SCIENTIFIC PUBLICATIONS

You are researching: Cancer
Matching entries: 27 /27
All Groups
AUTHOR Tung, Yen-Ting and Chen, Yu-Chi and Derr, Kristy and Wilson, Kelli and Song, Min Jae and Ferrer, Marc
Title A 3D Bioprinted Human Neurovascular Unit Model of Glioblastoma Tumor Growth [Abstract]
Year 2024
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract A 3D bioprinted neurovascular unit (NVU) model was developed to study glioblastoma (GBM) tumor growth in a brain-like microenvironment. The NVU model included human primary astrocytes, pericytes and brain microvascular endothelial cells, and patient-derived glioblastoma cells (JHH-520) were used for this study. We used fluorescence reporters with confocal high content imaging to quantitate real-time microvascular network formation and tumor growth. Extensive validation of the NVU-GBM model included immunostaining for brain relevant cellular markers and extracellular matrix components; single cell RNA sequencing to establish physiologically relevant transcriptomics changes; and secretion of NVU and GBM-relevant cytokines. The scRNAseq revealed changes in gene expression and cytokines secretion associated with wound healing/angiogenesis, including the appearance of an endothelial mesenchymal transition (EndMT) cell population. The NVU-GBM model was used to test 18 chemotherapeutics and anti-cancer drugs to assess the pharmacological relevance of the model and robustness for high throughput screening. This article is protected by copyright. All rights reserved
AUTHOR Nothdurfter, Daniel and Ploner, Christian and Coraça-Huber, Débora C. and Wilflingseder, Doris and Müller, Thomas and Hermann, Martin and Hagenbuchner, Judith and Ausserlechner, Michael J.
Title 3D bioprinted, vascularized neuroblastoma tumor environment in fluidic chip devices for precision medicine drug testing [Abstract]
Year 2022
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Neuroblastoma is an extracranial solid tumor which develops in early childhood and still has a poor prognosis. One strategy to increase cure rates is the identification of patient-specific drug responses in tissue models that mimic the interaction between patient cancer cells and tumor environment. We therefore developed a perfused and micro-vascularized tumor-environment model that is directly bioprinted into custom-manufactured fluidic chips. A gelatin-methacrylate/fibrin-based matrix containing multiple cell types mimics the tumor-microenvironment that promotes spontaneous micro-vessel formation by embedded endothelial cells. We demonstrate that both, adipocyte- and iPSC-derived mesenchymal stem cells can guide this process. Bioprinted channels are coated with endothelial cells post printing to form a dense vessel - tissue barrier. The tissue model thereby mimics structure and function of human soft tissue with endothelial cell-coated larger vessels for perfusion and micro-vessel networks within the hydrogel-matrix. Patient-derived neuroblastoma spheroids are added to the matrix during the printing process and grown for more than two weeks. We demonstrate that micro-vessels are attracted by and grow into tumor spheroids and that neuroblastoma cells invade the tumor-environment as soon as the spheroids disrupt. In summary, we describe the first bioprinted, micro-vascularized neuroblastoma – tumor-environment model directly printed into fluidic chips and a novel medium-throughput biofabrication platform suitable for studying tumor angiogenesis and metastasis in precision medicine approaches in future.
AUTHOR D'Agostino, Stefania and Rimann, Markus and Gamba, Piergiorgio and Perilongo, Giorgio and Pozzobon, Michela and Raghunath, Michael
Title Macromolecular crowding tuned extracellular matrix deposition in a bioprinted human rhabdomyosarcoma model [Abstract]
Year 2022
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
The role of the extracellular matrix (ECM) in tumor recurrence and metastasis has been gaining attention. Indeed, not only cellular, but also structural proteins influence migratory and invasive capacity of tumor cells, including growth and resistance to drugs. Therefore, new in vitro tumor models that entail improved ECM formation and deposition are needed. Here, we are developed three-dimensional (3D) models of pediatric soft tissue sarcoma (Rhabdomyosarcoma [RMS]) with the two major subgroups, the embryonal (ERMS) and the alveolar (ARMS) form. We applied macromolecular crowding (MMC) technology to monolayer cultures, spheroids, and 3D bioprinted constructs. In all culture models, exposure to MMC significantly increased ECM deposition. Interestingly, bioprinted constructs showed a collagen and fibronectin matrix architecture that was comparable to that of tumor xenografts. Furthermore, the bioprinted model not only showed tumor cell growth inside the structure but also displayed cell clusters leaving the edges of the bioprinted construct, probably emulating a metastatic mechanism. ARMS and ERMS cells reacted differently in the bioprinted structure. Indeed, the characteristic metastatic behavior was much more pronounced in the more aggressive ARMS subtype. This promising approach opens new avenues for studying RMS microenvironment and creating a platform for cancer drug testing including the native tumor ECM.
AUTHOR Browning, James R. and Derr, Paige and Derr, Kristy and Doudican, Nicole and Michael, Sam and Lish, Samantha R. and Taylor, Nicholas A. and Krueger, James G. and Ferrer, Marc and Carucci, John A. and Gareau, Daniel S.
Title A 3D biofabricated cutaneous squamous cell carcinoma tissue model with multi-channel confocal microscopy imaging biomarkers to quantify antitumor effects of chemotherapeutics in tissue [Abstract]
Year 2020
Journal/Proceedings Oncotarget; Vol 11, No 27
Reftype
DOI/URL URL
Abstract
// James R. Browning 1 , Paige Derr 2 , Kristy Derr 2 , Nicole Doudican 3 , Sam Michael 2 , Samantha R. Lish 1 , Nicholas A. Taylor 3 , James G. Krueger 1 , Marc Ferrer 2 , John A. Carucci 3 and Daniel S. Gareau 1 1 Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA 2 National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA 3 The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA Correspondence to: Daniel S. Gareau, email: dgareau@rockefeller.edu Keywords: squamous cell carcinoma; screening; 3D printing; in vitro model; confocal microscopy Received: January 05, 2020     Accepted: April 03, 2020     Published: July 07, 2020 ABSTRACT Cutaneous squamous cell carcinoma (cSCC) causes approximately 10,000 deaths annually in the U. S. Current therapies are largely ineffective against metastatic and locally advanced cSCC. There is a need to identify novel, effective, and less toxic small molecule cSCC therapeutics. We developed a 3-dimensional bioprinted skin (3DBPS) model of cSCC tumors together with a microscopy assay to test chemotherapeutic effects in tissue. The full thickness SCC tissue model was validated using hematoxylin and eosin (H&E) and immunohistochemical histological staining, confocal microscopy, and cDNA microarray analysis. A nondestructive, 3D fluorescence confocal imaging assay with tdTomato-labeled A431 SCC and ZsGreen-labeled keratinocytes was developed to test efficacy and general toxicity of chemotherapeutics. Fluorescence-derived imaging biomarkers indicated that 50% of cancer cells were killed in the tissue after 1?M 5-Fluorouracil 48-hour treatment, compared to a baseline of 12% for untreated controls. The imaging biomarkers also showed that normal keratinocytes were less affected by treatment (11% killed) than the untreated tissue, which had no significant killing effect. Data showed that 5-Fluorouracil selectively killed cSCC cells more than keratinocytes. Our 3DBPS assay platform provides cellular-level measurement of cell viability and can be adapted to achieve nondestructive high-throughput screening (HTS) in bio-fabricated tissues.
AUTHOR Monferrer, Ezequiel and Martín-Vañó, Susana and Carretero, Aitor and García-Lizarribar, Andrea and Burgos-Panadero, Rebeca and Navarro, Samuel and Samitier, Josep and Noguera, Rosa
Title A three-dimensional bioprinted model to evaluate the effect of stiffness on neuroblastoma cell cluster dynamics and behavior [Abstract]
Year 2020
Journal/Proceedings Scientific Reports
Reftype Monferrer2020
DOI/URL DOI
Abstract
Three-dimensional (3D) bioprinted culture systems allow to accurately control microenvironment components and analyze their effects at cellular and tissue levels. The main objective of this study was to identify, quantify and localize the effects of physical-chemical communication signals between tumor cells and the surrounding biomaterial stiffness over time, defining how aggressiveness increases in SK-N-BE(2) neuroblastoma (NB) cell line. Biomimetic hydrogels with SK-N-BE(2) cells, methacrylated gelatin and increasing concentrations of methacrylated alginate (AlgMA 0%, 1% and 2%) were used. Young’s modulus was used to define the stiffness of bioprinted hydrogels and NB tumors. Stained sections of paraffin-embedded hydrogels were digitally quantified. Human NB and 1% AlgMA hydrogels presented similar Young´s modulus mean, and orthotopic NB mice tumors were equally similar to 0% and 1% AlgMA hydrogels. Porosity increased over time; cell cluster density decreased over time and with stiffness, and cell cluster occupancy generally increased with time and decreased with stiffness. In addition, cell proliferation, mRNA metabolism and antiapoptotic activity advanced over time and with stiffness. Together, this rheological, optical and digital data show the potential of the 3D in vitro cell model described herein to infer how intercellular space stiffness patterns drive the clinical behavior associated with NB patients.
AUTHOR Theo Desigaux and Leo Comperat and Nathalie Dusserre and Marie-Laure Stachowicz and Malou Lea and Jean-William Dupuy and Anthony Vial and Michael Molinari and Jean-Christophe Fricain and François Paris and Hugo Oliveira
Title 3D bioprinted breast cancer model reveals stroma-mediated modulation of extracellular matrix and radiosensitivity [Abstract]
Year 2024
Journal/Proceedings Bioactive Materials
Reftype
DOI/URL URL DOI
Abstract
Deciphering breast cancer treatment resistance remains hindered by the lack of models that can successfully capture the four-dimensional dynamics of the tumor microenvironment. Here, we show that microextrusion bioprinting can reproducibly generate distinct cancer and stromal compartments integrating cells relevant to human pathology. Our findings unveil the functional maturation of this millimeter-sized model, showcasing the development of a hypoxic cancer core and an increased surface proliferation. Maturation was also driven by the presence of cancer-associated fibroblasts (CAF) that induced elevated microvascular-like structures complexity. Such modulation was concomitant to extracellular matrix remodeling, with high levels of collagen and matricellular proteins deposition by CAF, simultaneously increasing tumor stiffness and recapitulating breast cancer fibrotic development. Importantly, our bioprinted model faithfully reproduced response to treatment, further modulated by CAF. Notably, CAF played a protective role for cancer cells against radiotherapy, facilitating increased paracrine communications. This model holds promise as a platform to decipher interactions within the microenvironment and evaluate stroma-targeted drugs in a context relevant to human pathology.
AUTHOR Vázquez-Aristizabal, Paula and Henriksen-Lacey, Malou and García-Astrain, Clara and Jimenez de Aberasturi, Dorleta and Langer, Judith and Epelde, Claudia and Litti, Lucio and Liz-Marzán, Luis M. and Izeta, Ander
Title Biofabrication and Monitoring of a 3D Printed Skin Model for Melanoma [Abstract]
Year 2024
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract There is an unmet need for in vitro cancer models that emulate the complexity of human tissues. 3D-printed solid tumor micromodels based on decellularized extracellular matrices (dECMs) recreate the biomolecule-rich matrix of native tissue. Herein a 3D in vitro metastatic melanoma model that is amenable for drug screening purposes and recapitulates features of both the tumor and the skin microenvironment is described. Epidermal, basement membrane, and dermal biocompatible inks are prepared by means of combined chemical, mechanical, and enzymatic processes. Bioink printability is confirmed by rheological assessment and bioprinting, and bioinks are subsequently combined with melanoma cells and dermal fibroblasts to build complex 3D melanoma models. Cells are tracked by confocal microscopy and surface-enhanced Raman spectroscopy (SERS) mapping. Printed dECMs and cell tracking allow modeling of the initial steps of metastatic disease, and may be used to better understand melanoma cell behavior and response to drugs.
AUTHOR Dusserre, Nathalie and Stachowicz, Marie-Laure and Medina, Chantal and Henri, Baptiste and Fricain, Jean-Christophe and Paris, François and Oliveira, Hugo
Title Microvalve bioprinting as a biofabrication tool to decipher tumor and endothelial cell crosstalk: Application to a simplified glioblastoma model [Abstract]
Year 2021
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Bioprinting technologies are powerful new bioengineering tools that can spatially reproduce multiple microenvironmental cues in a highly controlled, tunable, and precise manner. In this study, microvalve bioprinting technology was successfully used to print in close proximity endothelial and tumor cells at higher concentrations than previously thought possible, while preserving their viability. We propose that the resulting multicellular models, bioprinted in a controlled extracellular matrix microenvironment, are well-suited to study endothelial and cancer cell crosstalk within a cancer niche. As proof of concept, microvalve bioprinting was applied to the bioengineering of a simplified glioblastoma model in which biological processes involved in tumor expansion, such as tumor cell invasion patterns, cell proliferation, and senescence could be easily visualized and quantified. In this model, U251 glioblastoma cells and primary human umbilical vein endothelial cells (HUVECs) exhibited good printability and high viability after printing. U251 cells formed physiologically relevant clusters and invasion margins, while HUVECs generated vascular-like networks when primary fibroblasts were added to the model. An oxidative stress mimicking the one encountered within a tumor microenvironment during radiotherapy or genotoxic chemotherapy was shown to both diminish endothelial cells proliferation and to increase their senescence. Results also suggested that stressed glioblastoma cells may alter normal endothelial cell proliferation but not impact their senescence. This data demonstrates the potential of microvalve bioprinting to fabricate in vitro models that can help decipher endothelial and tumor cell crosstalk, within controlled and modulable microenvironments, and can then be used to address critical questions in the context of cancer recurrence.
AUTHOR Wu, Dongwei and Pang, Shumin and Berg, Johanna and Mei, Yikun and Ali, Ahmed S. M. and Röhrs, Viola and Tolksdorf, Beatrice and Hagenbuchner, Judith and Ausserlechner, Michael J. and Deubzer, Hedwig E. and Gurlo, Aleksander and Kurreck, Jens
Title Bioprinting of Perfusable Vascularized Organ Models for Drug Development via Sacrificial-Free Direct Ink Writing [Abstract]
Year 2024
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract 3D bioprinting enables the fabrication of human organ models that can be used for various fields of biomedical research, including oncology and infection biology. An important challenge, however, remains the generation of vascularized, perfusable 3D models that closely simulate natural physiology. Here, a novel direct ink writing (DIW) approach is described that can produce vascularized organ models without using sacrificial materials during fabrication. The high resolution of the method allows the one-step generation of various sophisticated hollow geometries. This sacrificial-free DIW (SF-DIW) approach is used to fabricate hepatic metastasis models of various cancer types and different formats for investigating the cytostatic activity of anti-cancer drugs. To this end, the models are incorporated into a newly developed perfusion system with integrated micropumps and an agar casting step that improves the physiological features of the bioprinted tissues. It is shown that the hepatic environment of the tumor models is capable of activating a prodrug, which inhibits breast cancer growth. This versatile SF-DIW approach is able to fabricate complicated perfusable constructs or microfluidic chips in a straightforward and cost-efficient manner. It can also be easily adapted to other cell types for generating vascularized organ tissues or cancer models that may support the development of new therapeutics.
AUTHOR González-Callejo, Patricia and García-Astrain, Clara and Herrero-Ruiz, Ada and Henriksen-Lacey, Malou and Seras-Franzoso, Joaquín and Abasolo, Ibane and Liz-Marzán, Luis M.
Title 3D Bioprinted Tumor-Stroma Models of Triple-Negative Breast Cancer Stem Cells for Preclinical Targeted Therapy Evaluation [Abstract]
Year 2024
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
Abstract
Breast cancer stem cells (CSCs) play a pivotal role in therapy resistance and tumor relapse, emphasizing the need for reliable in vitro models that recapitulate the complexity of the CSC tumor microenvironment to accelerate drug discovery. We present a bioprinted breast CSC tumor-stroma model incorporating triple-negative breast CSCs (TNB-CSCs) and stromal cells (human breast fibroblasts), within a breast-derived decellularized extracellular matrix bioink. Comparison of molecular signatures in this model with different clinical subtypes of bioprinted tumor-stroma models unveils a unique molecular profile for artificial CSC tumor models. We additionally demonstrate that the model can recapitulate the invasive potential of TNB-CSC. Surface-enhanced Raman scattering imaging allowed us to monitor the invasive potential of tumor cells in deep z-axis planes, thereby overcoming the depth-imaging limitations of confocal fluorescence microscopy. As a proof-of-concept application, we conducted high-throughput drug testing analysis to assess the efficacy of CSC-targeted therapy in combination with conventional chemotherapeutic compounds. The results highlight the usefulness of tumor-stroma models as a promising drug-screening platform, providing insights into therapeutic efficacy against CSC populations resistant to conventional therapies.
AUTHOR García-Astrain, Clara and Henriksen-Lacey, Malou and Lenzi, Elisa and Renero-Lecuna, Carlos and Langer, Judith and Piñeiro, Paula and Molina-Martínez, Beatriz and Plou, Javier and Jimenez de Aberasturi, Dorleta and Liz-Marzán, Luis M.
Title A Scaffold-Assisted 3D Cancer Cell Model for Surface-Enhanced Raman Scattering-Based Real-Time Sensing and Imaging [Abstract]
Year 2024
Journal/Proceedings ACS Nano
Reftype
DOI/URL DOI
Abstract
Despite recent advances in the development of scaffold-based three-dimensional (3D) cell models, challenges persist in imaging and monitoring cell behavior within these complex structures due to their heterogeneous cell distribution and geometries. Incorporating sensors into 3D scaffolds provides a potential solution for real-time, in situ sensing and imaging of biological processes such as cell growth and disease development. We introduce a 3D printed hydrogel-based scaffold capable of supporting both surface-enhanced Raman scattering (SERS) biosensing and imaging of 3D breast cancer cell models. The scaffold incorporates plasmonic nanoparticles and SERS tags, for sensing and imaging, respectively. We demonstrate the scaffold’s adaptability and modularity in supporting breast cancer spheroids, thereby enabling spatial and temporal monitoring of tumor evolution.
AUTHOR Claudia Paindelli and Vanessa Parietti and Sergio Barrios and Peter Shepherd and Tianhong Pan and Wei-Lien Wang and Robert L. Satcher and Christopher J. Logothetis and Nora Navone and Matthew T. Campbell and Antonios G. Mikos and Eleonora Dondossola
Title Bone mimetic environments support engineering, propagation, and analysis of therapeutic response of patient-derived cells, ex vivo and in vivo [Abstract]
Year 2024
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
Bone metastases are the most common milestone in the lethal progression of prostate cancer and prominent in a substantial portion of renal malignancies. Interactions between cancer and bone host cells have emerged as drivers of both disease progression and therapeutic resistance. To best understand these central host-epithelial cell interactions, biologically relevant preclinical models are required. To achieve this goal, we here established and characterized tissue-engineered bone mimetic environments (BME) capable of supporting the growth of patient-derived xenograft (PDX) cells, ex vivo and in vivo. The BME consisted of a polycaprolactone (PCL) scaffold colonized by human mesenchymal stem cells (hMSCs) differentiated into osteoblasts. PDX-derived cells were isolated from bone metastatic prostate or renal tumors, engineered to express GFP or luciferase and seeded onto the BMEs. BMEs supported the growth and therapy response of PDX-derived cells, ex vivo. Additionally, BMEs survived after in vivo implantation and further sustained the growth of PDX-derived cells, their serial transplant, and their application to study the response to treatment. Taken together, this demonstrates the utility of BMEs in combination with patient-derived cells, both ex vivo and in vivo. Statement of significance Our tissue-engineered BME supported the growth of patient-derived cells and proved useful to monitor the therapy response, both ex vivo and in vivo. This approach has the potential to enable co-clinical strategies to monitor bone metastatic tumor progression and therapy response, including identification and prioritization of new targets for patient treatment.
AUTHOR Ruchika and Neha Bhardwaj and Sudesh Kumar Yadav and Ankit Saneja
Title Recent advances in 3D bioprinting for cancer research: From precision models to personalized therapies [Abstract]
Year 2024
Journal/Proceedings Drug Discovery Today
Reftype
DOI/URL URL DOI
Abstract
Cancer remains one of the most devastating diseases, necessitating innovative and precise therapeutic solutions. The emergence of 3D bioprinting has revolutionized the platform of cancer therapy by offering bespoke solutions for drug screening, tumor modeling, and personalized medicine. The utilization of 3D bioprinting enables the fabrication of complex tumor models that closely mimic the in vivo microenvironment, facilitating more accurate drug testing and personalized treatment strategies. Moreover, 3D bioprinting also provides a platform for the development of implantable scaffolds as a therapeutic solution to cancer. In this review, we highlight the application of 3D bioprinting for cancer therapy along with current advancements in cancer 3D model development with recent case studies.
AUTHOR Stephanie M. Stanford and Tiffany P. Nguyen and Joseph Chang and Zixuan Zhao and G. Lavender Hackman and Eugenio Santelli and Colton M. Sanders and Madhusudhanarao Katiki and Eleonora Dondossola and Brooke L. Brauer and Michael A. Diaz and Yuan Zhan and Sterling H. Ramsey and Philip A. Watson and Banumathi Sankaran and Claudia Paindelli and Vanessa Parietti and Antonios G. Mikos and Alessia Lodi and Aditya Bagrodia and Andrew Elliott and Rana R. McKay and Ramachandran Murali and Stefano Tiziani and Arminja N. Kettenbach and Nunzio Bottini
Title Targeting prostate tumor low–molecular weight tyrosine phosphatase for oxidation-sensitizing therapy [Abstract]
Year 2024
Journal/Proceedings Science Advances
Reftype
DOI/URL DOI
Abstract
Protein tyrosine phosphatases (PTPs) play major roles in cancer and are emerging as therapeutic targets. Recent reports suggest low–molecular weight PTP (LMPTP)—encoded by the ACP1 gene—is overexpressed in prostate tumors. We found ACP1 up-regulated in human prostate tumors and ACP1 expression inversely correlated with overall survival. Using CRISPR-Cas9–generated LMPTP knockout C4-2B and MyC-CaP cells, we identified LMPTP as a critical promoter of prostate cancer (PCa) growth and bone metastasis. Through metabolomics, we found that LMPTP promotes PCa cell glutathione synthesis by dephosphorylating glutathione synthetase on inhibitory Tyr270. PCa cells lacking LMPTP showed reduced glutathione, enhanced activation of eukaryotic initiation factor 2–mediated stress response, and enhanced reactive oxygen species after exposure to taxane drugs. LMPTP inhibition slowed primary and bone metastatic prostate tumor growth in mice. These findings reveal a role for LMPTP as a critical promoter of PCa growth and metastasis and validate LMPTP inhibition as a therapeutic strategy for treating PCa through sensitization to oxidative stress. LMPTP inhibition sensitizes prostate tumors to oxidative stress.
AUTHOR Yanhao Hou and Weiguang Wang and Paulo Bartolo
Title The effect of graphene and graphene oxide induced reactive oxygen species on polycaprolactone scaffolds for bone cancer applications [Abstract]
Year 2024
Journal/Proceedings Materials Today Bio
Reftype
DOI/URL URL DOI
Abstract
Bone cancer remains a critical healthcare problem. Among current clinical treatments, tumour resection is the most common strategy. It is usually effective but may present several limitations such as multiple operations, long hospital time, and the potential recurrence caused by the incomplete removal of cancer cells. To address these limitations, three-dimensional (3D) scaffolds fabricated through additive manufacturing have been researched for both bone cancer treatment and post-treatment rehabilitation. Polycaprolactone (PCL)-based scaffolds play an important role in bone regeneration, serving as a physical substrate to fill the defect site, recruiting cells, and promoting cell proliferation and differentiation, ultimately leading to the regeneration of the bone tissue without multiple surgical applications. Multiple advanced materials have been incorporated during the fabrication process to improve certain functions and/or modulate biological performances. Graphene-based nanomaterials, particularly graphene (G) and graphene oxide (GO), have been investigated both in vitro and in vivo, significantly improving the scaffold's physical, chemical, and biological properties, which strongly depend on the material type and concentration. A unique targeted inhibition effect on cancer cells was also discovered. However, limited research has been conducted on utilising graphene-based nanomaterials for both bone regeneration and bone cancer treatment, and there is no systematic study into the material- and dose-dependent effects, as well as the working mechanism on 3D scaffolds to realise these functions. This paper addresses these limitations by designing and fabricating PCL-based scaffolds containing different concentrations of G and GO and assessing their biological behaviour correlating it to the reactive oxygen species (ROS) release level. Results suggest that the ROS release from the scaffolds is a dominant mechanism that affects the biological behaviour of the scaffolds. ROS release also contributes to the inhibition effect on bone cancer due to healthy cells and cancer cells responding differently to ROS, and the osteogenesis results also present a certain correlation with ROS. These observations revealed a new route for realising bone cancer treatment and subsequent new bone regeneration, using a single dual-functional 3D scaffold.
AUTHOR Patricia González-Callejo and Paula Vázquez-Aristizabal and Clara García-Astrain and Dorleta {Jimenez de Aberasturi} and Malou Henriksen-Lacey and Ander Izeta and Luis M. Liz-Marzán
Title 3D bioprinted breast tumor-stroma models for pre-clinical drug testing [Abstract]
Year 2023
Journal/Proceedings Materials Today Bio
Reftype
DOI/URL URL DOI
Abstract
The use of three-dimensional (3D) bioprinting has been proposed for the reproducible production of 3D disease models that can be used for high-throughput drug testing and personalized medicine. However, most such models insufficiently reproduce the features and environment of real tumors. We report the development of bioprinted in vitro 3D tumor models for breast cancer, which physically and biochemically mimic important aspects of the native tumor microenvironment, designed to study therapeutic efficacy. By combining a mix of breast decellularized extracellular matrix and methacrylated hyaluronic acid with tumor-derived cells and non-cancerous stromal cells of biological relevance to breast cancer, we show that biological signaling pathways involved in tumor progression can be replicated in a carefully designed tumor-stroma environment. Finally, we demonstrate proof-of-concept application of these models as a reproducible platform for investigating therapeutic responses to commonly used chemotherapeutic agents.
AUTHOR Simona Villata and Marta Canta and Désirée Baruffaldi and Ignazio Roppolo and Candido Fabrizio Pirri and Francesca Frascella
Title 3D bioprinted GelMA platform for the production of lung tumor spheroids [Abstract]
Year 2023
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
The study proposes a platform for the formation and culture of non-small cell lung cancer (NSCLC) spheroids, to obtain an in vitro model suitable for drug and therapy testing. To achieve that, traditional cell culture is compared to methacrylated gelatin (GelMA) 3D bioprinting, in order to explore not only the potential of the matrix itself, but also the impact of different architectures on spheroid formation. Starting from a systematic analysis, where GelMA concentration, methacrylation degree and cell seeding concentration is set; three different architectures (round, ring and grid) are analyzed in terms of spheroid formation and growth, using 3D bioprinting. The study reveals that Very High GelMA 7.5% w/v formulation, with single cells dispersed in, is the best bioink to obtain NSCLC spheroids. Moreover, grid architecture performs in the best way, because of the highest volume-surface area ratio. The designed GelMA platform can be used as a powerful in vitro tool for drug testing and therapy screening, that can be designed playing with four different parameters: cell concentration, GelMA methacrylation degree, GelMA concentration and geometry.
AUTHOR Estermann, Manuela and Coelho, Ricardo and Jacob, Francis and Huang, Yen-Lin and Liang, Ching-Yeu and Faia-Torres, Ana Bela and Septiadi, Dedy and Drasler, Barbara and Karakocak, Bedia Begum and Dijkhoff, Irini Magdelina and Petri-Fink, Alke and Heinzelmann-Schwarz, Viola and Rothen-Rutishauser, Barbara
Title A 3D multi-cellular tissue model of the human omentum to study the formation of ovarian cancer metastasis [Abstract]
Year 2023
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Reliable and predictive experimental models are urgently needed to study metastatic mechanisms of ovarian cancer cells in the omentum. Although models for ovarian cancer cell adhesion and invasion were previously investigated, the lack of certain omental cell types, which influence the metastatic behavior of cancer cells, limits the application of these tissue models. Here, we describe a 3D multi-cellular human omentum tissue model, which considers the spatial arrangement of five omental cell types. Reproducible tissue models were fabricated combining permeable cell culture inserts and bioprinting technology to mimic metastatic processes of immortalized and patient-derived ovarian cancer cells. The implementation of an endothelial barrier further allowed studying the interaction between cancer and endothelial cells during hematogenous dissemination and the impact of chemotherapeutic drugs. This proof-of-concept study may serve as a platform for patient-specific investigations in personalized oncology in the future.
AUTHOR Pellegrini, Evelin and Desando, Giovanna and Petretta, Mauro and Cellamare, Antonella and Cristalli, Camilla and Pasello, Michela and Manara, Maria Cristina and Grigolo, Brunella and Scotlandi, Katia
Title A 3D Collagen-Based Bioprinted Model to Study Osteosarcoma Invasiveness and Drug Response [Abstract]
Year 2022
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
The biological and therapeutic limits of traditional 2D culture models, which only partially mimic the complexity of cancer, have recently emerged. In this study, we used a 3D bioprinting platform to process a collagen-based hydrogel with embedded osteosarcoma (OS) cells. The human OS U-2 OS cell line and its resistant variant (U-2OS/CDDP 1 μg) were considered. The fabrication parameters were optimized to obtain 3D printed constructs with overall morphology and internal microarchitecture that accurately match the theoretical design, in a reproducible and stable process. The biocompatibility of the 3D bioprinting process and the chosen collagen bioink in supporting OS cell viability and metabolism was confirmed through multiple assays at short- (day 3) and long- (day 10) term follow-ups. In addition, we tested how the 3D collagen-based bioink affects the tumor cell invasive capabilities and chemosensitivity to cisplatin (CDDP). Overall, we developed a new 3D culture model of OS cells that is easy to set up, allows reproducible results, and better mirrors malignant features of OS than flat conditions, thus representing a promising tool for drug screening and OS cell biology research.
AUTHOR Blanco-Fernandez, Barbara and Rey-Vinolas, Sergi and Bağcı, Gülsün and Rubi-Sans, Gerard and Otero, Jorge and Navajas, Daniel and Perez-Amodio, Soledad and Engel, Elisabeth
Title Bioprinting Decellularized Breast Tissue for the Development of Three-Dimensional Breast Cancer Models [Abstract]
Year 2022
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
Abstract
The tumor extracellular matrix (ECM) plays a vital role in tumor progression and drug resistance. Previous studies have shown that breast tissue-derived matrices could be an important biomaterial to recreate the complexity of the tumor ECM. We have developed a method for decellularizing and delipidating a porcine breast tissue (TDM) compatible with hydrogel formation. The addition of gelatin methacrylamide and alginate allows this TDM to be bioprinted by itself with good printability, shape fidelity, and cytocompatibility. Furthermore, this bioink has been tuned to more closely recreate the breast tumor by incorporating collagen type I (Col1). Breast cancer cells (BCCs) proliferate in both TDM bioinks forming cell clusters and spheroids. The addition of Col1 improves the printability of the bioink as well as increases BCC proliferation and reduces doxorubicin sensitivity due to a downregulation of HSP90. TDM bioinks also allow a precise three-dimensional printing of scaffolds containing BCCs and stromal cells and could be used to fabricate artificial tumors. Taken together, we have proven that these novel bioinks are good candidates for biofabricating breast cancer models.
AUTHOR Geevarghese, Rency and Somasekharan, Lakshmi T. and Bhatt, Anugya and Kasoju, Naresh and Nair, Renjith P.
Title Development and evaluation of a multicomponent bioink consisting of alginate, gelatin, diethylaminoethyl cellulose and collagen peptide for 3D bioprinting of tissue construct for drug screening application [Abstract]
Year 2022
Journal/Proceedings International Journal of Biological Macromolecules
Reftype
DOI/URL URL DOI
Abstract
Three dimensional (3D) bioprinting technology has been making a progressive advancement in the field of tissue engineering to produce tissue constructs that mimic the shape, framework, and microenvironment of an organ. The technology has not only paved the way to organ development but has been widely studied for its application in drug and cosmetic testing using 3D bioprinted constructs. However, not much has been explored on the utilization of bioprinting technology for the development of tumor models to test anti-cancer drug efficacy. The conventional methodology involves a two dimensional (2D) monolayer model to test cellular drug response which has multiple limitations owing to its inability to mimic the natural tissue environment. The choice of bioink for 3D bioprinting is critical as cell morphology and proliferation depend greatly on the property of bioink. In this study, we developed a multicomponent bioink composed of alginate, diethylaminoethyl cellulose, gelatin, and collagen peptide to generate a 3D bioprinted construct. The bioink has been characterised and validated for its printability, shape fidelity and biocompatibility to be used for generating tumor models. Further, a bioprinted tumor model was developed using lung cancer cell line and the efficacy of 3D printed construct for drug screening application was established.
AUTHOR Bello, Thomas and Paindelli, Claudia and Diaz-Gomez, Luis A. and Melchiorri, Anthony and Mikos, Antonios G. and Nelson, Peter S. and Dondossola, Eleonora and Gujral, Taranjit S.
Title Computational modeling identifies multitargeted kinase inhibitors as effective therapies for metastatic, castration-resistant prostate cancer [Abstract]
Year 2021
Journal/Proceedings Proceedings of the National Academy of Sciences
Reftype
DOI/URL URL DOI
Abstract
Metastatic, castration-resistant prostate cancer (mCRPC) is an advanced prostate cancer with limited therapeutic options and poor patient outcomes. To investigate whether multitargeted kinase inhibitors (KIs) represent an opportunity for mCRPC drug development, we applied machine learning{textendash}based functional screening and identified two KIs, PP121 and SC-1, which demonstrated strong suppression of CRPC growth in vitro and in vivo. Furthermore, we show the marked ability of these KIs to improve on standard-of-care chemotherapy in both tumor response and survival, suggesting that combining multitargeted KIs with chemotherapy represents a promising avenue for mCRPC treatment. Overall, our findings demonstrate the application of a multidisciplinary strategy that blends bench science with machine-learning approaches for rapidly identifying KIs that result in desired phenotypic effects.Castration-resistant prostate cancer (CRPC) is an advanced subtype of prostate cancer with limited therapeutic options. Here, we applied a systems-based modeling approach called kinome regularization (KiR) to identify multitargeted kinase inhibitors (KIs) that abrogate CRPC growth. Two predicted KIs, PP121 and SC-1, suppressed CRPC growth in two-dimensional in vitro experiments and in vivo subcutaneous xenografts. An ex vivo bone mimetic environment and in vivo tibia xenografts revealed resistance to these KIs in bone. Combining PP121 or SC-1 with docetaxel, standard-of-care chemotherapy for late-stage CRPC, significantly reduced tibia tumor growth in vivo, decreased growth factor signaling, and vastly extended overall survival, compared to either docetaxel monotherapy. These results highlight the utility of computational modeling in forming physiologically relevant predictions and provide evidence for the role of multitargeted KIs as chemosensitizers for late-stage, metastatic CRPC.All study data are included in the article and/or supporting information.
AUTHOR Paindelli, Claudia and Casarin, Stefano and Wang, Feng and Diaz-Gomez, Luis and Zhang, Jianhua and Mikos, Antonios G. and Logothetis, Christopher J. and Friedl, Peter and Dondossola, Eleonora
Title Enhancing Radium 223 treatment efficacy by anti-beta 1 integrin targeting [Abstract]
Year 2021
Journal/Proceedings Journal of Nuclear Medicine
Reftype
DOI/URL URL DOI
Abstract
Radium 223 (223Ra) is an α-emitter approved for the treatment of bone metastatic prostate cancer (PCa), which exerts direct cytotoxicity towards PCa cells near the bone interface, whereas cells positioned in the core respond poorly, due to short α-particle penetrance. β1 integrin (β1I) interference has been shown to increase radiosensitivity and significantly enhance external beam radiation efficiency. We hypothesized that targeting β1I would improve 223Ra outcome. We tested the effect of combining 223Ra and anti-β1I antibody treatment in PC3 and C4-2B PCa cell models expressing high and low β1I levels, respectively. In vivo tumor growth was evaluated through bioluminescence. Cellular and molecular determinants of response were analyzed by ex vivo three-dimensional imaging of bone lesions, proteomic analysis and further confirmed by computational modeling and in vitro functional analysis in tissue-engineered bone mimetic systems. Interference with β1I combined with 223Ra reduced PC3 cell growth in bone and significantly improved overall mouse survival, while no change was achieved in C4-2B tumors. Anti-β1I treatment decreased PC3 tumor cell mitosis index and spatially expanded 223Ra lethal effects two-fold, in vivo and in silico. Regression was paralleled by decreased expression of radio-resistance mediators. Targeting β1I significantly improves 223Ra outcome and points towards combinatorial application in PCa tumors with high β1I expression.
AUTHOR Huang, Yen-Lin and Liang, Ching-Yeu and Ritz, Danilo and Coelho, Ricardo and Septiadi, Dedy and Estermann, Manuela and Cumin, Cécile and Rimmer, Natalie and Schötzau, Andreas and Núñez López, Mónica and Fedier, André and Konantz, Martina and Vlajnic, Tatjana and Calabrese, Diego and Lengerke, Claudia and David, Leonor and Rothen-Rutishauser, Barbara and Jacob, Francis and Heinzelmann-Schwarz, Viola
Title Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis [Abstract]
Year 2020
Journal/Proceedings eLife
Reftype
DOI/URL DOI
Abstract
The extracellular matrix (ECM) plays critical roles in tumor progression and metastasis. However, the contribution of ECM proteins to early metastatic onset in the peritoneal cavity remains unexplored. Here, we suggest a new route of metastasis through the interaction of integrin alpha 2 (ITGA2) with collagens enriched in the tumor coinciding with poor outcome in patients with ovarian cancer. Using multiple gene-edited cell lines and patient-derived samples, we demonstrate that ITGA2 triggers cancer cell adhesion to collagen, promotes cell migration, anoikis resistance, mesothelial clearance, and peritoneal metastasis in vitro and in vivo. Mechanistically, phosphoproteomics identify an ITGA2-dependent phosphorylation of focal adhesion kinase and mitogen-activated protein kinase pathway leading to enhanced oncogenic properties. Consequently, specific inhibition of ITGA2-mediated cancer cell-collagen interaction or targeting focal adhesion signaling may present an opportunity for therapeutic intervention of metastatic spread in ovarian cancer.
AUTHOR López-Carrasco, Amparo and Martín-Vañó, Susana and Burgos-Panadero, Rebeca and Monferrer, Ezequiel and Berbegall, Ana P. and Fernández-Blanco, Beatriz and Navarro, Samuel and Noguera, Rosa
Title Impact of extracellular matrix stiffness on genomic heterogeneity in MYCN-amplified neuroblastoma cell line [Abstract]
Year 2020
Journal/Proceedings Journal of Experimental & Clinical Cancer Research
Reftype López-Carrasco2020
DOI/URL DOI
Abstract
Increased tissue stiffness is a common feature of malignant solid tumors, often associated with metastasis and poor patient outcomes. Vitronectin, as an extracellular matrix anchorage glycoprotein related to a stiff matrix, is present in a particularly increased quantity and specific distribution in high-risk neuroblastoma. Furthermore, as cells can sense and transform the proprieties of the extracellular matrix into chemical signals through mechanotransduction, genotypic changes related to stiffness are possible.
AUTHOR Plou, Javier and García, Isabel and Charconnet, Mathias and Astobiza, Ianire and García-Astrain, Clara and Matricardi, Cristiano and Mihi, Agustín and Carracedo, Arkaitz and Liz-Marzán, Luis M.
Title Multiplex SERS Detection of Metabolic Alterations in Tumor Extracellular Media [Abstract]
Year 2020
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract The composition and intercellular interactions of tumor cells in the tissues dictate the biochemical and metabolic properties of the tumor microenvironment. The metabolic rewiring has a profound impact on the properties of the microenvironment, to an extent that monitoring such perturbations could harbor diagnostic and therapeutic relevance. A growing interest in these phenomena has inspired the development of novel technologies with sufficient sensitivity and resolution to monitor metabolic alterations in the tumor microenvironment. In this context, surface-enhanced Raman scattering (SERS) can be used for the label-free detection and imaging of diverse molecules of interest among extracellular components. Herein, the application of nanostructured plasmonic substrates comprising Au nanoparticles, self-assembled as ordered superlattices, to the precise SERS detection of selected tumor metabolites, is presented. The potential of this technology is first demonstrated through the analysis of kynurenine, a secreted immunomodulatory derivative of the tumor metabolism and the related molecules tryptophan and purine derivatives. SERS facilitates the unambiguous identification of trace metabolites and allows the multiplex detection of their characteristic fingerprints under different conditions. Finally, the effective plasmonic SERS substrate is combined with a hydrogel-based three-dimensional cancer model, which recreates the tumor microenvironment, for the real-time imaging of metabolite alterations and cytotoxic effects on tumor cells.
AUTHOR Hauser, Daniel and Estermann, Manuela and Milosevic, Ana and Steinmetz, Lukas and Vanhecke, Dimitri and Septiadi, Dedy and Drasler, Barbara and Petri-Fink, Alke and Ball, Vincent and Rothen-Rutishauser, Barbara
Title Polydopamine/Transferrin Hybrid Nanoparticles for Targeted Cell-Killing [Abstract]
Year 2018
Journal/Proceedings Nanomaterials
Reftype
DOI/URL URL DOI
Abstract
Polydopamine can form biocompatible particles that convert light into heat. Recently, a protocol has been optimized to synthesize polydopamine/protein hybrid nanoparticles that retain the biological function of proteins, and combine it with the stimuli-induced heat generation of polydopamine. We have utilized this novel system to form polydopamine particles, containing transferrin (PDA/Tf). Mouse melanoma cells, which strongly express the transferrin receptor, were exposed to PDA/Tf nanoparticles (NPs) and, subsequently, were irradiated with a UV laser. The cell death rate was monitored in real-time. When irradiated, the melanoma cells exposed to PDA/Tf NPs underwent apoptosis, faster than the control cells, pointing towards the ability of PDA/Tf to mediate UV-light-induced cell death. The system was also validated in an organotypic, 3D-printed tumor spheroid model, comprising mouse melanoma cells, and the exposure and subsequent irradiation with UV-light, yielded similar results to the 2D cell culture. The process of apoptosis was found to be targeted and mediated by the lysosomal membrane permeabilization. Therefore, the herein presented polydopamine/protein NPs constitute a versatile and stable system for cancer cell-targeting and photothermal apoptosis induction.