall, A. and Buskermolen, J. K. and Burla, F. and Segal, J. and Koenderink, G. H. and Helder, M. N. and van Zuijlen, P. P. M.
Title Design and fabrication of a hybrid alginate hydrogel/poly(ε-caprolactone) mold for auricular cartilage reconstruction [Abstract]
Year 2018
Journal/Proceedings Journal of Biomedical Materials Research Part B: Applied Biomaterials
Reftype
DOI/URL DOI
Abstract
Abstract The aim of this study was to design and manufacture an easily assembled cartilage implant model for auricular reconstruction. First, the printing accuracy and mechanical properties of 3D-printed poly-ε-caprolactone (PCL) scaffolds with varying porosities were determined to assess overall material properties. Next, the applicability of alginate as cell carrier for the cartilage implant model was determined. Using the optimal outcomes of both experiments (in terms of (bio)mechanical properties, cell survival, neocartilage formation, and printing accuracy), a hybrid auricular implant model was developed. PCL scaffolds with 600 μm distances between strands exhibited the best mechanical properties and most optimal printing quality for further exploration. In alginate, chondrocytes displayed high cell survival (~83% after 21 days) and produced cartilage-like matrix in vitro. Alginate beads cultured in proliferation medium exhibited slightly higher compressive moduli (6 kPa) compared to beads cultured in chondrogenic medium (3.5 kPa, p > .05). The final auricular mold could be printed with 300 μm pores and high fidelity, and the injected chondrocytes survived the culture period of 21 days. The presented hybrid auricular mold appears to be an adequate model for cartilage tissue engineering and may provide a novel approach to auricular cartilage regeneration for facial reconstruction. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res B Part B: Appl Biomater, 2018.
AUTHOR Prasopthum, Aruna and Shakesheff, Kevin M. and Yang, Jing
Title Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography [Abstract]
Year 2018
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Three-dimensional (3D) printing is a powerful manufacturing tool for making 3D structures with well-defined architectures for a wide range of applications. The field of tissue engineering has also adopted this technology to fabricate scaffolds for tissue regeneration. The ability to control architecture of scaffolds, e.g. matching anatomical shapes and having defined pore size, has since been improved significantly. However, the material surface of these scaffolds is smooth and does not resemble that found in natural extracellular matrix (ECM), in particular, the nanofibrous morphology of collagen. This natural nanoscale morphology plays a critical role in cell behaviour. Here, we have developed a new approach to directly fabricate polymeric scaffolds with an ECM-like nanofibrous topography and defined architectures using extrusion-based 3D printing. 3D printed tall scaffolds with interconnected pores were created with disparate features spanning from nanometres to centimetres. Our approach removes the need for a sacrificial mould and subsequent mould removal compared to previous methods. Moreover, the nanofibrous topography of the 3D printed scaffolds significantly enhanced protein absorption, cell adhesion and differentiation of human mesenchymal stem cells when compared to those with smooth material surfaces. These 3D printed scaffolds with both defined architectures and nanoscale ECM-mimicking morphologies have potential applications in cartilage and bone regeneration.
AUTHOR Zamani, Yasaman and Mohammadi, Javad and Amoabediny, Ghassem and Visscher, Dafydd O. and Helder, Marco N. and Zandieh-Doulabi, Behrouz and Klein-Nulend, Jenneke
Title Enhanced osteogenic activity by {MC}3T3-E1 pre-osteoblasts on chemically surface-modified poly($upepsilon$-caprolactone) 3D-printed scaffolds compared to {RGD} immobilized scaffolds [Abstract]
Year 2018
Journal/Proceedings Biomedical Materials
Reftype
DOI/URL DOI
Abstract
In bone tissue engineering, the intrinsic hydrophobicity and surface smoothness of three-dimensional (3D)-printed poly(ε-caprolactone) scaffolds hamper cell attachment, proliferation and differentiation. This intrinsic hydrophobicity of poly(ε-caprolactone) can be overcome by surface modifications, such as surface chemical modification or immobilization of biologically active molecules on the surface. Moreover, surface chemical modification may alter surface smoothness. Whether surface chemical modification or immobilization of a biologically active molecule on the surface is more effective to enhance pre-osteoblast proliferation and differentiation is currently unknown. Therefore, we aimed to investigate the osteogenic response of MC3T3-E1 pre-osteoblasts to chemically surface-modified and RGD-immobilized 3D-printed poly(ε-caprolactone) scaffolds. Poly(ε-caprolactone) scaffolds were 3D-printed consisting of strands deposited layer by layer with alternating 0°/90° lay-down pattern. 3D-printed poly(ε-caprolactone) scaffolds were surface-modified by either chemical modification using 3 M sodium hydroxide (NaOH) for 24 or 72 h, or by RGD-immobilization. Strands were visualized by scanning electron microscopy. MC3T3-E1 pre-osteoblasts were seeded onto the scaffolds and cultured up to 14 d. The strands of the unmodified poly(ε-caprolactone) scaffold had a smooth surface. NaOH treatment changed the scaffold surface topography from smooth to a honeycomb-like surface pattern, while RGD immobilization did not alter the surface topography. MC3T3-E1 pre-osteoblast seeding efficiency was similar (44%–54%) on all scaffolds after 12 h. Cell proliferation increased from day 1 to day 14 in unmodified controls (1.9-fold), 24 h NaOH-treated scaffolds (3-fold), 72 h NaOH-treated scaffolds (2.2-fold), and RGD-immobilized scaffolds (4.5-fold). At day 14, increased collagenous matrix deposition was achieved only on 24 h NaOH-treated (1.8-fold) and RGD-immobilized (2.2-fold) scaffolds compared to unmodified controls. Moreover, 24 h, but not 72 h, NaOH-treated scaffolds, increased alkaline phosphatase activity by 5-fold, while the increase by RGD immobilization was only 2.5-fold. Only 24 h NaOH-treated scaffolds enhanced mineralization (2.0-fold) compared to unmodified controls. In conclusion, RGD immobilization (0.011 μg mg−1 scaffold) on the surface and 24 h NaOH treatment of the surface of 3D-printed PCL scaffold both enhance pre-osteoblast proliferation and matrix deposition while only 24 h NaOH treatment results in increased osteogenic activity, making it the treatment of choice to promote bone formation by osteogenic cells.
AUTHOR Lee, Mihyun and Bae, Kraun and Guillon, Pierre and Chang, Jin and Arlov, Øystein and Zenobi-Wong, Marcy
Title Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity [Abstract]
Year 2018
Journal/Proceedings ACS Applied Materials and Interfaces
Reftype
DOI/URL DOI
Abstract
Three-dimensional (3D) bioprinting allows the fabrication of 3D structures containing living cells whose 3D shape and architecture are matched to a patient. The feature is desirable to achieve personalized treatment of trauma or diseases. However, realization of this promising technique in the clinic is greatly hindered by inferior mechanical properties of most biocompatible bioink materials. Here, we report a novel strategy to achieve printing large constructs with high printing quality and fidelity using an extrusion-based printer. We incorporate cationic nanoparticles in an anionic polymer mixture, which significantly improves mechanical properties, printability, and printing fidelity of the polymeric bioink due to electrostatic interactions between the nanoparticles and polymers. Addition of cationic-modified silica nanoparticles to an anionic polymer mixture composed of alginate and gellan gum results in significantly increased zero-shear viscosity (1062%) as well as storage modulus (486%). As a result, it is possible to print a large (centimeter-scale) porous structure with high printing quality, whereas the use of the polymeric ink without the nanoparticles leads to collapse of the printed structure during printing. We demonstrate such a mechanical enhancement is achieved by adding nanoparticles within a certain size range (90%) and extracellular matrix secretion are observed for cells printed with nanocomposite inks. The design principle demonstrated can be applied for various anionic polymer-based systems, which could lead to achievement of 3D bioprinting-based personalized treatment.
AUTHOR Romanazzo, S. and Vedicherla, S. and Moran, C. and Kelly, D. J.
Title Meniscus ECM‐functionalised hydrogels containing infrapatellar fat pad‐derived stem cells for bioprinting of regionally defined meniscal tissue [Abstract]
Year 2018
Journal/Proceedings Journal of Tissue Engineering and Regenerative Medicine
Reftype
DOI/URL DOI
Abstract
Abstract Injuries to the meniscus of the knee commonly lead to osteoarthritis. Current therapies for meniscus regeneration, including meniscectomies and scaffold implantation, fail to achieve complete functional regeneration of the tissue. This has led to increased interest in cell and gene therapies and tissue engineering approaches to meniscus regeneration. The implantation of a biomimetic implant, incorporating cells, growth factors, and extracellular matrix (ECM)‐derived proteins, represents a promising approach to functional meniscus regeneration. The objective of this study was to develop a range of ECM‐functionalised bioinks suitable for 3D bioprinting of meniscal tissue. To this end, alginate hydrogels were functionalised with ECM derived from the inner and outer regions of the meniscus and loaded with infrapatellar fat pad‐derived stem cells. In the absence of exogenously supplied growth factors, inner meniscus ECM promoted chondrogenesis of fat pad‐derived stem cells, whereas outer meniscus ECM promoted a more elongated cell morphology and the development of a more fibroblastic phenotype. With exogenous growth factors supplementation, a more fibrogenic phenotype was observed in outer ECM‐functionalised hydrogels supplemented with connective tissue growth factor, whereas inner ECM‐functionalised hydrogels supplemented with TGFβ3 supported the highest levels of Sox‐9 and type II collagen gene expression and sulfated glycosaminoglycans (sGAG) deposition. The final phase of the study demonstrated the printability of these ECM‐functionalised hydrogels, demonstrating that their codeposition with polycaprolactone microfibres dramatically improved the mechanical properties of the 3D bioprinted constructs with no noticeable loss in cell viability. These bioprinted constructs represent an exciting new approach to tissue engineering of functional meniscal grafts.
AUTHOR Huang, Yun-An and Ho, Chris T. and Lin, Yu-Hsuan and Lee, Chen-Ju and Ho, Szu-Mo and Li, Ming-Chia and Hwang, Eric
Title Nanoimprinted Anisotropic Topography Preferentially Guides Axons and Enhances Nerve Regeneration [Abstract]
Year 2018
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI
Abstract
Abstract Surface topography has a profound effect on the development of the nervous system, such as neuronal differentiation and morphogenesis. While the interaction of neurons and the surface topography of their local environment is well characterized, the neuron–topography interaction during the regeneration process remains largely unknown. To address this question, an anisotropic surface topography resembling linear grooves made from poly(ethylene-vinyl acetate) (EVA), a soft and biocompatible polymer, using nanoimprinting, is established. It is found that neurons from both the central and peripheral nervous system can survive and grow on this grooved surface. Additionally, it is observed that axons but not dendrites specifically align with these grooves. Furthermore, it is demonstrated that neurons on the grooved surface are capable of regeneration after an on-site injury. More importantly, these injured neurons have an accelerated and enhanced regeneration. Together, the data demonstrate that this anisotropic topography guides axon growth and improves axon regeneration. This opens up the possibility to study the effect of surface topography on regenerating axons and has the potential to be developed into a medical device for treating peripheral nerve injuries.
AUTHOR Hauser, Daniel and Estermann, Manuela and Milosevic, Ana and Steinmetz, Lukas and Vanhecke, Dimitri and Septiadi, Dedy and Drasler, Barbara and Petri-Fink, Alke and Ball, Vincent and Rothen-Rutishauser, Barbara
Title Polydopamine/Transferrin Hybrid Nanoparticles for Targeted Cell-Killing [Abstract]
Year 2018
Journal/Proceedings Nanomaterials
Reftype
DOI/URL URL DOI
Abstract
Polydopamine can form biocompatible particles that convert light into heat. Recently, a protocol has been optimized to synthesize polydopamine/protein hybrid nanoparticles that retain the biological function of proteins, and combine it with the stimuli-induced heat generation of polydopamine. We have utilized this novel system to form polydopamine particles, containing transferrin (PDA/Tf). Mouse melanoma cells, which strongly express the transferrin receptor, were exposed to PDA/Tf nanoparticles (NPs) and, subsequently, were irradiated with a UV laser. The cell death rate was monitored in real-time. When irradiated, the melanoma cells exposed to PDA/Tf NPs underwent apoptosis, faster than the control cells, pointing towards the ability of PDA/Tf to mediate UV-light-induced cell death. The system was also validated in an organotypic, 3D-printed tumor spheroid model, comprising mouse melanoma cells, and the exposure and subsequent irradiation with UV-light, yielded similar results to the 2D cell culture. The process of apoptosis was found to be targeted and mediated by the lysosomal membrane permeabilization. Therefore, the herein presented polydopamine/protein NPs constitute a versatile and stable system for cancer cell-targeting and photothermal apoptosis induction.
AUTHOR Kuzmenko, Volodymyr and Karabulut, Erdem and Pernevik, Elin and Enoksson, Peter and Gatenholm, Paul
Title Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines [Abstract]
Year 2018
Journal/Proceedings Carbohydrate Polymers
Reftype
DOI/URL URL DOI
Abstract
Neural tissue engineering (TE), an innovative biomedical method of brain study, is very dependent on scaffolds that support cell development into a functional tissue. Recently, 3D patterned scaffolds for neural TE have shown significant positive effects on cells by a more realistic mimicking of actual neural tissue. In this work, we present a conductive nanocellulose-based ink for 3D printing of neural TE scaffolds. It is demonstrated that by using cellulose nanofibrils and carbon nanotubes as ink constituents, it is possible to print guidelines with a diameter below 1 mm and electrical conductivity of 3.8 × 10−1 S cm−1. The cell culture studies reveal that neural cells prefer to attach, proliferate, and differentiate on the 3D printed conductive guidelines. To our knowledge, this is the first research effort devoted to using cost-effective cellulosic 3D printed structures in neural TE, and we suppose that much more will arise in the near future.
AUTHOR Li, Huijun and Tan, Yu Jun and Liu, Sijun and Li, Lin
Title Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding [Abstract]
Year 2018
Journal/Proceedings ACS Applied Materials and Interfaces
Reftype
DOI/URL DOI
Abstract
A novel strategy to improve the adhesion between printed layers of three-dimensional (3D) printed constructs is developed by exploiting the interaction between two oppositely charged hydrogels. Three anionic hydrogels [alginate, xanthan, and κ-carrageenan (Kca)] and three cationic hydrogels [chitosan, gelatin, and gelatin methacrylate (GelMA)] are chosen to find the optimal combination of two oppositely charged hydrogels for the best 3D printability with strong interface bonding. Rheological properties and printability of the hydrogels, as well as structural integrity of printed constructs in cell culture medium, are studied as functions of polymer concentration and the combination of hydrogels. Kca2 (2 wt % Kca hydrogel) and GelMA10 (10 wt % GelMA hydrogel) are found to be the best combination of oppositely charged hydrogels for 3D printing. The interfacial bonding between a Kca layer and a GelMA layer is proven to be significantly higher than that of the bilayered Kca or bilayered GelMA because of the formation of polyelectrolyte complexes between the oppositely charged hydrogels. A good cell viability of >96% is obtained for the 3D-bioprinted Kca–GelMA construct. This novel strategy has a great potential for 3D bioprinting of layered constructs with a strong interface bonding.
AUTHOR Allig, Sebastian and Mayer, Margot and Thielemann, Christiane
Title Workflow for bioprinting of cell-laden bioink
Year 2018
Journal/Proceedings Lekar a Technika
Reftype
DOI/URL URL
AUTHOR Choi, Y. J. and Yi, H. G. and Kim, S. W. and Cho, D. W.
Title 3D Cell Printed Tissue Analogues: A New Platform for Theranostics [Abstract]
Year 2017
Journal/Proceedings Theranostics
Reftype
DOI/URL URL
Abstract
Stem cell theranostics has received much attention for noninvasively monitoring and tracing transplanted therapeutic stem cells through imaging agents and imaging modalities. Despite the excellent regenerative capability of stem cells, their efficacy has been limited due to low cellular retention, low survival rate, and low engraftment after implantation. Three-dimensional (3D) cell printing provides stem cells with the similar architecture and microenvironment of the native tissue and facilitates the generation of a 3D tissue-like construct that exhibits remarkable regenerative capacity and functionality as well as enhanced cell viability. Thus, 3D cell printing can overcome the current concerns of stem cell therapy by delivering the 3D construct to the damaged site. Despite the advantages of 3D cell printing, the in vivo and in vitro tracking and monitoring of the performance of 3D cell printed tissue in a noninvasive and real-time manner have not been thoroughly studied. In this review, we explore the recent progress in 3D cell technology and its applications. Finally, we investigate their potential limitations and suggest future perspectives on 3D cell printing and stem cell theranostics.
AUTHOR Suntornnond, R. and Tan, E. Y. S. and An, J. and Chua, C. K.
Title A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures [Abstract]
Year 2017
Journal/Proceedings Scientific Reports
Reftype
DOI/URL URL DOI
Abstract
Vascularization is one major obstacle in bioprinting and tissue engineering. In order to create thick tissues or organs that can function like original body parts, the presence of a perfusable vascular system is essential. However, it is challenging to bioprint a hydrogel-based three-dimensional vasculature-like structure in a single step. In this paper, we report a new hydrogel-based composite that offers impressive printability, shape integrity, and biocompatibility for 3D bioprinting of a perfusable complex vasculature-like structure. The hydrogel composite can be used on a non-liquid platform and is printable at human body temperature. Moreover, the hydrogel composite supports both cell proliferation and cell differentiation. Our results represent a potentially new vascularization strategy for 3D bioprinting and tissue engineering.
AUTHOR Lorson, Thomas and Jaksch, Sebastian and Lübtow, Michael M. and Jüngst, Tomasz and Groll, Jürgen and Lühmann, Tessa and Luxenhofer, Robert
Title A Thermogelling Supramolecular Hydrogel with Sponge-Like Morphology as a Cytocompatible Bioink [Abstract]
Year 2017
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
Abstract
Biocompatible polymers that form thermoreversible supramolecular hydrogels have gained great interest in biomaterials research and tissue engineering. When favorable rheological properties are achieved at the same time, they are particularly promising candidates as material that allow for the printing of cells, so-called bioinks. We synthesized a novel thermogelling block copolymer and investigated the rheological properties of its aqueous solution by viscosimetry and rheology. The polymers undergo thermogelation between room temperature and body temperature, form transparent hydrogels of surprisingly high strength (G′ > 1000 Pa) and show rapid and complete shear recovery after stress. Small angle neutron scattering suggests an unusual bicontinuous sponge-like gel network. Excellent cytocompatibility was demonstrated with NIH 3T3 fibroblasts, which were incorporated and bioplotted into predefined 3D hydrogel structures without significant loss of viability. The developed materials fulfill all criteria for future use as bioink for biofabrication.
AUTHOR Nguyen, Duong and Hägg, Daniel and Forsman, Alma and Ekholm, Josefine and Nimkingratana, Puwapong and Brantsing, Camilla and Kalogeropoulos, Theodoros and Zaunz, Samantha and Concaro, Sebastian and Brittberg, Mats and Lindahl, Anders and Gatenholm, Paul and Enejder, Annika and Simonsson, Stina
Title Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink [Abstract]
Year 2017
Journal/Proceedings Scientific Reports
Reftype
DOI/URL DOI
Abstract
Cartilage lesions can progress into secondary osteoarthritis and cause severe clinical problems in numerous patients. As a prospective treatment of such lesions, human-derived induced pluripotent stem cells (iPSCs) were shown to be 3D bioprinted into cartilage mimics using a nanofibrillated cellulose (NFC) composite bioink when co-printed with irradiated human chondrocytes. Two bioinks were investigated: NFC with alginate (NFC/A) or hyaluronic acid (NFC/HA). Low proliferation and phenotypic changes away from pluripotency were seen in the case of NFC/HA. However, in the case of the 3D-bioprinted NFC/A (60/40, dry weight % ratio) constructs, pluripotency was initially maintained, and after five weeks, hyaline-like cartilaginous tissue with collagen type II expression and lacking tumorigenic Oct4 expression was observed in 3D -bioprinted NFC/A (60/40, dry weight % relation) constructs. Moreover, a marked increase in cell number within the cartilaginous tissue was detected by 2-photon fluorescence microscopy, indicating the importance of high cell densities in the pursuit of achieving good survival after printing. We conclude that NFC/A bioink is suitable for bioprinting iPSCs to support cartilage production in co-cultures with irradiated chondrocytes.
AUTHOR D'Amora, Ugo and D'Este, Matteo and Eglin, David and Safari, Fatemeh and Sprecher, Christoph and Gloria, Antonio and De Santis, Roberto and Alini, Mauro and Ambrosio, Luigi
Title Collagen Density Gradient on 3D Printed Poly(ε-Caprolactone) Scaffolds for Interface Tissue Engineering
Year 2017
Journal/Proceedings Journal of tissue engineering and regenerative medicine
Reftype
DOI/URL DOI
AUTHOR Baumann, Bernhard and Jungst, Tomasz and Stichler, Simone and Feineis, Susanne and Wiltschka, Oliver and Kuhlmann, Matthias and Lindén, Mika and Groll, Jürgen
Title Control of Nanoparticle Release Kinetics from 3D Printed Hydrogel Scaffolds [Abstract]
Year 2017
Journal/Proceedings Angewandte Chemie International Edition
Reftype
DOI/URL DOI
Abstract
The convergence of biofabrication with nanotechnology is largely unexplored but enables geometrical control of cell-biomaterial arrangement combined with controlled drug delivery and release. As a step towards integration of these two fields of research, this study demonstrates that modulation of electrostatic nanoparticle–polymer and nanoparticle–nanoparticle interactions can be used for tuning nanoparticle release kinetics from 3D printed hydrogel scaffolds. This generic strategy can be used for spatiotemporal control of the release kinetics of nanoparticulate drug vectors in biofabricated constructs.
AUTHOR Mouser, V. H. M. and Abbadessa, A. and Levato, R. and Hennink, W. E. and Vermonden, T. and Gawlitta, D. and Malda, J.
Title Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs [Abstract]
Year 2017
Journal/Proceedings Biofabrication
Reftype
DOI/URL URL
Abstract
Fine-tuning of bio-ink composition and material processing parameters is crucial for the development of biomechanically relevant cartilage constructs. This study aims to design and develop cartilage constructs with tunable internal architectures and relevant mechanical properties. More specifically, the potential of methacrylated hyaluronic acid (HAMA) added to thermosensitive hydrogels composed of methacrylated poly[ N -(2-hydroxypropyl)methacrylamide mono/dilactate] (pHPMA-lac)/polyethylene glycol (PEG) triblock copolymers, to optimize cartilage-like tissue formation by embedded chondrocytes, and enhance printability was explored. Additionally, co-printing with polycaprolactone (PCL) was performed for mechanical reinforcement. Chondrocyte-laden hydrogels composed of pHPMA-lac-PEG and different concentrations of HAMA (0%–1% w/w) were cultured for 28 d in vitro and subsequently evaluated for the presence of cartilage-like matrix. Young’s moduli were determined for hydrogels with the different HAMA concentrations. Additionally, hydrogel/PCL constructs with different internal architectures were co-printed and analyzed for their mechanical properties. The results of this study demonstrated a dose-dependent effect of HAMA concentration on cartilage matrix synthesis by chondrocytes. Glycosaminoglycan (GAG) and collagen type II content increased with intermediate HAMA concentrations (0.25%–0.5%) compared to HAMA-free controls, while a relatively high HAMA concentration (1%) resulted in increased fibrocartilage formation. Young’s moduli of generated hydrogel constructs ranged from 14 to 31 kPa and increased with increasing HAMA concentration. The pHPMA-lac-PEG hydrogels with 0.5% HAMA were found to be optimal for cartilage-like tissue formation. Therefore, this hydrogel system was co-printed with PCL to generate porous or solid constructs with different mesh sizes. Young’s moduli of these composite constructs were in the range of native cartilage (3.5–4.6 MPa). Interestingly, the co-printing procedure influenced the mechanical properties of the final constructs. These findings are relevant for future bio-ink development, as they demonstrate the importance of selecting proper HAMA concentrations, as well as appropriate print settings and construct designs for optimal cartilage matrix deposition and final mechanical properties of constructs, respectively.
AUTHOR Stichler, Simone and Böck, Thomas and Paxton, Naomi Claire and Bertlein, Sarah and Levato, Riccardo and Schill, Verena and Smolan, Willi and Malda, Jos and Tessmar, Joerg and Blunk, Torsten and Groll, Juergen
Title Double printing of hyaluronic acid / poly(glycidol) hybrid hydrogels with poly(ε-caprolactone) for MSC chondrogenesis [Abstract]
Year 2017
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Abstract This study investigates the use of allyl-functionalized poly(glycidol)s (P(AGE-co-G)) as cytocompatible cross-linker for thiol-functionalized hyaluronic acid (HA-SH) and the optimization of this hybrid hydrogel as bioink for 3D bioprinting. Chemical cross-linking of gels with 10 wt.% overall polymer concentration was achieved by UV-induced radical thiol-ene coupling between the thiol and allyl groups. Addition of unmodified high molecular weight HA (1.36 MDa) allowed tuning of the rheology for extrusion based bioprinting. Incorporation of additional HA resulted in hydrogels with lower Young’s modulus and higher swelling ratio especially in the first 24 h, but a comparable equilibrium swelling for all gels after 24 h. Embedding of human and equine mesenchymal stem cells (MSCs) in the gels and subsequent in vitro culture showed promising chondrogenic differentiation after 21 d for cells from both origins. Moreover, cells could be printed with these gels, and embedded hMSCs showed good cell survival for at least 21 d in culture. To achieve mechanical stable and robust constructs for the envisioned application in articular cartilage, the formulations were adjusted for double printing with the thermoplastic poly--caprolactone (PCL).
AUTHOR Henriksson, I. and Gatenholm, P. and Hägg, D. A.
Title Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds [Abstract]
Year 2017
Journal/Proceedings Biofabrication
Reftype
DOI/URL URL
Abstract
Compared to standard 2D culture systems, new methods for 3D cell culture of adipocytes could provide more physiologically accurate data and a deeper understanding of metabolic diseases such as diabetes. By resuspending living cells in a bioink of nanocellulose and hyaluronic acid, we were able to print 3D scaffolds with uniform cell distribution. After one week in culture, cell viability was 95%, and after two weeks the cells displayed a more mature phenotype with larger lipid droplets than standard 2D cultured cells. Unlike cells in 2D culture, the 3D bioprinted cells did not detach upon lipid accumulation. After two weeks, the gene expression of the adipogenic marker genes PPAR γ and FABP4 was increased 2.0- and 2.2-fold, respectively, for cells in 3D bioprinted constructs compared with 2D cultured cells. Our 3D bioprinted culture system produces better adipogenic differentiation of mesenchymal stem cells and a more mature cell phenotype than conventional 2D culture systems.
AUTHOR Paxton, Naomi Claire and Smolan, Willi and Böck, Thomas and Melchels, Ferry P. W. and Groll, Juergen and Juengst, Tomasz
Title Proposal to Assess Printability of Bioinks for Extrusion-Based Bioprinting and Evaluation of Rheological Properties Governing Bioprintability [Abstract]
Year 2017
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Abstract The development and formulation of printable inks for extrusion-based 3D bioprinting has been a major challenge in the field of biofabrication. Inks, often polymer solutions with the addition of crosslinking to form hydrogels, must not only display adequate mechanical properties for the chosen application, but also show high biocompatibility as well as printability. Here we describe a reproducible two-step method for the assessment of the printability of inks for bioprinting, focussing firstly on screening ink formulations to assess fibre formation and the ability to form 3D constructs before presenting a method for the rheological evaluation of inks to characterise the yield point, shear thinning and recovery behaviour. In conjunction, a mathematical model was formulated to provide a theoretical understanding of the pressure-driven, shear thinning extrusion of inks through needles in a bioprinter. The assessment methods were trialled with a commercially-available crème, poloxamer 407, alginate-based inks and an alginate-gelatin composite material. Yield stress was investigated by applying a stress ramp to a number of inks, which demonstrated the necessity of high yield for printable materials. The shear thinning behaviour of the inks was then characterised by quantifying the degree of shear thinning and using the mathematical model to predict the window of printer operating parameters in which the materials could be printed. Furthermore, the model predicted high shear conditions and high residence times for cells at the walls of the needle and effects on cytocompatibility at different printing conditions. Finally, the ability of the materials to recover to their original viscosity after extrusion was examined using rotational recovery rheological measurements. Taken together, these assessment techniques revealed significant insights into the requirements for printable inks and shear conditions present during the extrusion process and allow the rapid and reproducible characterisation of a wide variety of inks for bioprinting.
AUTHOR DeSimone, Elise and Schacht, Kristin and Pellert, Alexandra and Scheibel, Thomas
Title Recombinant spider silk-based bioinks [Abstract]
Year 2017
Journal/Proceedings Biofabrication
Reftype
DOI/URL URL
Abstract
Bioinks, 3D cell culture systems which can be printed, are still in the early development stages. Currently, extensive research is going into designing printers to be more accommodating to bioinks, designing scaffolds with stiff materials as support structures for the often soft bioinks, and modifying the bioinks themselves. Recombinant spider silk proteins, a potential biomaterial component for bioinks, have high biocompatibility, can be processed into several morphologies and can be modified with cell adhesion motifs to enhance their bioactivity. In this work, thermally gelled hydrogels made from recombinant spider silk protein encapsulating mouse fibroblast cell line BALB/3T3 were prepared and characterized. The bioinks were evaluated for performance in vitro both before and after printing, and it was observed that unprinted bioinks provided a good platform for cell spreading and proliferation, while proliferation in printed scaffolds was prohibited. To improve the properties of the printed hydrogels, gelatin was given as an additive and thereby served indirectly as a plasticizer, improving the resolution of printed strands. Taken together, recombinant spider silk proteins and hydrogels made thereof show good potential as a bioink, warranting further development.
AUTHOR Levato, Riccardo and Webb, William R. and Otto, Iris A. and Mensinga, Anneloes and Zhang, Yadan and van Rijen, Mattie and van Weeren, René and Khan, Ilyas M. and Malda, Jos
Title The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells
Year 2017
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL
AUTHOR Bertlein, Sarah and Brown, Gabriella and Lim, Khoon and Jungst, Tomasz and Boeck, Thomas and Blunk, Torsten and Tessmar, Joerg and J. Hooper, Gary and Woodfield, Tim and Groll, Jürgen
Title Thiol-Ene Clickable Gelatin: A Platform Bioink for Multiple 3D Biofabrication Technologies [Abstract]
Year 2017
Journal/Proceedings Advanced Materials
Reftype
DOI/URL DOI
Abstract
Bioprinting can be defined as the art of combining materials and cells to fabricate designed, hierarchical 3D hybrid constructs. Suitable materials, so called bioinks, have to comply with challenging rheological processing demands and rapidly form a stable hydrogel postprinting in a cytocompatible manner. Gelatin is often adopted for this purpose, usually modified with (meth-)acryloyl functionalities for postfabrication curing by free radical photopolymerization, resulting in a hydrogel that is cross-linked via nondegradable polymer chains of uncontrolled length. The application of allylated gelatin (GelAGE) as a thiol-ene clickable bioink for distinct biofabrication applications is reported. Curing of this system occurs via dimerization and yields a network with flexible properties that offer a wider biofabrication window than (meth-)acryloyl chemistry, and without additional nondegradable components. An in-depth analysis of GelAGE synthesis is conducted, and standard UV-initiation is further compared with a recently described visible-light-initiator system for GelAGE hydrogel formation. It is demonstrated that GelAGE may serve as a platform bioink for several biofabrication technologies by fabricating constructs with high shape fidelity via lithography-based (digital light processing) 3D printing and extrusion-based 3D bioprinting, the latter supporting long-term viability postprinting of encapsulated chondrocytes.
AUTHOR Freeman, Fiona E. and Kelly, Daniel J.
Title Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues [Abstract]
Year 2017
Journal/Proceedings Scientific Reports
Reftype Freeman2017
DOI/URL DOI
Abstract
Alginate is a commonly used bioink in 3D bioprinting. Matrix stiffness is a key determinant of mesenchymal stem cell (MSC) differentiation, suggesting that modulation of alginate bioink mechanical properties represents a promising strategy to spatially regulate MSC fate within bioprinted tissues. In this study, we define a printability window for alginate of differing molecular weight (MW) by systematically varying the ratio of alginate to ionic crosslinker within the bioink. We demonstrate that the MW of such alginate bioinks, as well as the choice of ionic crosslinker, can be tuned to control the mechanical properties (Young’s Modulus, Degradation Rate) of 3D printed constructs. These same factors are also shown to influence growth factor release from the bioinks. We next explored if spatially modulating the stiffness of 3D bioprinted hydrogels could be used to direct MSC fate inside printed tissues. Using the same alginate and crosslinker, but varying the crosslinking ratio, it is possible to bioprint constructs with spatially varying mechanical microenvironments. Moreover, these spatially varying microenvironments were found to have a significant effect on the fate of MSCs within the alginate bioinks, with stiffer regions of the bioprinted construct preferentially supporting osteogenesis over adipogenesis.
AUTHOR Daly, Andrew C. and Cunniffe, Gr{'{a}}inne M. and Sathy, Binulal N. and Jeon, Oju and Alsberg, Eben and Kelly, Daniel J.
Title 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering [Abstract]
Year 2016
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
The ability to print defined patterns of cells and extracellular-matrix components in three dimensions has enabled the engineering of simple biological tissues; however, bioprinting functional solid organs is beyond the capabilities of current biofabrication technologies. An alternative approach would be to bioprint the developmental precursor to an adult organ, using this engineered rudiment as a template for subsequent organogenesis in vivo. This study demonstrates that developmentally inspired hypertrophic cartilage templates can be engineered in vitro using stem cells within a supporting gamma-irradiated alginate bioink incorporating Arg-Gly-Asp adhesion peptides. Furthermore, these soft tissue templates can be reinforced with a network of printed polycaprolactone fibers, resulting in a ≈350 fold increase in construct compressive modulus providing the necessary stiffness to implant such immature cartilaginous rudiments into load bearing locations. As a proof-of-principal, multiple-tool biofabrication is used to engineer a mechanically reinforced cartilaginous template mimicking the geometry of a vertebral body, which in vivo supported the development of a vascularized bone organ containing trabecular-like endochondral bone with a supporting marrow structure. Such developmental engineering approaches could be applied to the biofabrication of other solid organs by bioprinting precursors that have the capacity to mature into their adult counterparts over time in vivo.
AUTHOR {{'{A}}}vila, H{'{e}}ctor Mart{'{i}}nez and Schwarz, Silke and Rotter, Nicole and Gatenholm, Paul
Title 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration [Abstract]
Year 2016
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Abstract Auricular cartilage tissue engineering (TE) aims to provide an effective treatment for patients with acquired or congenital auricular defects. Bioprinting has gained attention in several {TE} strategies for its ability to spatially control the placement of cells, biomaterials and biological molecules. Although considerable advances have been made to bioprint complex 3D tissue analogues, the development of hydrogel bioinks with good printability and bioactive properties must improve in order to advance the translation of 3D bioprinting into the clinic. In this study, the biological functionality of a bioink composed of nanofibrillated cellulose and alginate (NFC-A) is extensively evaluated for auricular cartilage TE. 3D bioprinted auricular constructs laden with human nasal chondrocytes (hNC) are cultured for up to 28 days and the redifferentiation capacity of hNCs in NFC-A is studied on gene expression as well as on protein levels. 3D bioprinting with NFC-A bioink facilitates the biofabrication of cell-laden, patient-specific auricular constructs with an open inner structure, high cell density and homogenous cell distribution. The cell-laden NFC-A constructs exhibit an excellent shape and size stability as well as an increase in cell viability and proliferation during in vitro culture. Furthermore, NFC-A bioink supports the redifferentiation of hNCs and neo-synthesis of cartilage-specific extracellular matrix components. This demonstrated that NFC-A bioink supports redifferentiation of hNCs while offering proper printability in a biologically relevant aqueous 3D environment, making it a promising tool for auricular cartilage {TE} and many other biomedical applications.
AUTHOR Raphael, Bella and Khalil, Tony and Workman, Victoria L. and Smith, Andrew and Brown, Cameron P. and Streulli, Charles and Saiani, Alberto and Domingos, Marco
Title 3D cell bioprinting of self-assembling peptide-based hydrogels [Abstract]
Year 2016
Journal/Proceedings Materials Letters
Reftype
DOI/URL URL DOI
Abstract
Abstract Bioprinting of 3D cell-laden constructs with well-defined architectures and controlled spatial distribution of cells is gaining importance in the field of Tissue Engineering. New 3D tissue models are being developed to study the complex cellular interactions that take place during both tissue development and in the regeneration of damaged and/or diseased tissues. Despite advances in 3D printing technologies, suitable hydrogels or 'bioinks' with enhanced printability and cell viability are lacking. Here we report a study on the 3D bioprinting of a novel group of self-assembling peptide-based hydrogels. Our results demonstrate the ability of the system to print well-defined 3D cell laden constructs with variable stiffness and improved structural integrity, whilst providing a cell-friendly extracellular matrix “like” microenvironment. Biological assays reveal that mammary epithelial cells remain viable after 7 days of in vitro culture, independent of the hydrogel stiffness.
AUTHOR Daly, Andrew C. and Critchley, Susan E. and Rencsok, Emily M. and Kelly, Daniel J.
Title A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage [Abstract]
Year 2016
Journal/Proceedings Biofabrication
Reftype
DOI/URL URL
Abstract
Cartilage is a dense connective tissue with limited self-repair capabilities. Mesenchymal stem cell (MSC) laden hydrogels are commonly used for fibrocartilage and articular cartilage tissue engineering, however they typically lack the mechanical integrity for implantation into high load bearing environments. This has led to increased interested in 3D bioprinting of cell laden hydrogel bioinks reinforced with stiffer polymer fibres. The objective of this study was to compare a range of commonly used hydrogel bioinks (agarose, alginate, GelMA and BioINK™) for their printing properties and capacity to support the development of either hyaline cartilage or fibrocartilage in vitro . Each hydrogel was seeded with MSCs, cultured for 28 days in the presence of TGF- β 3 and then analysed for markers indicative of differentiation towards either a fibrocartilaginous or hyaline cartilage-like phenotype. Alginate and agarose hydrogels best supported the development of hyaline-like cartilage, as evident by the development of a tissue staining predominantly for type II collagen. In contrast, GelMA and BioINK ™ (a PEGMA based hydrogel) supported the development of a more fibrocartilage-like tissue, as evident by the development of a tissue containing both type I and type II collagen. GelMA demonstrated superior printability, generating structures with greater fidelity, followed by the alginate and agarose bioinks. High levels of MSC viability were observed in all bioinks post-printing (∼80%). Finally we demonstrate that it is possible to engineer mechanically reinforced hydrogels with high cell viability by co-depositing a hydrogel bioink with polycaprolactone filaments, generating composites with bulk compressive moduli comparable to articular cartilage. This study demonstrates the importance of the choice of bioink when bioprinting different cartilaginous tissues for musculoskeletal applications.
AUTHOR Abbadessa, Anna and Mouser, Vivian H. M. and Blokzijl, Maarten M. and Gawlitta, Debby and Dhert, Wouter J. A. and Hennink, Wim E. and Malda, Jos and Vermonden, Tina
Title A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides [Abstract]
Year 2016
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
Abstract
Hydrogels based on triblock copolymers of polyethylene glycol and partially methacrylated poly[N-(2-hydroxypropyl) methacrylamide mono/dilactate] make up an attractive class of biomaterials because of their biodegradability, cytocompatibility, and tunable thermoresponsive and mechanical properties. If these properties are fine-tuned, the hydrogels can be three-dimensionally bioprinted, to generate, for instance, constructs for cartilage repair. This study investigated whether hydrogels based on the polymer mentioned above with a 10% degree of methacrylation (M10P10) support cartilage formation by chondrocytes and whether the incorporation of methacrylated chondroitin sulfate (CSMA) or methacrylated hyaluronic acid (HAMA) can improve the mechanical properties, long-term stability, and printability. Chondrocyte-laden M10P10 hydrogels were cultured for 42 days to evaluate chondrogenesis. M10P10 hydrogels with or without polysaccharides were evaluated for their mechanical properties (before and after UV photo-cross-linking), degradation kinetics, and printability. Extensive cartilage matrix production occurred in M10P10 hydrogels, highlighting their potential for cartilage repair strategies. The incorporation of polysaccharides increased the storage modulus of polymer mixtures and decreased the degradation kinetics in cross-linked hydrogels. Addition of HAMA to M10P10 hydrogels improved printability and resulted in three-dimensional constructs with excellent cell viability. Hence, this novel combination of M10P10 with HAMA forms an interesting class of hydrogels for cartilage bioprinting.
AUTHOR Abbadessa, A. and Blokzijl, M. M. and Mouser, V. H. M. and Marica, P. and Malda, J. and Hennink, W. E. and Vermonden, T.
Title A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications [Abstract]
Year 2016
Journal/Proceedings Carbohydrate Polymers
Reftype
DOI/URL URL DOI
Abstract
Abstract The aim of this study was to design a hydrogel system based on methacrylated chondroitin sulfate (CSMA) and a thermo-sensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate)-polyethylene glycol triblock copolymer (M15P10) as a suitable material for additive manufacturing of scaffolds. {CSMA} was synthesized by reaction of chondroitin sulfate with glycidyl methacrylate (GMA) in dimethylsulfoxide at 50 °C and its degree of methacrylation was tunable up to 48.5%, by changing reaction time and {GMA} feed. Unlike polymer solutions composed of {CSMA} alone (20% w/w), mixtures based on 2% w/w of {CSMA} and 18% of {M15P10} showed strain-softening, thermo-sensitive and shear-thinning properties more pronounced than those found for polymer solutions based on {M15P10} alone. Additionally, they displayed a yield stress of 19.2 ± 7.0 Pa. The 3D printing of this hydrogel resulted in the generation of constructs with tailorable porosity and good handling properties. Finally, embedded chondrogenic cells remained viable and proliferating over a culture period of 6 days. The hydrogel described herein represents a promising biomaterial for cartilage 3D printing applications.
AUTHOR M{"u}ller, Michael and {"O}zt{"u}rk, Ece and Arlov, {O}ystein and Gatenholm, Paul and Zenobi-Wong, Marcy
Title Alginate Sulfate--Nanocellulose Bioinks for Cartilage Bioprinting Applications [Abstract]
Year 2016
Journal/Proceedings Annals of Biomedical Engineering
Reftype
DOI/URL DOI
Abstract
One of the challenges of bioprinting is to identify bioinks which support cell growth, tissue maturation, and ultimately the formation of functional grafts for use in regenerative medicine. The influence of this new biofabrication technology on biology of living cells, however, is still being evaluated. Recently we have identified a mitogenic hydrogel system based on alginate sulfate which potently supports chondrocyte phenotype, but is not printable due to its rheological properties (no yield point). To convert alginate sulfate to a printable bioink, it was combined with nanocellulose, which has been shown to possess very good printability. The alginate sulfate/nanocellulose ink showed good printing properties and the non-printed bioink material promoted cell spreading, proliferation, and collagen II synthesis by the encapsulated cells. When the bioink was printed, the biological performance of the cells was highly dependent on the nozzle geometry. Cell spreading properties were maintained with the lowest extrusion pressure and shear stress. However, extruding the alginate sulfate/nanocellulose bioink and chondrocytes significantly compromised cell proliferation, particularly when using small diameter nozzles and valves.
AUTHOR Visscher, Dafydd O. and Bos, Ernst J. and Peeters, Mirte and Kuzmin, Nikolay V. and Groot, Marie Louise and Helder, Marco N. and van Zuijlen, Paul P. M.
Title Cartilage Tissue Engineering: Preventing Tissue Scaffold Contraction Using a 3D-Printed Polymeric Cage. [Abstract]
Year 2016
Journal/Proceedings Tissue engineering Part C: Methods
Reftype
DOI/URL DOI
Abstract
Scaffold contraction is a common but underestimated problem in the field of tissue engineering. It becomes particularly problematic when creating anatomically complex shapes such as the ear. The aim of this study was to develop a contraction-free biocompatible scaffold construct for ear cartilage tissue engineering. To address this aim, we used three constructs: (i) a fibrin/hyaluronic acid (FB/HA) hydrogel, (ii) a FB/HA hydrogel combined with a collagen I/III scaffold, and (iii) a cage construct containing (ii) surrounded by a 3D-printed poly-varepsilon-caprolactone mold. A wide range of different cell types were tested within these constructs, including chondrocytes, perichondrocytes, adipose-derived mesenchymal stem cells, and their combinations. After in vitro culturing for 1, 14, and 28 days, all constructs were analyzed. Macroscopic observation showed severe contraction of the cell-seeded hydrogel (i). This could be prevented, in part, by combining the hydrogel with the collagen scaffold (ii) and prevented in total using the 3D-printed cage construct (iii). (Immuno)histological analysis, multiphoton laser scanning microscopy, and biomechanical analysis showed extracellular matrix deposition and increased Young's modulus and thereby the feasibility of ear cartilage engineering. These results demonstrated that the 3D-printed cage construct is an adequate model for contraction-free ear cartilage engineering using a range of cell combinations.
AUTHOR Ruiz-Cantu, Laura and Gleadall, Andrew and Faris, Callum and Segal, Joel and Shakesheff, Kevin and Yang, Jing
Title Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing [Abstract]
Year 2016
Journal/Proceedings Biofabrication
Reftype
DOI/URL URL
Abstract
3D printing is of great interest for tissue engineering scaffolds due to the ability to form complex geometries and control internal structures, including porosity and pore size. The porous structure of scaffolds plays an important role in cell ingrowth and nutrition infusion. Although the internal porosity and pore size of 3D printed scaffolds have been frequently studied, the surface porosity and pore size, which are critical for cell infiltration and mass transport, have not been investigated. The surface geometry can differ considerably from the internal scaffold structure depending on the 3D printing process. It is vital to be able to control the surface geometry of scaffolds as well as the internal structure to fabricate optimal architectures. This work presents a method to control the surface porosity and pore size of 3D printed scaffolds. Six scaffold designs have been printed with surface porosities ranging from 3% to 21%. We have characterised the overall scaffold porosity and surface porosity using optical microscopy and microCT. It has been found that surface porosity has a significant impact on cell infiltration and proliferation. In addition, the porosity of the surface has been found to have an effect on mechanical properties and on the forces required to penetrate the scaffold with a surgical suturing needle. To the authors’ knowledge, this study is the first to investigate the surface geometry of extrusion-based 3D printed scaffolds and demonstrates the importance of surface geometry in cell infiltration and clinical manipulation.
AUTHOR Kesti, Matti and Fisch, Philipp and Pensalfini, Marco and Mazza, Edoardo and Zenobi-Wong, Marcy
Title Guidelines for standardization of bioprinting: a systematic study of process parameters and their effect on bioprinted structures [Abstract]
Year 2016
Journal/Proceedings BioNanoMaterials
Reftype
DOI/URL DOI
Abstract
Biofabrication techniques including three-dimensional bioprinting could be used one day to fabricate living, patient-specific tissues and organs for use in regenerative medicine. Compared to traditional casting and molding methods, bioprinted structures can be much more complex, containing for example multiple materials and cell types in controlled spatial arrangement, engineered porosity, reinforcement structures and gradients in mechanical properties. With this complexity and increased function, however, comes the necessity to develop guidelines to standardize the bioprinting process, so printed grafts can safely enter the clinics. The bioink material must firstly fulfil requirements for biocompatibility and flow. Secondly, it is important to understand how process parameters affect the final mechanical properties of the printed graft. Using a gellan-alginate physically crosslinked bioink as an example, we show shear thinning and shear recovery properties which allow good printing resolution. Printed tensile specimens were used to systematically assess effect of line spacing, printing direction and crosslinking conditions. This standardized testing allowed direct comparison between this bioink and three commercially-available products. Bioprinting is a promising, yet complex fabrication method whose outcome is sensitive to a range of process parameters. This study provides the foundation for highly needed best practice guidelines for reproducible and safe bioprinted grafts.
AUTHOR Melchels, Ferry P. W. and Blokzijl, Maarten M. and Levato, Riccardo and Peiffer, Quentin C. and de Ruijter, Myl{`{e}}ne and Hennink, Wim E. and Vermonden, Tina and Malda, Jos
Title Hydrogel-based reinforcement of 3D bioprinted constructs [Abstract]
Year 2016
Journal/Proceedings Biofabrication
Reftype
DOI/URL URL
Abstract
Progress within the field of biofabrication is hindered by a lack of suitable hydrogel formulations. Here, we present a novel approach based on a hybrid printing technique to create cellularized 3D printed constructs. The hybrid bioprinting strategy combines a reinforcing gel for mechanical support with a bioink to provide a cytocompatible environment. In comparison with thermoplastics such as IMG [http://ej.iop.org/images/1758-5090/8/3/035004/bfaa2f97ieqn1.gif] {$epsilon $} -polycaprolactone, the hydrogel-based reinforcing gel platform enables printing at cell-friendly temperatures, targets the bioprinting of softer tissues and allows for improved control over degradation kinetics. We prepared amphiphilic macromonomers based on poloxamer that form hydrolysable, covalently cross-linked polymer networks. Dissolved at a concentration of 28.6%w/w in water, it functions as reinforcing gel, while a 5%w/w gelatin-methacryloyl based gel is utilized as bioink. This strategy allows for the creation of complex structures, where the bioink provides a cytocompatible environment for encapsulated cells. Cell viability of equine chondrocytes encapsulated within printed constructs remained largely unaffected by the printing process. The versatility of the system is further demonstrated by the ability to tune the stiffness of printed constructs between 138 and 263 kPa, as well as to tailor the degradation kinetics of the reinforcing gel from several weeks up to more than a year.
AUTHOR Hou, Xiaochun and Liu, Shiying and Wang, Min and Wiraja, Christian and Huang, Wei and Chan, Peggy and Tan, Timothy and Xu, Chenjie
Title Layer-by-Layer 3D Constructs of Fibroblasts in Hydrogel for Examining Transdermal Penetration Capability of Nanoparticles [Abstract]
Year 2016
Journal/Proceedings Journal of Laboratory Automation
Reftype
DOI/URL URL DOI
Abstract
Nanoparticles are emerging transdermal delivery systems. Their size and surface properties determine their efficacy and efficiency to penetrate through the skin layers. This work utilizes three-dimensional (3D) bioprinting technology to generate a simplified artificial skin model to rapidly screen nanoparticles for their transdermal penetration ability. Specifically, this model is built through layer-by-layer alternate printing of blank collagen hydrogel and fibroblasts. Through controlling valve on-time, the spacing between printing lines could be accurately tuned, which could enable modulation of cell infiltration in the future. To confirm the effectiveness of this platform, a 3D construct with one layer of fibroblasts sandwiched between two layers of collagen hydrogel is used to screen silica nanoparticles with different surface charges for their penetration ability, with positively charged nanoparticles demonstrating deeper penetration, consistent with the observation from an existing study involving living skin tissue.
AUTHOR Wang, Weiguang and Caetano, Guilherme and Chiang, Wei-Hung and Sousa, Ana Leticia and Blaker, Jonny and Frade, M. A. R. C. O. and Frade, Cipriani and Jorge Bártolo, Paulo
Title Morphological, mechanical and biological assessment of PCL/pristine graphene scaffolds for bone regeneration [Abstract]
Year 2016
Journal/Proceedings International Journal of Bioprinting
Reftype
DOI/URL URL
Abstract
Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements such as mechanical properties, surface characteristics, biodegradability, biocompatibility, and porosity. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes. Polymeric scaffolds reinforced with electro-active particles could play a key role in tissue engineering by modulating cell proliferation and differentiation. This paper investigates the use of an extrusion additive manufacturing system to produce PCL/pristine graphene scaffolds for bone tissue applications. PCL/pristine graphene blends were prepared using a melt blending process. Scaffolds with regular and reproducible architecture were produced with different concentrations of pristine graphene. Scaffolds were evaluated from morphological, mechanical, and biological view. The results suggest that the addition of pristine graphene improves the mechanical performance of the scaffolds, reduces the hydrophobicity, and improves cell viability and proliferation.
AUTHOR Ng, Wei Long and Yeong, Wai Yee and Naing, May Win
Title Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering [Abstract]
Year 2016
Journal/Proceedings International Journal of Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Bioprinting is a promising automated platform that enables the simultaneous deposition of multiple types of cells and biomaterials to fabricate complex three-dimensional (3D) tissue constructs. Most of the previous bioprinting works focused on collagen-based biomaterial, which has poor printability and long crosslinking time. This posed a immerse challenge to create a 3D construct with pre-determined shape and configuration. There is a need for a functional material with good printability in order to fabricate a 3D skin construct. Recently, the use of chitosan for wound healing applications has attracted huge attention due to its attractive traits such as its antimicrobial properties and ability to trigger hemostasis. In this paper, we report the modification of chitosan-based biomaterials for functional 3D bioprinting. Modification to the chitosan was carried out via the oppositely charged functional groups from chitosan and gelatin at a specific pH of ~pH 6.5 to form polyelectrolyte complexes. The polyelectrolyte hydrogels were evaluated in terms of chemical interactions within polymer blend, rheological properties (viscosities, storage and loss modulus), printing resolution at varying pressures and feed rates and biocompatibility. The chitosan-based hydrogels formulated in this work exhibited good printability at room temperature, high shape fidelity of the printed 3D constructs and good biocompatibility with fibroblast skin cells.
AUTHOR Stichler, Simone and Jungst, Tomasz and Schamel, Martha and Zilkowski, Ilona and Kuhlmann, Matthias and Bock, Thomas and Blunk, Torsten and Tessmar, Jorg and Groll, Jurgen
Title Thiol-ene Clickable Poly(glycidol) Hydrogels for Biofabrication. [Abstract]
Year 2016
Journal/Proceedings Annals of biomedical engineering
Reftype
DOI/URL DOI
Abstract
In this study we introduce linear poly(glycidol) (PG), a structural analog of poly(ethylene glycol) bearing side chains at each repeating unit, as polymer basis for bioink development. We prepare allyl- and thiol-functional linear PG that can rapidly be polymerized to a three-dimensionally cross-linked hydrogel network via UV mediated thiol-ene click reaction. Influence of polymer concentration and UV irradiation on mechanical properties and swelling behavior was examined. Thiol-functional PG was synthesized in two structural variations, one containing ester groups that are susceptible to hydrolytic cleavage, and the other one ester-free and stable against hydrolysis. This allowed the preparation of degradable and non-degradable hydrogels. Cytocompatibility of the hydrogel was demonstrated by encapsulation of human bone marrow-derived mesenchymal stem cells (hBMSCs). Rheological properties of the hydrogels were adjusted for dispense plotting by addition of high molecular weight hyaluronic acid. The optimized formulation enabled highly reproducible plotting of constructs composed of 20 layers with an overall height of 3.90 mm.
AUTHOR Markstedt, Kajsa and Mantas, Athanasios and Tournier, Ivan and Mart{'{i}}nez {{'{A}}}vila, H{'{e}}ctor and H{"{a}}gg, Daniel and Gatenholm, Paul
Title 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications [Abstract]
Year 2015
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
Abstract
The introduction of 3D bioprinting is expected to revolutionize the field of tissue engineering and regenerative medicine. The 3D bioprinter is able to dispense materials while moving in X, Y, and Z directions, which enables the engineering of complex structures from the bottom up. In this study, a bioink that combines the outstanding shear thinning properties of nanofibrillated cellulose (NFC) with the fast cross-linking ability of alginate was formulated for the 3D bioprinting of living soft tissue with cells. Printability was evaluated with concern to printer parameters and shape fidelity. The shear thinning behavior of the tested bioinks enabled printing of both 2D gridlike structures as well as 3D constructs. Furthermore, anatomically shaped cartilage structures, such as a human ear and sheep meniscus, were 3D printed using MRI and CT images as blueprints. Human chondrocytes bioprinted in the noncytotoxic, nanocellulose-based bioink exhibited a cell viability of 73% and 86% after 1 and 7 days of 3D culture, respectively. On the basis of these results, we can conclude that the nanocellulose-based bioink is a suitable hydrogel for 3D bioprinting with living cells. This study demonstrates the potential use of nanocellulose for 3D bioprinting of living tissues and organs. The introduction of 3D bioprinting is expected to revolutionize the field of tissue engineering and regenerative medicine. The 3D bioprinter is able to dispense materials while moving in X, Y, and Z directions, which enables the engineering of complex structures from the bottom up. In this study, a bioink that combines the outstanding shear thinning properties of nanofibrillated cellulose (NFC) with the fast cross-linking ability of alginate was formulated for the 3D bioprinting of living soft tissue with cells. Printability was evaluated with concern to printer parameters and shape fidelity. The shear thinning behavior of the tested bioinks enabled printing of both 2D gridlike structures as well as 3D constructs. Furthermore, anatomically shaped cartilage structures, such as a human ear and sheep meniscus, were 3D printed using MRI and CT images as blueprints. Human chondrocytes bioprinted in the noncytotoxic, nanocellulose-based bioink exhibited a cell viability of 73% and 86% after 1 and 7 days of 3D culture, respectively. On the basis of these results, we can conclude that the nanocellulose-based bioink is a suitable hydrogel for 3D bioprinting with living cells. This study demonstrates the potential use of nanocellulose for 3D bioprinting of living tissues and organs.
AUTHOR Schacht, Kristin and J{"{u}}ngst, Tomasz and Schweinlin, Matthias and Ewald, Andrea and Groll, J{"{u}}rgen and Scheibel, Thomas
Title Biofabrication of Cell-Loaded 3D Spider Silk Constructs [Abstract]
Year 2015
Journal/Proceedings Angewandte Chemie International Edition
Reftype
DOI/URL DOI
Abstract
Biofabrication is an emerging and rapidly expanding field of research in which additive manufacturing techniques in combination with cell printing are exploited to generate hierarchical tissue-like structures. Materials that combine printability with cytocompatibility, so called bioinks, are currently the biggest bottleneck. Since recombinant spider silk proteins are non-immunogenic, cytocompatible, and exhibit physical crosslinking, their potential as a new bioink system was evaluated. Cell-loaded spider silk constructs can be printed by robotic dispensing without the need for crosslinking additives or thickeners for mechanical stabilization. Cells are able to adhere and proliferate with good viability over at least one week in such spider silk scaffolds. Introduction of a cell-binding motif to the spider silk protein further enables fine-tuned control over cell–material interactions. Spider silk hydrogels are thus a highly attractive novel bioink for biofabrication.
AUTHOR Kesti, Matti and Eberhardt, Christian and Pagliccia, Guglielmo and Kenkel, David and Grande, Daniel and Boss, Andreas and Zenobi-Wong, Marcy
Title Bioprinting Complex Cartilaginous Structures with Clinically Compliant Biomaterials [Abstract]
Year 2015
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Bioprinting is an emerging technology for the fabrication of patient-specific, anatomically complex tissues and organs. A novel bioink for printing cartilage grafts is developed based on two unmodified FDA-compliant polysaccharides, gellan and alginate, combined with the clinical product BioCartilage (cartilage extracellular matrix particles). Cell-friendly physical gelation of the bioink occurs in the presence of cations, which are delivered by co-extrusion of a cation-loaded transient support polymer to stabilize overhanging structures. Rheological properties of the bioink reveal optimal shear thinning and shear recovery properties for high-fidelity bioprinting. Tensile testing of the bioprinted grafts reveals a strong, ductile material. As proof of concept, 3D auricular, nasal, meniscal, and vertebral disk grafts are printed based on computer tomography data or generic 3D models. Grafts after 8 weeks in vitro are scanned using magnetic resonance imaging and histological evaluation is performed. The bioink containing BioCartilage supports proliferation of chondrocytes and, in the presence of transforming growth factor beta-3, supports strong deposition of cartilage matrix proteins. A clinically compliant bioprinting method is presented which yields patient-specific cartilage grafts with good mechanical and biological properties. The versatile method can be used with any type of tissue particles to create tissue-specific and bioactive scaffolds.
AUTHOR Horvath, Lenke and Umehara, Yuki and Jud, Corinne and Blank, Fabian and Petri-Fink, Alke and Rothen-Rutishauser, Barbara
Title Engineering an in vitro air-blood barrier by 3D bioprinting. [Abstract]
Year 2015
Journal/Proceedings Scientific reports
Reftype
DOI/URL URL
Abstract
Intensive efforts in recent years to develop and commercialize in vitro alternatives in the field of risk assessment have yielded new promising two- and three dimensional (3D) cell culture models. Nevertheless, a realistic 3D in vitro alveolar model is not available yet. Here we report on the biofabrication of the human air-blood tissue barrier analogue composed of an endothelial cell, basement membrane and epithelial cell layer by using a bioprinting technology. In contrary to the manual method, we demonstrate that this technique enables automatized and reproducible creation of thinner and more homogeneous cell layers, which is required for an optimal air-blood tissue barrier. This bioprinting platform will offer an excellent tool to engineer an advanced 3D lung model for high-throughput screening for safety assessment and drug efficacy testing.
AUTHOR M{"{u}}ller, Michael and Becher, Jana and Schnabelrauch, Matthias and Zenobi-Wong, Marcy
Title Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting [Abstract]
Year 2015
Journal/Proceedings Biofabrication
Reftype
DOI/URL URL
Abstract
Bioprinting is an emerging technology in the field of tissue engineering as it allows the precise positioning of biologically relevant materials in 3D, which more resembles the native tissue in our body than current homogenous, bulk approaches. There is however a lack of materials to be used with this technology and materials such as the block copolymer Pluronic have good printing properties but do not allow long-term cell culture. Here we present an approach called nanostructuring to increase the biocompatibility of Pluronic gels at printable concentrations. By mixing acrylated with unmodified Pluronic F127 it was possible to maintain the excellent printing properties of Pluronic and to create stable gels via UV crosslinking. By subsequent elution of the unmodified Pluronic from the crosslinked network we were able to increase the cell viability of encapsulated chondrocytes at day 14 from 62% for a pure acrylated Pluronic hydrogel to 86% for a nanostructured hydrogel. The mixed Pluronic gels also showed good printability when cells where included in the bioink. The nanostructured gels were, with a compressive modulus of 1.42 kPa, mechanically weak, but we were able to increase the mechanical properties by the addition of methacrylated hyaluronic acid. Our nanostructuring approach enables Pluronic hydrogels to have the desired set of properties in all stages of the bioprinting process.
AUTHOR Rimann, Markus and Bono, Epifania and Annaheim, Helene and Bleisch, Matthias and Graf-Hausner, Ursula
Title Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells. [Abstract]
Year 2015
Journal/Proceedings Journal of laboratory automation
Reftype
DOI/URL DOI
Abstract
Cells grown in 3D are more physiologically relevant than cells cultured in 2D. To use 3D models in substance testing and regenerative medicine, reproducibility and standardization are important. Bioprinting offers not only automated standardizable processes but also the production of complex tissue-like structures in an additive manner. We developed an all-in-one bioprinting solution to produce soft tissue models. The holistic approach included (1) a bioprinter in a sterile environment, (2) a light-induced bioink polymerization unit, (3) a user-friendly software, (4) the capability to print in standard labware for high-throughput screening, (5) cell-compatible inkjet-based printheads, (6) a cell-compatible ready-to-use BioInk, and (7) standard operating procedures. In a proof-of-concept study, skin as a reference soft tissue model was printed. To produce dermal equivalents, primary human dermal fibroblasts were printed in alternating layers with BioInk and cultured for up to 7 weeks. During long-term cultures, the models were remodeled and fully populated with viable and spreaded fibroblasts. Primary human dermal keratinocytes were seeded on top of dermal equivalents, and epidermis-like structures were formed as verified with hematoxylin and eosin staining and immunostaining. However, a fully stratified epidermis was not achieved. Nevertheless, this is one of the first reports of an integrative bioprinting strategy for industrial routine application.
AUTHOR Kesti, Matti and M{"{u}}ller, Michael and Becher, Jana and Schnabelrauch, Matthias and D{textquoteright}Este, Matteo and Eglin, David and Zenobi-Wong, Marcy
Title A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation [Abstract]
Year 2014
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
Abstract Layer-by-layer bioprinting is a logical choice for the fabrication of stratified tissues like articular cartilage. Printing of viable organ replacements, however, is dependent on bioinks with appropriate rheological and cytocompatible properties. In cartilage engineering, photocrosslinkable glycosaminoglycan-based hydrogels are chondrogenic, but alone have generally poor printing properties. By blending the thermoresponsive polymer poly(N-isopropylacrylamide) grafted hyaluronan (HA-pNIPAAM) with methacrylated hyaluronan (HAMA), high-resolution scaffolds with good viability were printed. HA-pNIPAAM provided fast gelation and immediate post-printing structural fidelity, while {HAMA} ensured long-term mechanical stability upon photocrosslinking. The bioink was evaluated for rheological properties, swelling behavior, printability and biocompatibility of encapsulated bovine chondrocytes. Elution of HA-pNIPAAM from the scaffold was necessary to obtain good viability. HA-pNIPAAM can therefore be used to support extrusion of a range of biopolymers which undergo tandem gelation, thereby facilitating the printing of cell-laden, stratified cartilage constructs with zonally varying composition and stiffness.