SCIENTIFIC PUBLICATIONS

You are researching: Bone Tissue Engineering
Matching entries: 143 /143
All Groups
AUTHOR Golafshan, Nasim and Castilho, Miguel and Daghrery, Arwa and Alehosseini, Morteza and van de Kemp, Tom and Krikonis, Konstantinos and de Ruijter, Mylene and Dal-Fabbro, Renan and Dolatshahi-Pirouz, Alireza and Bhaduri, Sarit B. and Bottino, Marco C. and Malda, Jos
Title Composite Graded Melt Electrowritten Scaffolds for Regeneration of the Periodontal Ligament-to-Bone Interface
Year 2023
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
AUTHOR Daghrery, Arwa and Ferreira, Jessica A. and Xu, Jinping and Golafshan, Nasim and Kaigler, Darnell and Bhaduri, Sarit B. and Malda, Jos and Castilho, Miguel and Bottino, Marco C.
Title Tissue-specific melt electrowritten polymeric scaffolds for coordinated regeneration of soft and hard periodontal tissues [Abstract]
Year 2023
Journal/Proceedings Bioactive Materials
Reftype
DOI/URL URL DOI
Abstract
Periodontitis is a chronic inflammatory condition that often causes serious damage to tooth-supporting tissues. The limited successful outcomes of clinically available approaches underscore the need for therapeutics that cannot only provide structural guidance to cells but can also modulate the local immune response. Here, three-dimensional melt electrowritten (i.e., poly(ε-caprolactone)) scaffolds with tissue-specific attributes were engineered to guide differentiation of human-derived periodontal ligament stem cells (hPDLSCs) and mediate macrophage polarization. The investigated tissue-specific scaffold attributes comprised fiber morphology (aligned vs. random) and highly-ordered architectures with distinct strand spacings (small 250 μm and large 500 μm). Macrophages exhibited an elongated morphology in aligned and highly-ordered scaffolds, while maintaining their round-shape on randomly-oriented fibrous scaffolds. Expressions of periostin and IL-10 were more pronounced on the aligned and highly-ordered scaffolds. While hPDLSCs on the scaffolds with 500 μm strand spacing show higher expression of osteogenic marker (Runx2) over 21 days, cells on randomly-oriented fibrous scaffolds showed upregulation of M1 markers. In an orthotopic mandibular fenestration defect model, findings revealed that the tissue-specific scaffolds (i.e., aligned fibers for periodontal ligament and highly-ordered 500 μm strand spacing fluorinated calcium phosphate [F/CaP]-coated fibers for bone) could enhance the mimicking of regeneration of natural periodontal tissues.
AUTHOR Daghrery, Arwa and Ferreira, Jessica A. and Xu, Jinping and Golafshan, Nasim and Kaigler, Darnell and Bhaduri, Sarit B. and Malda, Jos and Castilho, Miguel and Bottino, Marco C.
Title Tissue-specific melt electrowritten polymeric scaffolds for coordinated regeneration of soft and hard periodontal tissues [Abstract]
Year 2023
Journal/Proceedings Bioactive Materials
Reftype
DOI/URL URL DOI
Abstract
Periodontitis is a chronic inflammatory condition that often causes serious damage to tooth-supporting tissues. The limited successful outcomes of clinically available approaches underscore the need for therapeutics that cannot only provide structural guidance to cells but can also modulate the local immune response. Here, three-dimensional melt electrowritten (i.e., poly(ε-caprolactone)) scaffolds with tissue-specific attributes were engineered to guide differentiation of human-derived periodontal ligament stem cells (hPDLSCs) and mediate macrophage polarization. The investigated tissue-specific scaffold attributes comprised fiber morphology (aligned vs. random) and highly-ordered architectures with distinct strand spacings (small 250 μm and large 500 μm). Macrophages exhibited an elongated morphology in aligned and highly-ordered scaffolds, while maintaining their round-shape on randomly-oriented fibrous scaffolds. Expressions of periostin and IL-10 were more pronounced on the aligned and highly-ordered scaffolds. While hPDLSCs on the scaffolds with 500 μm strand spacing show higher expression of osteogenic marker (Runx2) over 21 days, cells on randomly-oriented fibrous scaffolds showed upregulation of M1 markers. In an orthotopic mandibular fenestration defect model, findings revealed that the tissue-specific scaffolds (i.e., aligned fibers for periodontal ligament and highly-ordered 500 μm strand spacing fluorinated calcium phosphate [F/CaP]-coated fibers for bone) could enhance the mimicking of regeneration of natural periodontal tissues.
AUTHOR Daghrery, Arwa and Ferreira, Jessica A. and Xu, Jinping and Golafshan, Nasim and Kaigler, Darnell and Bhaduri, Sarit B. and Malda, Jos and Castilho, Miguel and Bottino, Marco C.
Title Tissue-specific melt electrowritten polymeric scaffolds for coordinated regeneration of soft and hard periodontal tissues [Abstract]
Year 2023
Journal/Proceedings Bioactive Materials
Reftype
DOI/URL URL DOI
Abstract
Periodontitis is a chronic inflammatory condition that often causes serious damage to tooth-supporting tissues. The limited successful outcomes of clinically available approaches underscore the need for therapeutics that cannot only provide structural guidance to cells but can also modulate the local immune response. Here, three-dimensional melt electrowritten (i.e., poly(ε-caprolactone)) scaffolds with tissue-specific attributes were engineered to guide differentiation of human-derived periodontal ligament stem cells (hPDLSCs) and mediate macrophage polarization. The investigated tissue-specific scaffold attributes comprised fiber morphology (aligned vs. random) and highly-ordered architectures with distinct strand spacings (small 250 μm and large 500 μm). Macrophages exhibited an elongated morphology in aligned and highly-ordered scaffolds, while maintaining their round-shape on randomly-oriented fibrous scaffolds. Expressions of periostin and IL-10 were more pronounced on the aligned and highly-ordered scaffolds. While hPDLSCs on the scaffolds with 500 μm strand spacing show higher expression of osteogenic marker (Runx2) over 21 days, cells on randomly-oriented fibrous scaffolds showed upregulation of M1 markers. In an orthotopic mandibular fenestration defect model, findings revealed that the tissue-specific scaffolds (i.e., aligned fibers for periodontal ligament and highly-ordered 500 μm strand spacing fluorinated calcium phosphate [F/CaP]-coated fibers for bone) could enhance the mimicking of regeneration of natural periodontal tissues.
AUTHOR Daghrery, Arwa and Ferreira, Jessica A. and Xu, Jinping and Golafshan, Nasim and Kaigler, Darnell and Bhaduri, Sarit B. and Malda, Jos and Castilho, Miguel and Bottino, Marco C.
Title Tissue-specific melt electrowritten polymeric scaffolds for coordinated regeneration of soft and hard periodontal tissues [Abstract]
Year 2023
Journal/Proceedings Bioactive Materials
Reftype
DOI/URL URL DOI
Abstract
Periodontitis is a chronic inflammatory condition that often causes serious damage to tooth-supporting tissues. The limited successful outcomes of clinically available approaches underscore the need for therapeutics that cannot only provide structural guidance to cells but can also modulate the local immune response. Here, three-dimensional melt electrowritten (i.e., poly(ε-caprolactone)) scaffolds with tissue-specific attributes were engineered to guide differentiation of human-derived periodontal ligament stem cells (hPDLSCs) and mediate macrophage polarization. The investigated tissue-specific scaffold attributes comprised fiber morphology (aligned vs. random) and highly-ordered architectures with distinct strand spacings (small 250 μm and large 500 μm). Macrophages exhibited an elongated morphology in aligned and highly-ordered scaffolds, while maintaining their round-shape on randomly-oriented fibrous scaffolds. Expressions of periostin and IL-10 were more pronounced on the aligned and highly-ordered scaffolds. While hPDLSCs on the scaffolds with 500 μm strand spacing show higher expression of osteogenic marker (Runx2) over 21 days, cells on randomly-oriented fibrous scaffolds showed upregulation of M1 markers. In an orthotopic mandibular fenestration defect model, findings revealed that the tissue-specific scaffolds (i.e., aligned fibers for periodontal ligament and highly-ordered 500 μm strand spacing fluorinated calcium phosphate [F/CaP]-coated fibers for bone) could enhance the mimicking of regeneration of natural periodontal tissues.
AUTHOR Daghrery, Arwa and Ferreira, Jessica A. and de Souza Araújo, Isaac J. and Clarkson, Brian H. and Eckert, George J. and Bhaduri, Sarit B. and Malda, Jos and Bottino, Marco C.
Title A Highly Ordered, Nanostructured Fluorinated CaP-Coated Melt Electrowritten Scaffold for Periodontal Tissue Regeneration [Abstract]
Year 2021
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Periodontitis is a chronic inflammatory, bacteria-triggered disorder affecting nearly half of American adults. Although some level of tissue regeneration is realized, its low success in complex cases demands superior strategies to amplify regenerative capacity. Herein, highly ordered scaffolds are engineered via Melt ElectroWriting (MEW), and the effects of strand spacing, as well as the presence of a nanostructured fluorinated calcium phosphate (F/CaP) coating on the adhesion/proliferation, and osteogenic differentiation of human-derived periodontal ligament stem cells, are investigated. Upon initial cell-scaffold interaction screening aimed at defining the most suitable design, MEW poly(ε-caprolactone) scaffolds with 500 µm strand spacing are chosen. Following an alkali treatment, scaffolds are immersed in a pre-established solution to allow for coating formation. The presence of a nanostructured F/CaP coating leads to a marked upregulation of osteogenic genes and attenuated bacterial growth. In vivo findings confirm that the F/CaP-coated scaffolds are biocompatible and lead to periodontal regeneration when implanted in a rat mandibular periodontal fenestration defect model. In aggregate, it is considered that this work can contribute to the development of personalized scaffolds capable of enabling tissue-specific differentiation of progenitor cells, and thus guide simultaneous and coordinated regeneration of soft and hard periodontal tissues, while providing antimicrobial protection.
AUTHOR Dubey, Nileshkumar and Ferreira, Jessica A. and Daghrery, Arwa and Aytac, Zeynep and Malda, Jos and Bhaduri, Sarit B. and Bottino, Marco C.
Title Highly Tunable Bioactive Fiber-Reinforced Hydrogel for Guided Bone Regeneration [Abstract]
Year 2020
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
One of the most damaging pathologies that affects the health of both soft and hard tissues around the tooth is periodontitis. Clinically, periodontal tissue destruction has been managed by an integrated approach involving elimination of injured tissues followed by regenerative strategies with bone substitutes and/or barrier membranes. Regrettably, a barrier membrane with predictable mechanical integrity and multifunctional therapeutic features has yet to be established. Herein, we report a fiber-reinforced hydrogel with unprecedented tunability in terms of mechanical competence and therapeutic features by integration of highly porous poly(ε-caprolactone) fibrous mesh(es) with well-controlled 3D architecture into bioactive amorphous magnesium phosphate-laden gelatin methacryloyl hydrogels. The presence of amorphous magnesium phosphate and PCL mesh in the hydrogel can control the mechanical properties and improve the osteogenic ability, opening a tremendous opportunity in guided bone regeneration (GBR). Results demonstrate that the presence of PCL meshes fabricated via melt electrowriting can delay hydrogel degradation preventing soft tissue invasion and providing the mechanical barrier to allow time for slower migrating progenitor cells to participate in bone regeneration due to their ability to differentiate into bone-forming cells. Altogether, our approach offers a platform technology for the development of the next-generation of GBR membranes with tunable mechanical and therapeutic properties to amplify bone regeneration in compromised sites.
AUTHOR Daly, Andrew C. and Kelly, Daniel J.
Title Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers [Abstract]
Year 2019
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Successful tissue engineering requires the generation of human scale implants that mimic the structure, composition and mechanical properties of native tissues. Here, we report a novel biofabrication strategy that enables the engineering of structurally organised tissues by guiding the growth of cellular spheroids within arrays of 3D printed polymeric microchambers. With the goal of engineering stratified articular cartilage, inkjet bioprinting was used to deposit defined numbers of mesenchymal stromal cells (MSCs) and chondrocytes into pre-printed microchambers. These jetted cell suspensions rapidly underwent condensation within the hydrophobic microchambers, leading to the formation of organised arrays of cellular spheroids. The microchambers were also designed to provide boundary conditions to these spheroids, guiding their growth and eventual fusion, leading to the development of stratified cartilage tissue with a depth-dependant collagen fiber architecture that mimicked the structure of native articular cartilage. Furthermore, the composition and biomechanical properties of the bioprinted cartilage was also comparable to the native tissue. Using multi-tool biofabrication, we were also able to engineer anatomically accurate, human scale, osteochondral templates by printing this microchamber system on top of a hypertrophic cartilage region designed to support endochondral bone formation and then maintaining the entire construct in long-term bioreactor culture to enhance tissue development. This bioprinting strategy provides a versatile and scalable approach to engineer structurally organised cartilage tissues for joint resurfacing applications.
AUTHOR Gonzalez-Fernandez, T. and Rathan, S. and Hobbs, C. and Pitacco, P. and Freeman, F. E. and Cunniffe, G. M. and Dunne, N. J. and McCarthy, H. O. and Nicolosi, V. and O'Brien, F. J. and Kelly, D. J.
Title Pore-forming bioinks to enable Spatio-temporally defined gene delivery in bioprinted tissues [Abstract]
Year 2019
Journal/Proceedings Journal of Controlled Release
Reftype
DOI/URL URL DOI
Abstract
The regeneration of complex tissues and organs remains a major clinical challenge. With a view towards bioprinting such tissues, we developed a new class of pore-forming bioink to spatially and temporally control the presentation of therapeutic genes within bioprinted tissues. By blending sacrificial and stable hydrogels, we were able to produce bioinks whose porosity increased with time following printing. When combined with amphipathic peptide-based plasmid DNA delivery, these bioinks supported enhanced non-viral gene transfer to stem cells in vitro. By modulating the porosity of these bioinks, it was possible to direct either rapid and transient (pore-forming bioinks), or slower and more sustained (solid bioinks) transfection of host or transplanted cells in vivo. To demonstrate the utility of these bioinks for the bioprinting of spatially complex tissues, they were next used to zonally position stem cells and plasmids encoding for either osteogenic (BMP2) or chondrogenic (combination of TGF-β3, BMP2 and SOX9) genes within networks of 3D printed thermoplastic fibers to produce mechanically reinforced, gene activated constructs. In vivo, these bioprinted tissues supported the development of a vascularised, bony tissue overlaid by a layer of stable cartilage. When combined with multiple-tool biofabrication strategies, these gene activated bioinks can enable the bioprinting of a wide range of spatially complex tissues.
AUTHOR Cunniffe, Gráinne and Gonzalez-Fernandez, Tomas and Daly, Andrew and Nelson Sathy, Binulal and Jeon, Oju and Alsberg, Eben and J. Kelly, Daniel
Title Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering [Abstract]
Year 2017
Journal/Proceedings Tissue Engineering Part A
Reftype
DOI/URL DOI
Abstract
Regeneration of complex bone defects remains a significant clinical challenge. Multi-tool biofabrication has permitted the combination of various biomaterials to create multifaceted composites with tailorable mechanical properties and spatially controlled biological function. In this study we sought to use bioprinting to engineer nonviral gene activated constructs reinforced by polymeric micro-filaments. A gene activated bioink was developed using RGD-g-irradiated alginate and nano-hydroxyapatite (nHA) complexed to plasmid DNA (pDNA). This ink was combined with bonemarrow-derived mesenchymal stemcells (MSCs) and then co-printed with a polycaprolactone supporting mesh to provide mechanical stability to the construct. Reporter genes were first used to demonstrate successful cell transfection using this system, with sustained expression of the transgene detected over 14 days postbioprinting. Delivery of a combination of therapeutic genes encoding for bone morphogenic protein and transforming growth factor promoted robust osteogenesis of encapsulated MSCs in vitro, with enhanced levels of matrix deposition and mineralization observed following the incorporation of therapeutic pDNA. Gene activated MSC-laden constructs were then implanted subcutaneously, directly postfabrication, and were found to support superior levels of vascularization andmineralization compared to cell-free controls. These results validate the use of a gene activated bioink to impart biological functionality to three-dimensional bioprinted constructs.
AUTHOR Yao, Y. and Raymond, J. E. and Kauffmann, F. and Maekawa, S. and Sugai, J. V. and Lahann, J. and Giannobile, W. V.
Title Multicompartmental Scaffolds for Coordinated Periodontal Tissue Engineering [Abstract]
Year 2023
Journal/Proceedings Journal of Dental Research
Reftype
DOI/URL DOI
Abstract
Successful periodontal repair and regeneration requires the coordinated responses from soft and hard tissues as well as the soft tissue–to–bone interfaces. Inspired by the hierarchical structure of native periodontal tissues, tissue engineering technology provides unique opportunities to coordinate multiple cell types into scaffolds that mimic the natural periodontal structure in vitro. In this study, we designed and fabricated highly ordered multicompartmental scaffolds by melt electrowriting, an advanced 3-dimensional (3D) printing technique. This strategy attempted to mimic the characteristic periodontal microenvironment through multicompartmental constructs comprising 3 tissue-specific regions: 1) a bone compartment with dense mesh structure, 2) a ligament compartment mimicking the highly aligned periodontal ligaments (PDLs), and 3) a transition region that bridges the bone and ligament, a critical feature that differentiates this system from mono- or bicompartmental alternatives. The multicompartmental constructs successfully achieved coordinated proliferation and differentiation of multiple cell types in vitro within short time, including both ligamentous- and bone-derived cells. Long-term 3D coculture of primary human osteoblasts and PDL fibroblasts led to a mineral gradient from calcified to uncalcified regions with PDL-like insertions within the transition region, an effect that is challenging to achieve with mono- or bicompartmental platforms. This process effectively recapitulates the key feature of interfacial tissues in periodontium. Collectively, this tissue-engineered approach offers a fundament for engineering periodontal tissue constructs with characteristic 3D microenvironments similar to native tissues. This multicompartmental 3D printing approach is also highly compatible with the design of next-generation scaffolds, with both highly adjustable compartmentalization properties and patient-specific shapes, for multitissue engineering in complex periodontal defects.
AUTHOR Freeman, Fiona E. and Pitacco, Pierluca and van Dommelen, Lieke H. A. and Nulty, Jessica and Browe, David C. and Shin, Jung-Youn and Alsberg, Eben and Kelly, Daniel J.
Title 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration [Abstract]
Year 2020
Journal/Proceedings Science Advances
Reftype
DOI/URL URL DOI
Abstract
Therapeutic growth factor delivery typically requires supraphysiological dosages, which can cause undesirable off-target effects. The aim of this study was to 3D bioprint implants containing spatiotemporally defined patterns of growth factors optimized for coupled angiogenesis and osteogenesis. Using nanoparticle functionalized bioinks, it was possible to print implants with distinct growth factor patterns and release profiles spanning from days to weeks. The extent of angiogenesis in vivo depended on the spatial presentation of vascular endothelial growth factor (VEGF). Higher levels of vessel invasion were observed in implants containing a spatial gradient of VEGF compared to those homogenously loaded with the same total amount of protein. Printed implants containing a gradient of VEGF, coupled with spatially defined BMP-2 localization and release kinetics, accelerated large bone defect healing with little heterotopic bone formation. This demonstrates the potential of growth factor printing, a putative point of care therapy, for tightly controlled tissue regeneration.
AUTHOR Daly, Andrew C. and Pitacco, Pierluca and Nulty, Jessica and Cunniffe, Gráinne M. and Kelly, Daniel J.
Title 3D printed microchannel networks to direct vascularisation during endochondral bone repair [Abstract]
Year 2018
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Bone tissue engineering strategies that recapitulate the developmental process of endochondral ossification offer a promising route to bone repair. Clinical translation of such endochondral tissue engineering strategies will require overcoming a number of challenges, including the engineering of large and often anatomically complex cartilage grafts, as well as the persistence of core regions of avascular cartilage following their implantation into large bone defects. Here 3D printing technology is utilized to develop a versatile and scalable approach to guide vascularisation during endochondral bone repair. First, a sacrificial pluronic ink was used to 3D print interconnected microchannel networks in a mesenchymal stem cell (MSC) laden gelatin-methacryloyl (GelMA) hydrogel. These constructs (with and without microchannels) were next chondrogenically primed in vitro and then implanted into critically sized femoral bone defects in rats. The solid and microchanneled cartilage templates enhanced bone repair compared to untreated controls, with the solid cartilage templates (without microchannels) supporting the highest levels of total bone formation. However, the inclusion of 3D printed microchannels was found to promote osteoclast/immune cell invasion, hydrogel degradation, and vascularisation following implantation. In addition, the endochondral bone tissue engineering strategy was found to support comparable levels of bone healing to BMP-2 delivery, whilst promoting lower levels of heterotopic bone formation, with the microchanneled templates supporting the lowest levels of heterotopic bone formation. Taken together, these results demonstrate that 3D printed hypertrophic cartilage grafts represent a promising approach for the repair of complex bone fractures, particularly for larger defects where vascularisation will be a key challenge.
AUTHOR Padilla-Lopategui, Soraya and Ligorio, Cosimo and Bu, Wenhuan and Yin, Chengcheng and Laurenza, Domenico and Redondo, Carlos and Owen, Robert and Sun, Hongchen and Rose, Felicity R.A.J. and Iskratsch, Thomas and Mata, Alvaro
Title Biocooperative Regenerative Materials by Harnessing Blood-Clotting and Peptide Self-Assembly [Abstract]
Year 2024
Journal/Proceedings Advanced Materials
Reftype
DOI/URL DOI
Abstract
Abstract The immune system has evolved to heal small ruptures and fractures with remarkable efficacy through regulation of the regenerative hematoma (RH); a rich and dynamic environment that coordinates numerous molecular and cellular processes to achieve complete repair. Here, a biocooperative approach that harnesses endogenous molecules and natural healing to engineer personalized regenerative materials is presented. Peptide amphiphiles (PAs) are co-assembled with blood components during coagulation to engineer a living material that exhibits key compositional and structural properties of the RH. By exploiting non-selective and selective PA-blood interactions, the material can be immediately manipulated, mechanically-tuned, and 3D printed. The material preserves normal platelet behavior, generates and provides a continuous source of growth factors, and promotes in vitro growth of mesenchymal stromal cells, endothelial cells, and fibroblasts. Furthermore, using a personalized autologous approach to convert whole blood into PA-blood gel implants, bone regeneration is shown in a critical-sized rat calvarial defect. This study provides proof-of-concept for a biocooperative approach that goes beyond biomimicry by using mechanisms that Nature has evolved to heal as tools to engineer accessible, personalized, and regenerative biomaterials that can be readily formed at point of use.
AUTHOR Huang, Boyang and Wang, Yaxin and Vyas, Cian and Bartolo, Paulo
Title Crystal Growth of 3D Poly(ε-caprolactone) Based Bone Scaffolds and Its Effects on the Physical Properties and Cellular Interactions [Abstract]
Year 2022
Journal/Proceedings Advanced Science
Reftype
DOI/URL URL DOI
Abstract
Abstract Extrusion additive manufacturing is widely used to fabricate polymer-based 3D bone scaffolds. However, the insight views of crystal growths, scaffold features and eventually cell-scaffold interactions are still unknown. In this work, melt and solvent extrusion additive manufacturing techniques are used to produce scaffolds considering highly analogous printing conditions. Results show that the scaffolds produced by these two techniques present distinct physiochemical properties, with melt-printed scaffolds showing stronger mechanical properties and solvent-printed scaffolds showing rougher surface, higher degradation rate, and faster stress relaxation. These differences are attributed to the two different crystal growth kinetics, temperature-induced crystallization (TIC) and strain-induced crystallization (SIC), forming large/integrated spherulite-like and a small/fragmented lamella-like crystal regions respectively. The stiffer substrate of melt-printed scaffolds contributes to higher ratio of nuclear Yes-associated protein (YAP) allocation, favoring cell proliferation and differentiation. Faster relaxation and degradation of solvent-printed scaffolds result in dynamic surface, contributing to an early-stage faster osteogenesis differentiation.
AUTHOR Hailong Xu and Yue Zhang and Yidan Zhang and Zhiyang Zhao and Tianyuan Xue and Jianing Wang and Mengmeng Li and Shanyu Zhao and Hui Zhang and Yue Ding
Title 3D bioprinting advanced biomaterials for craniofacial and dental tissue engineering – A review [Abstract]
Year 2024
Journal/Proceedings Materials & Design
Reftype
DOI/URL URL DOI
Abstract
The rising incidence of defects in oral and maxillofacial tissues, linked to factors such as trauma, tumors, periodontal disease, and aging, poses significant challenges. Current treatments, involving autografts, allografts, and synthetic graft materials, face obstacles like secondary trauma, inflammation, and inadequate biocompatibility. Tissue engineering, integrating cell biology and material science since the 1990s, relies heavily on biomaterial scaffolds to promote cell adhesion, proliferation, and differentiation. Traditional scaffold fabrication, including 3D printing, methods lack precision, hindering effective tissue repair by controlling cell distribution and the extracellular matrix. Biomedical engineering advancements have introduced 3D bioprinting as an innovative solution, overcoming constraints of conventional scaffolds. 3D bioprinting technology enables rapid and precise reconstruction of damaged tissues with loaded cells, mimicking in vivo environments. This paper explores key 3D bioprinting technologies such as inkjet-based, extrusion-based, fused deposition modeling, laser-assisted, VAT photopolymerization, freeform reversible embedding of suspended hydrogels, and sacrificial template printing. The selection of materials with suitable mechanical and biological properties is crucial, considering the distinct requirements of each technique. This review provides a comprehensive survey of research progress on 3D printing biomaterial applications in craniofacial and dental tissue engineering, serving as a valuable reference for future medical research.
AUTHOR Weng, Yiping and Yuan, Xiuchen and Fan, Shijie and Duan, Weihao and Tan, Yadong and Zhou, Ruikai and Wu, Jingbin and Shen, Yifei and Zhang, Zhonghua and Xu, Hua
Title 3D-Printed Biomimetic Hydroxyapatite Composite Scaffold Loaded with Curculigoside for Rat Cranial Defect Repair [Abstract]
Year 2024
Journal/Proceedings ACS Omega
Reftype
DOI/URL DOI
Abstract
The treatment of various large bone defects has remained a challenge for orthopedic surgeons for a long time. Recent research indicates that curculigoside (CUR) extracted from the curculigo plant exerts a positive influence on bone formation, contributing to fracture healing. In this study, we employed emulsification/solvent evaporation techniques to successfully fabricate poly(ε-caprolactone) nanoparticles loaded with curculigoside (CUR@PM). Subsequently, using three-dimensional (3D) printing technology, we successfully developed a bioinspired composite scaffold named HA/GEL/SA/CUR@PM (HGSC), chemically cross-linked with calcium chloride, to ensure scaffold stability. Further characterization of the scaffold’s physical and chemical properties revealed uniform pore size, good hydrophilicity, and appropriate mechanical properties while achieving sustained drug release for up to 12 days. In vitro experiments demonstrated the nontoxicity, good biocompatibility, and cell proliferative properties of HGSC. Through alkaline phosphatase (ALP) staining, Alizarin Red S (ARS) staining, cell migration assays, tube formation assays, and detection of angiogenic and osteogenic gene proteins, we confirmed the HGSC composite scaffold’s significant angiogenic and osteoinductive capabilities. Eight weeks postimplantation in rat cranial defects, Micro-computed tomography (CT) and histological observations revealed pronounced angiogenesis and new bone growth in areas treated with the HGSC composite scaffold. These findings underscore the scaffold’s exceptional angiogenic and osteogenic properties, providing a solid theoretical basis for clinical bone repair and demonstrating its potential in promoting vascularization and bone regeneration.
AUTHOR Meng, Duo and Hou, Yanhao and Kurniawan, Darwin and Weng, Ren-Jie and Chiang, Wei-Hung and Wang, Weiguang
Title 3D-Printed Graphene and Graphene Quantum Dot-Reinforced Polycaprolactone Scaffolds for Bone-Tissue Engineering [Abstract]
Year 2024
Journal/Proceedings ACS Appl. Nano Mater.
Reftype
DOI/URL DOI
Abstract
The regeneration of large-scale bone loss due to accidents, trauma, diseases, or tumor resection is still a critical clinical challenge. With the development of additive manufacturing technology and advanced biomaterials, 3D-printed biocompatible synthetic polymer scaffolds have been widely studied for their key roles in supporting bone tissue regeneration. Scaffold aims to provide mechanical properties that match the host bone as well as biological activities that can effectively promote cell proliferation and differentiation, ultimately facilitating bone tissue regeneration. Due to its unique biocompatibility and biodegradability, polycaprolactone (PCL) becomes one of the dominant synthetic polymeric materials considered for scaffold fabrication. However, using PCL alone presents insufficient mechanical properties; thus, different functional fillers have been added to modulate both the mechanical and biological performance of fabricated scaffolds. Among all functional fillers, carbon nanomaterials, particularly graphene (G), have shown an emerging trend. Graphene quantum dots (GQD), a member of the graphene family, are regarded as an ideal next-generation functional filler for scaffold fabrication. It presents high solubility in water, controllable dose-dependent cytotoxicity similar to that of G, and unique biological properties benefiting from smaller sizes. Current research using GQD for tissue engineering applications is limited, and the systemic comparison between G and GQD at different concentrations is also missing. This study, for the first time, evaluates and compares the impact of incorporating G and GQD into PCL bone tissue engineering scaffolds from surface, thermal, mechanical, and biological perspectives. Results suggested that the addition of both materials under 5 wt % significantly improved both the mechanical and biological performance of PCL scaffolds. Under 3 wt %, PCL/GQD scaffolds presented better compressive strength while maintaining the same level of biological performance compared with PCL/G scaffolds, revealing the strong potential for future in vivo studies and bone tissue regeneration applications.
AUTHOR Shangsi Chen, Yue Wang, Junzhi Li, Haoran Su, Ming-Fung Francis Siu, Shenglong Tan
Title 3D-printed Mg-substituted hydroxyapatite/ gelatin methacryloyl hydrogels encapsulated with PDA@DOX particles for bone tumor therapy and bone tissue regeneration
Year 2024
Journal/Proceedings IJB
Reftype
DOI/URL DOI
AUTHOR Mostafa Shahrezaie and Ali Zamanian and Melika Sahranavard and Mohammad Hossein Shahrezaee
Title A critical review on the 3D bioprinting in large bone defects regeneration [Abstract]
Year 2024
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Bone injuries are increasing due to the ageing of the population, and the previous methods of treating bone injuries such as grafts face many limitations, especially in the treatment of large bone injuries. Recently, bone tissue engineering has been introduced as a substitute method for bone regeneration. Scaffolding is one of the most important stages of bone tissue engineering. One of the newest methods of creating scaffolds is using a 3D bioprinter. This method provides several advantages over the traditional methods of fabricating scaffolds, for example, personalization, scaffold designing before production and structure controlling, reproducibility, the possibility of simultaneous cell printing, etc. Here, bone injuries and bone diseases, especially large ones, have been discussed at first. In the following, the 3D printing method is introduced and different bio-ink compositions, and various effective fctors in the design of 3d printed scaffolds were summerized. Afterward, the use of 3D printining and 3D bioprinting has been discussed in previous studies and its current challenges and future perspectives for the treatment of lrage bone defects were mentioned. It is hoped that this review will be a guide for using 3D bioprinting to treat bone injuries in near future applications.
AUTHOR D. {Van der Heide} and L.P. Hatt and E. {Della Bella} and A. Hangartner and W.A. Lackington and H. Yuan and F. {De Groot-Barrère} and M.J. Stoddart and M. D'Este
Title Characterization and biological evaluation of 3D printed composite ink consisting of collagen, hyaluronic acid and calcium phosphate for bone regeneration [Abstract]
Year 2024
Journal/Proceedings Carbohydrate Polymer Technologies and Applications
Reftype
DOI/URL URL DOI
Abstract
In large bone defects the self-healing capacity is insufficient, and the current standard treatment, autologous bone grafting, has severe disadvantages such as limited availability and donor site morbidity. Alternatively, clinically available bone graft substitutes lack spatial control over scaffold architecture to anatomically match complicated bone defects. Therefore, the aim in this study was to develop a 3D printable composite biomaterial-ink to promote healing of large bone defects. The composite biomaterial-ink consisted of an organic biopolymer matrix with tyramine modified hyaluronic acid (THA) and collagen type I (Col) mixed with osteoinductive calcium phosphate particles (CaP). The biopolymer was combined with 0, 10, 20 and 30 % of either 45–63 µm or 45–106 µm CaP. µCT imaging showed a homogeneous distribution of CaP in the THA-Col hydrogel and all composites were 3D printable. In vitro cell activity assays revealed no indirect cytotoxicity using L929 cells and high cell cytocompatibility using human mesenchymal stromal cells (hMSCs). Additionally, all composites supported in vitro osteogenic differentiation of hMSCs. This study highlights the development of a 3D printable composite biomaterial-ink using CaP and THA-Col hydrogel that holds significant potential to be used as patient-specific bone graft substitute for the regeneration of large bone defects. Statement of significance This paper introduces a 3D printable composite biomaterial-ink made of osteoinductive calcium phosphate particles combined with matrix biopolymers collagen and hyaluronic acid, which was chemically modified to introduce shear thinning and shape fixation properties for 3D printing. The chemical modification only involves a small percentage of functional groups, preserving hyaluronan's biological properties. We demonstrated printability, the homogeneous distribution of the mineral phase, cytocompatibility and that the composites support osteogenesis of primary human mesenchymal stromal cells from multiple donors. The printability of the composite biomaterial-ink allows the creation of patient-specific implants with controlled geometry on porosity. This study contributes towards engineering personalized implants for replacing autologous bone grafting in all clinical situations where the bone self-healing capacity is insufficient.
AUTHOR Celia Ximenes-Carballo and Sergi Rey-Viñolas and Barbara Blanco-Fernandez and Soledad Pérez-Amodio and Elisabeth Engel and Oscar Castano
Title Combining three-dimensionality and CaP glass-PLA composites: Towards an efficient vascularization in bone tissue healing [Abstract]
Year 2024
Journal/Proceedings Biomaterials Advances
Reftype
DOI/URL URL DOI
Abstract
Bone regeneration often fails due to implants/grafts lacking vascular supply, causing necrotic tissue and poor integration. Microsurgical techniques are used to overcome this issue, allowing the graft to anastomose. These techniques have limitations, including severe patient morbidity and current research focuses on stimulating angiogenesis in situ using growth factors, presenting limitations, such as a lack of control and increased costs. Non-biological stimuli are necessary to promote angiogenesis for successful bone constructs. Recent studies have reported that bioactive glass dissolution products, such as calcium-releasing nanoparticles, stimulate hMSCs to promote angiogenesis and new vasculature. Moreover, the effect of 3D microporosity has also been reported to be important for vascularisation in vivo. Therefore, we used room-temperature extrusion 3D printing with polylactic acid (PLA) and calcium phosphate (CaP) based glass scaffolds, focusing on geometry and solvent displacement for scaffold recovery. Combining both methods enabled reproducible control of 3D structure, porosity, and surface topography. Scaffolds maintained calcium ion release at physiological levels and supported human mesenchymal stem cell proliferation. Scaffolds stimulated the secretion of vascular endothelial growth factor (VEGF) after 3 days of culture. Subcutaneous implantation in vivo indicated good scaffold integration and blood vessel infiltration as early as one week after. PLA-CaP scaffolds showed increased vessel maturation 4 weeks after implantation without vascular regression. Results show PLA/CaP-based glass scaffolds, made via controlled 3D printing, support angiogenesis and vessel maturation, promising improved vascularization for bone regeneration.
AUTHOR Salar Amoli, Mehdi and Anand, Resmi and EzEldeen, Mostafa and Geris, Liesbet and Jacobs, Reinhilde and Bloemen, Veerle
Title Development of 3D Printed pNIPAM-Chitosan Scaffolds for Dentoalveolar Tissue Engineering [Abstract]
Year 2024
Journal/Proceedings Gels
Reftype
DOI/URL URL DOI
Abstract
While available treatments have addressed a variety of complications in the dentoalveolar region, associated challenges have resulted in exploration of tissue engineering techniques. Often, scaffold biomaterials with specific properties are required for such strategies to be successful, development of which is an active area of research. This study focuses on the development of a copolymer of poly (N-isopropylacrylamide) (pNIPAM) and chitosan, used for 3D printing of scaffolds for dentoalveolar regeneration. The synthesized material was characterized by Fourier transform infrared spectroscopy, and the possibility of printing was evaluated through various printability tests. The rate of degradation and swelling was analyzed through gravimetry, and surface morphology was characterized by scanning electron microscopy. Viability of dental pulp stem cells seeded on the scaffolds was evaluated by live/dead analysis and DNA quantification. The results demonstrated successful copolymerization, and three formulations among various synthesized formulations were successfully 3D printed. Up to 35% degradability was confirmed within 7 days, and a maximum swelling of approximately 1200% was achieved. Furthermore, initial assessment of cell viability demonstrated biocompatibility of the developed scaffolds. While further studies are required to achieve the tissue engineering goals, the present results tend to indicate that the proposed hydrogel might be a valid candidate for scaffold fabrication serving dentoalveolar tissue engineering through 3D printing.
AUTHOR Hou, Yanhao and Wang, Weiguang and Bartolo, Paulo
Title In vitro investigations on the effects of graphene and graphene oxide on polycaprolactone bone tissue engineering scaffolds [Abstract]
Year 2024
Journal/Proceedings Bio-Design and Manufacturing
Reftype Hou2024
DOI/URL DOI
Abstract
Polycaprolactone (PCL) scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field. Due to the intrinsic limitations of PCL, carbon nanomaterials are often investigated to reinforce the PCL scaffolds. Despite several studies that have been conducted on carbon nanomaterials, such as graphene (G) and graphene oxide (GO), certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds. This paper addresses this limitation by investigating both the nonbiological (element composition, surface, degradation, and thermal and mechanical properties) and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications. Results showed that the incorporation of G and GO increased surface properties (reduced modulus and wettability), material crystallinity, crystallization temperature, and degradation rate. However, the variations in compressive modulus, strength, surface hardness, and cell metabolic activity strongly depended on the type of reinforcement. Finally, a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight, fiber diameter, porosity, and mechanical properties as functions of degradation time and carbon nanomaterial concentrations. The results presented in this paper enable the design of three-dimensional (3D) bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers.
AUTHOR Daphne van der Heide and Luan Phelipe Hatt and Sylvie Wirth and Maria E Pirera and Angela R Armiento and Martin J Stoddart
Title In vitro osteogenesis of hMSCs on collagen membranes embedded within LEGO®-inspired 3D printed PCL constructs for mandibular bone repair [Abstract]
Year 2024
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
The field of bone tissue engineering aims to develop an effective and aesthetical bone graft substitute capable of repairing large mandibular defects. However, graft failure resulting from necrosis and insufficient integration with native tissue due to lack of oxygen and nutrient transportation remains a concern. To overcome these drawbacks, this study aims to develop a 3D printed polycaprolactone layered construct with a LEGO®-inspired interlocking mechanism enabling spatial distribution of biological components. To highlight its in vitro osteogenic potential, human mesenchymal stromal cells are cultured onto Bio-Gide® Compressed collagen (Col) membranes, which are embedded within the layered construct for 28 d. The osteogenic response is assessed through the measurement of proliferation, relevant markers for osteogenesis including alkaline phosphatase (ALP) activity, expression of transcriptional genes (SP7, RUNX2/SOX9) as well matrix-related genes (COL1A1, ALPL IBSP, SPP1), osteoprotegerin secretion. In vitro osteogenic differentiation results showed increased levels of these osteogenic markers, indicating the layered construct’s potential to support osteogenesis. In this study, a novel workflow of 3D printing a patient-specific LEGO®-inspired layered construct that can spatially deliver biological elements was successfully demonstrated. These layered constructs have the potential to be employed as a bone tissue engineering strategy, with particular focus on the repair of large mandibular defects.
AUTHOR Weiguang Wang and Yihe Huang and Yanhao Hou and Duo Meng and Kewen Pan and Paulo Bartolo and Lin Li
Title Laser-induced fabrication of doped-graphene based on collagen for bone tissue engineering scaffold applications [Abstract]
Year 2024
Journal/Proceedings CIRP Annals
Reftype
DOI/URL URL DOI
Abstract
Electro-active scaffolds play an important role in bone tissue engineering applications, serving as physical substrates for cell proliferation and osteogenic differentiation, ultimately realizing new bone regeneration. This paper discusses a novel strategy to synthesize graphene through laser-induced surface doping, using bone collagen as the carbon source, serving as a key functional filler to be combined with biocompatible, biodegradable poly(ε-caprolactone) (PCL), for the fabrication of the next generation electro-active bone tissue engineering scaffolds. Scaffolds are fabricated through material-extrusion additive manufacturing. The developed graphene is proven to present a significant enhancement effect on surface and mechanical properties over the conventional graphene material.
AUTHOR Nicolas, Touya and Ségolène, Reiss and Thierry, Rouillon and Maeva, Dutilleul and Joelle, Veziers and Arnaud, Pare and Ludmila, Brasset and Pierre, Weiss and Pierre, Corre and Baptiste, Charbonnier
Title Multiparametric influence of 3D-printed organo-mineral scaffolds on bone regeneration [Abstract]
Year 2024
Journal/Proceedings Scientific Reports
Reftype Nicolas2024
DOI/URL DOI
Abstract
The development of synthetic bone substitutes that equal or exceed the efficacy of autologous graft remains challenging. In this study, a rat calvarial defect model was used as a reference to investigate the influence of composition and architecture of 3D-printed cement, with or without bioactives, on tissue regeneration. Printable cement pastes were formulated by combining hyaluronic acid and cement precursors. Cementitious scaffolds were printed with 3 different patterns. After 7 weeks of implantation with or without bone marrow, multiparametric qualitative and quantitative assessments were performed using µCT, SEM, and histology. None of the set-up strategies was as efficient as autologous cancellous bone graft to repair calvarial defects. Nonetheless, the presence of scaffold improved the skull vault closure, particularly when the scaffold was soaked in total bone marrow before implantation. No significant effect of scaffold macro-architecture was observed on tissue mineralization. Magnesium phosphate-based scaffolds (MgP) seemed to induce higher bone formation than their calcium-phosphate-based counterparts. They also displayed a quicker biodegradation and sparse remaining material was found after 7 weeks of implantation. Although further improvements are required to reach clinical settings, this study demonstrated the potential of organo-mineral cements for bone regeneration and highlighted the peculiar properties of MgP-based cements.
AUTHOR De Mori, Arianna and Karali, Aikaterina and Daskalakis, Evangelos and Hing, Richard and Da Silva Bartolo, Paulo Jorge and Cooper, Glen and Blunn, Gordon
Title Poly-epsilon-Caprolactone 3D-Printed Porous Scaffold in a Femoral Condyle Defect Model Induces Early Osteo-Regeneration [Abstract]
Year 2024
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
Large bone reconstruction following trauma poses significant challenges for reconstructive surgeons, leading to a healthcare burden for health systems, long-term pain for patients, and complex disorders such as infections that are difficult to resolve. The use of bone substitutes is suboptimal for substantial bone loss, as they induce localized atrophy and are generally weak, and unable to support load. A combination of strong polycaprolactone (PCL)-based scaffolds, with an average channel size of 330 µm, enriched with 20% w/w of hydroxyapatite (HA), β-tricalcium phosphate (TCP), or Bioglass 45S5 (Bioglass), has been developed and tested for bone regeneration in a critical-size ovine femoral condyle defect model. After 6 weeks, tissue ingrowth was analyzed using X-ray computed tomography (XCT), Backscattered Electron Microscopy (BSE), and histomorphometry. At this point, all materials promoted new bone formation. Histological analysis showed no statistical difference among the different biomaterials (p > 0.05), but PCL-Bioglass scaffolds enhanced bone formation in the center of the scaffold more than the other types of materials. These materials show potential to promote bone regeneration in critical-sized defects on load-bearing sites.
AUTHOR Aarushi Kaith and Neha Jain and Shreya Kaul and Upendra Nagaich
Title Polysaccharide-infused bio-fabrication: Advancements in 3D bioprinting for tissue engineering and bone regeneration [Abstract]
Year 2024
Journal/Proceedings Materials Today Communications
Reftype
DOI/URL URL DOI
Abstract
3D bioprinting, a subset of rapid prototyping technologies, facilitates the fabrication of biomaterials guided by computer-aided design models, layer-by-layer. This innovative approach, merging polymers, science, medicine, design, and mechanics, holds immense promise in the realm of organogenesis. Advancements in 3D bioprinting have revolutionized the landscape by enabling the fabrication of living tissues and organs, including skin, veins, ligaments, bones, heart, kidneys, and liver. Polysaccharides, long-chain carbohydrates abundantly found in nature, offer several advantageous properties for tissue engineering, including biodegradability, biocompatibility, and the ability to mimic the extracellular matrix. By incorporating polysaccharides such as alginate, chitosan, cellulose, xanthan and agarose into bio-ink formulations, researchers have been able to create bio-functional scaffolds that closely resemble the native tissue environment. Moreover, the rheological properties of polysaccharide-based bio-inks can be finely tuned to facilitate the extrusion process during 3D bioprinting, enabling the fabrication of complex, anatomically accurate structures with high fidelity. By incorporating bioactive molecules such as growth factors and osteogenic factors into polysaccharide-based bio-inks, researchers can create bio-functional scaffolds that promote cell adhesion, proliferation, and differentiation, ultimately facilitating the regeneration of functional bone tissue. This paper discusses patents associated with polysaccharide-infused bio-fabrication and evaluates the translational prospects of 3D bioprinted constructs, demonstrating their efficacy in remedying tissue defects and bone injuries. Additionally, it offers an analysis of the prevailing market dynamics and size concerning 3D bioprinting, taking into account factors such as technological advancements and regulatory frameworks. Overall, polysaccharide-infused bio-fabrication represents a versatile and promising approach for advancing the field of tissue engineering and bone regeneration.
AUTHOR Shijie Fan and Yadong Tan and Xiuchen Yuan and Chun Liu and Xiaoyu Wu and Ting Dai and Su Ni and Jiafeng Wang and Yiping Weng and Hongbin Zhao
Title Regulation of the immune microenvironment by pioglitazone-loaded polylactic glycolic acid nanosphere composite scaffolds to promote vascularization and bone regeneration [Abstract]
Year 2024
Journal/Proceedings Journal of Tissue Engineering
Reftype
DOI/URL DOI
Abstract
Osteogenesis is caused by multiple factors, and the inflammatory response, osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), regeneration of blood vessels, and other factors must be considered in bone tissue engineering. To effectively repair bone defect, it is important to decrease excessive inflammation, enhance the differentiation of mesenchymal stem cells into osteoblasts, and stimulate angiogenesis. Herein, nano-attapulgite (ATP), polyvinyl alcohol (PVA), and gelatin (GEL) scaffolds were produced using 3D printing technology and pioglitazone (PIO)-containing polylactic acid–glycolic acid (PLGA) nanospheres were added. In both in vitro and in vivo studies, material scaffolds with PIO-loaded polylactic acid–glycolic acid nanospheres could reduce the inflammatory response by encouraging macrophage polarization from M1 to M2 and promoting the osteogenic differentiation of BMSCs by activating the BMP2/Smad/RUNX2 signal pathway to repair bone defects. The vascularization of human umbilical vein endothelial cells (HUVECs) through the PI3K/AKT/HIF1-/VEGF pathway was also encouraged. In vivo research using PIO-containing PLGA nanospheres revealed massive collagen deposition in skin models. These findings indicate a potentially effective scaffold for bone healing, when PLGA nanospheres—which contain the drug PIO—are combined with ATP/PVA/GEL scaffolds.
AUTHOR Carmen-Valentina Nicolae and Elena Olăreț and Adriana-Elena Bratu and Adriana Lungu and Izabela-Cristina Stancu and Bogdan Stelian {Mastalier Manolescu}
Title Reinforcing melt electrowritten elements with entangled multifibrillar strands for thin hydrogels with potential in bone resurfacing [Abstract]
Year 2024
Journal/Proceedings Materials & Design
Reftype
DOI/URL URL DOI
Abstract
Osteonecrosis of the femoral head (ONFH) is a disease that affects young adults in their thirties to fifties, representing the progressive destruction of the hip bone caused by deficient vascularization. As the condition slowly leads to complete collapse of the femoral head, the conventional solution is total hip arthroplasty. Thin scaffolds consisting of fiber-reinforced hydrogels could be used to regenerate the affected bone surface, coupled with hip resurfacing for less invasive approaches. Melt electrowriting (MEW) was used to produce polycaprolactone (PCL) reinforcing elements for thin scaffolds, with four mesh densities and highly tunable mechanical properties. The influence of the MEW process parameters on the PCL filaments’ morphology was investigated using Design of Experiments to optimize their fabrication and obtain tailorable structures with entangled fiber morphology for increased contact surface with the hydrogel component. Uniaxial tensile tests were performed to investigate the difference in tensile properties of the entangled design versus the aligned counterparts, including the exploration of the mesh size effect. The microstructure and microstructural changes of the entangled meshes at uniaxial tensile deformation were explored using micro-computed tomography. Plasma treated meshes were embedded in gelatin methacryloyl/alginate hydrogels, developing reinforced composite scaffolds with potential for bone surface reconstruction.
AUTHOR Chun Liu and Su Ni and Xiaoyu Wu and Linxiang Zhang and Ting Dai and Aiqin Wang and Hongbin Zhao
Title Strontium-Modified porous attapulgite composite hydrogel scaffold with advanced angiogenic and osteogenic potential for bone defect repair [Abstract]
Year 2024
Journal/Proceedings Composites Part A: Applied Science and Manufacturing
Reftype
DOI/URL URL DOI
Abstract
Nano-attapulgite (nano-ATP) has shown potential in promoting mesenchymal stem cell (MSC) adhesion, growth and osteogenic gene expression. In this study, we investigated a 3D-bioprinted porous Sr-ATP (strontium-doped nano-ATP)/GelMA/chitosan composite hydrogel scaffold for bone regeneration. The experiment was divided into four groups based on the concentration of Sr-ATP: control (0%), 0.5%, 1.0% and 2.0%. The primary novelty of our research lies in the incorporation of Sr-ATP, which enhances the biological and mechanical properties of scaffolds. Additionally, we utilized a stable Pickering emulsion templating technique combined with 3D printing to fabricate the scaffold, ensuring a uniform and stable porous structure. The biological and mechanical properties of the scaffold were evaluated in vitro, and its potential to promote angiogenesis and osteogenesis was assessed in vivo using cranial defect model. Our results indicate that the scaffold presents a promising solution for bone formation in bone defects, demonstrating significant improvements in both angiogenesis and osteogenesis.
AUTHOR Yanhao Hou and Weiguang Wang and Paulo Bartolo
Title The effect of graphene and graphene oxide induced reactive oxygen species on polycaprolactone scaffolds for bone cancer applications [Abstract]
Year 2024
Journal/Proceedings Materials Today Bio
Reftype
DOI/URL URL DOI
Abstract
Bone cancer remains a critical healthcare problem. Among current clinical treatments, tumour resection is the most common strategy. It is usually effective but may present several limitations such as multiple operations, long hospital time, and the potential recurrence caused by the incomplete removal of cancer cells. To address these limitations, three-dimensional (3D) scaffolds fabricated through additive manufacturing have been researched for both bone cancer treatment and post-treatment rehabilitation. Polycaprolactone (PCL)-based scaffolds play an important role in bone regeneration, serving as a physical substrate to fill the defect site, recruiting cells, and promoting cell proliferation and differentiation, ultimately leading to the regeneration of the bone tissue without multiple surgical applications. Multiple advanced materials have been incorporated during the fabrication process to improve certain functions and/or modulate biological performances. Graphene-based nanomaterials, particularly graphene (G) and graphene oxide (GO), have been investigated both in vitro and in vivo, significantly improving the scaffold's physical, chemical, and biological properties, which strongly depend on the material type and concentration. A unique targeted inhibition effect on cancer cells was also discovered. However, limited research has been conducted on utilising graphene-based nanomaterials for both bone regeneration and bone cancer treatment, and there is no systematic study into the material- and dose-dependent effects, as well as the working mechanism on 3D scaffolds to realise these functions. This paper addresses these limitations by designing and fabricating PCL-based scaffolds containing different concentrations of G and GO and assessing their biological behaviour correlating it to the reactive oxygen species (ROS) release level. Results suggest that the ROS release from the scaffolds is a dominant mechanism that affects the biological behaviour of the scaffolds. ROS release also contributes to the inhibition effect on bone cancer due to healthy cells and cancer cells responding differently to ROS, and the osteogenesis results also present a certain correlation with ROS. These observations revealed a new route for realising bone cancer treatment and subsequent new bone regeneration, using a single dual-functional 3D scaffold.
AUTHOR Huang, Benzhao and Li, Shishuo and Dai, Shimin and Lu, Xiaoqing and Wang, Peng and Li, Xiao and Zhao, Zhibo and Wang, Qian and Li, Ningbo and Wen, Jie and Liu, Yifang and Wang, Xin and Man, Zhentao and Li, Wei and Liu, Bing
Title Ti3C2Tx MXene-Decorated 3D-Printed Ceramic Scaffolds for Enhancing Osteogenesis by Spatiotemporally Orchestrating Inflammatory and Bone Repair Responses [Abstract]
Year 2024
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Inflammatory responses play a central role in coordinating biomaterial-mediated tissue regeneration. However, precise modulation of dynamic variations in microenvironmental inflammation post-implantation remains challenging. In this study, the traditional β-tricalcium phosphate-based scaffold is remodeled via ultrathin MXene-Ti3C2 decoration and Zn2+/Sr2+ ion-substitution, endowing the scaffold with excellent reactive oxygen species-scavenging ability, near-infrared responsivity, and enhanced mechanical properties. The induction of mild hyperthermia around the implant via periodic near-infrared irradiation facilitates spatiotemporal regulation of inflammatory cytokines secreted by a spectrum of macrophage phenotypes. The process initially amplifies the pro-inflammatory response, then accelerates M1-to-M2 macrophage polarization transition, yielding a satisfactory pattern of osteo-immunomodulation during the natural bone healing process. Later, sustained release of Zn2+/Sr2+ ions with gradual degradation of the 3D scaffold maintains the favorable reparative M2-dominated immunological microenvironment that supports new bone mineralization. Precise temporal immunoregulation of the bone healing process by the intelligent 3D scaffold enhances bone regeneration in a rat cranial defect model. This strategy paves the way for the application of β-tricalcium phosphate-based materials to guide the dynamic inflammatory and bone tissue responses toward a favorable outcome, making clinical treatment more predictable and durable. The findings also demonstrate that near-infrared irradiation-derived mild hyperthermia is a promising method of immunomodulation.
AUTHOR Hatt, Luan P and Wirth, Sylvie and Ristaniemi, Aapo and Ciric, Daniel J and Thompson, Keith and Eglin, David and Stoddart, Martin J and Armiento, Angela R
Title {Micro-porous PLGA/β-TCP/TPU scaffolds prepared by solvent-based 3D printing for bone tissue engineering purposes} [Abstract]
Year 2023
Journal/Proceedings Regenerative Biomaterials
Reftype
DOI/URL DOI
Abstract
{The 3D printing process of fused deposition modelling (FDM) is an attractive fabrication approach to create tissue engineered bone substitutes to regenerate large mandibular bone defects, but often lacks desired surface porosity for enhanced protein adsorption and cell adhesion. Solvent-based printing leads to the spontaneous formation of micropores on the scaffold’s surface upon solvent removal, without the need for further post processing. Our aim is to create and characterise porous scaffolds using a new formulation composed of mechanically stable poly(lactic-co-glycol acid) (PLGA) and osteoconductive β-tricalcium phosphate (β-TCP) with and without the addition of elastic thermoplastic polyurethane (TPU) prepared by solvent-based 3D-printing technique. Large scale regenerative scaffolds can be 3D-printed with adequate fidelity and show porosity at multiple levels analysed via micro-computer tomography, scanning electron microscopy and N2 sorption. Superior mechanical properties compared to a commercially available CaP ink are demonstrated in compression, bending, and screw pull out tests. Biological assessments including cell activity assay and live-dead staining prove the scaffold's cytocompatibility. Osteoconductive properties are demonstrated by performing an osteogenic differentiation assay with primary human bone marrow mesenchymal stromal cells. We propose a versatile fabrication process to create porous 3D-printed scaffolds with adequate mechanical stability and osteoconductivity, both important characteristics for segmental mandibular bone reconstruction.}
AUTHOR Farazin, Ashkan and Zhang, Chunwei and Gheisizadeh, Amirhossein and Shahbazi, Aminadel
Title 3D bio-printing for use as bone replacement tissues: A review of biomedical application [Abstract]
Year 2023
Journal/Proceedings Biomedical Engineering Advances
Reftype
DOI/URL URL DOI
Abstract
Since we are able to use 3D printers, producing porous metal scaffolds become very easy. Contrary to usual methods, 3D printing of porous scaffolds is determined by a controllable and precise manufacturing process. That property allows us to form customized prefabricated implants for individual patients and make a regular pore distribution at the micro-scale as same as the structure of a bone, design of a structure like bone is very complicated because the pores of that structure must have enough space for cell attachment and proliferation. The reaction of cells and bone ingrowth can influence the effect of 3D printed porous metal scaffolds on bone ingrowth. This review introduces 3D printing techniques brief and focuses on the factors that potentially influence bone ingrowth into 3D printed porous metal scaffolds like materials, pore size, porosity, pore structure, surface modification, and mechanical properties. In each section, we described the mechanisms underlying cell-scaffold interactions in detail also there is a short introduction of clinical application of 3D printing. After all, there is a list that shows the most appropriate parameters for a flawless porous metal scaffold, and it is lead to finding a combination of these parameters that foretaste good bone ingrowth.
AUTHOR Liu, Chun and Dai, Ting and Wu, Xiaoyu and Ma, Jiayi and Liu, Jun and Wu, Siyu and Yang, Lei and Zhao, Hongbin
Title 3D bioprinting of cell-laden nano-attapulgite/gelatin methacrylate composite hydrogel scaffolds for bone tissue repair [Abstract]
Year 2023
Journal/Proceedings Journal of Materials Science & Technology
Reftype
DOI/URL URL DOI
Abstract
Bone tissue engineering (BTE) has proven to be a promising strategy for bone defect repair. Due to its excellent biological properties, gelatin methacrylate (GelMA) hydrogels have been used as bioinks for 3D bioprinting in some BTE studies to produce scaffolds for bone regeneration. However, applications for load-bearing defects are limited by poor mechanical properties and a lack of bioactivity. In this study, 3D printing technology was used to create nano-attapulgite (nano-ATP)/GelMA composite hydrogels loaded into mouse bone mesenchymal stem cells (BMSCs) and mouse umbilical vein endothelial cells (MUVECs). The bioprintability, physicochemical properties, and mechanical properties were all thoroughly evaluated. Our findings showed that nano-ATP groups outperform the control group in terms of printability, indicating that nano-ATP is beneficial for printability. Additionally, after incorporation with nano-ATP, the mechanical strength of the composite hydrogels was significantly improved, resulting in adequate mechanical properties for bone regeneration. The presence of nano-ATP in the scaffolds has also been studied for cell-material interactions. The findings show that cells within the scaffold not only have high viability but also a clear proclivity to promote osteogenic differentiation of BMSCs. Besides, the MUVECs-loaded composite hydrogels demonstrated increased angiogenic activity. A cranial defect model was also developed to evaluate the bone repair capability of scaffolds loaded with rat BMSCs. According to histological analysis, cell-laden nano-ATP composite hydrogels can effectively improve bone regeneration and promote angiogenesis. This study demonstrated the potential of nano-ATP for bone tissue engineering, which should also increase the clinical practicality of nano-ATP.
AUTHOR Cernencu, Alexandra I. and Vlasceanu, George M. and Serafim, Andrada and Pircalabioru, Gratiela and Ionita, Mariana
Title 3D double-reinforced graphene oxide – nanocellulose biomaterial inks for tissue engineered constructs [Abstract]
Year 2023
Journal/Proceedings RSC Adv.
Reftype
DOI/URL DOI
Abstract
The advent of improved fabrication technologies{,} particularly 3D printing{,} has enabled the engineering of bone tissue for patient-specific healing and the fabrication of in vitro tissue models for ex vivo testing. However{,} inks made from natural polymers often fall short in terms of mechanical strength{,} stability{,} and the induction of osteogenesis. Our research focused on developing novel printable formulations using a gelatin/pectin polymeric matrix that integrate synergistic reinforcement components i.e. graphene oxide (GO) and oxidized nanocellulose fibers (CNF). Using 3D printing technology and the aforementioned biomaterial composite inks{,} bone-like scaffolds were created. To simulate critical-sized flaws and demonstrate scaffold fidelity{,} 3D scaffolds were successfully printed using formulations with varied GO concentrations (0.25{,} 0.5{,} and 1% wt with respect to polymer content). The addition of GO to hydrogel inks enhanced not only the compressive modulus but also the printability and scaffold fidelity compared to the pure colloid-gelatin/pectin system. Due to its strong potential for 3D bioprinting{,} the sample containing 0.5% GO is shown to have the greatest perspectives for bone tissue models and tissue engineering applications.
AUTHOR Limlawan, Pirawish and Insin, Numpon and Marger, Laurine and Freudenreich, Mélanie and Durual, Stéphane and Vacharaksa, Anjalee
Title 3D-printed TCP-HA scaffolds delivering MicroRNA-302a-3p improve bone regeneration in a mouse calvarial model [Abstract]
Year 2023
Journal/Proceedings BDJ Open
Reftype Limlawan2023
DOI/URL DOI
Abstract
To demonstrate hydroxyapatite nanoparticles modified with cationic functional molecules. 3-aminopropyltriethoxysilane (HA-NPs-APTES) carrying microRNA-302a-3p (miR) in the 3D-printed tricalcium phosphate/Hydroxyapatite (TCP/HA) scaffold can increase healing of the critical-sized bone defect.
AUTHOR Dairaghi, Jacob and Benito Alston, Claudia and Cadle, Rachel and Rogozea, Dan and Solorio, Luis and Barco, Clark T. and Moldovan, Nicanor I.
Title A dual osteoconductive-osteoprotective implantable device for vertical alveolar ridge augmentation [Abstract]
Year 2023
Journal/Proceedings Frontiers in Dental Medicine
Reftype
DOI/URL DOI
Abstract
Repair of large oral bone defects such as vertical alveolar ridge augmentation could benefit from the rapidly developing additive manufacturing technology used to create personalized osteoconductive devices made from porous tricalcium phosphate/hydroxyapatite (TCP/HA)-based bioceramics. These devices can be also used as hydrogel carriers to improve their osteogenic potential. However, the TCP/HA constructs are prone to brittle fracture, therefore their use in clinical situations is difficult. As a solution, we propose the protection of this osteoconductive multi-material (herein called “core”) with a shape-matched “cover” made from biocompatible poly-ɛ-caprolactone (PCL), which is a ductile, and thus more resistant polymeric material. In this report, we present a workflow starting from patient-specific medical scan in Digital Imaging and Communications in Medicine (DICOM) format files, up to the design and 3D printing of a hydrogel-loaded porous TCP/HA core and of its corresponding PCL cover. This cover could also facilitate the anchoring of the device to the patient's defect site via fixing screws. The large, linearly aligned pores in the TCP/HA bioceramic core, their sizes, and their filling with an alginate hydrogel were analyzed by micro-CT. Moreover, we created a finite element analysis (FEA) model of this dual-function device, which permits the simulation of its mechanical behavior in various anticipated clinical situations, as well as optimization before surgery. In conclusion, we designed and 3D-printed a novel, structurally complex multi-material osteoconductive-osteoprotective device with anticipated mechanical properties suitable for large-defect oral bone regeneration.
AUTHOR Rikkers, Margot and Nguyen, H. Chien and Golafshan, Nasim and de Ruijter, Mylène and Levato, Riccardo and Vonk, Lucienne A. and van Egmond, Nienke and Castilho, Miguel and Custers, Roel J. H. and Malda, Jos
Title A Gap-Filling, Regenerative Implant for Open-Wedge Osteotomy [Abstract]
Year 2023
Journal/Proceedings Journal of Cartilage & Joint Preservation
Reftype
DOI/URL URL DOI
Abstract
Purpose In patients suffering from unilateral osteoarthritis in the knee, an osteotomy can provide symptomatic relief and postpone the need for replacement of the joint. Nevertheless, open-wedge osteotomies (OWO) around the knee joint face several challenges like postoperative pain and bone non-union. In this study, the aim was to design, fabricate, and evaluate a gap-filling implant for OWO using an osteoinductive and degradable biomaterial. Methods Design of porous wedge-shaped implants was based on computed tomography (CT) scans of cadaveric legs. Implants were 3D printed using a magnesium strontium phosphate-polycaprolactone (MgPSr-PCL) biomaterial ink. Standardized scaffolds with different inter-fibre spacing (IFS) were mechanically characterized and osteoinductive properties of the biomaterial were assessed in vitro. Finally, human-sized implants with different heights (5 mm, 10 mm, 15 mm) were designed and fabricated for ex vivo implantation during three OWO procedures in human cadaveric legs. Results Implants printed with an interior of IFS-1.0 resulted in scaffolds that maintained top and bottom porosity, while the interior of the implant exhibited significant mechanical stability. Bone marrow concentrate and culture expanded mesenchymal stromal cells attached to the MgPSr-PCL material and proliferated over 21 days in culture. The production of osteogenic markers alkaline phosphatase activity, calcium, and osteocalcin was promoted in all culture conditions, independent of osteogenic induction medium. Finally, three OWO procedures were planned and fabricated wedges were implanted ex vivo during the procedures. A small fraction of one side of the wedges was resected to assure fit into the proximal biplanar osteotomy gap. Pre-planned wedge heights were maintained after implantation as measured by micro-CT. Conclusion To conclude, personalized implants for implantation in open-wedge osteotomies were successfully designed and manufactured. The implant material supported osteogenesis of MSCs and BMC in vitro and full-size implants were successfully implemented into the surgical procedure, without compromising pre-planned wedge height.
AUTHOR Daskalakis, Evangelos and Hassan, Mohamed H. and Omar, Abdalla M. and Acar, Anil A. and Fallah, Ali and Cooper, Glen and Weightman, Andrew and Blunn, Gordon and Koc, Bahattin and Bartolo, Paulo
Title Accelerated Degradation of Poly-ε-caprolactone Composite Scaffolds for Large Bone Defects [Abstract]
Year 2023
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
This research investigates the accelerated hydrolytic degradation process of both anatomically designed bone scaffolds with a pore size gradient and a rectangular shape (biomimetically designed scaffolds or bone bricks). The effect of material composition is investigated considering poly-ε-caprolactone (PCL) as the main scaffold material, reinforced with ceramics such as hydroxyapatite (HA), β-tricalcium phosphate (TCP) and bioglass at a concentration of 20 wt%. In the case of rectangular scaffolds, the effect of pore size (200 μm, 300 μm and 500 μm) is also investigated. The degradation process (accelerated degradation) was investigated during a period of 5 days in a sodium hydroxide (NaOH) medium. Degraded bone bricks and rectangular scaffolds were measured each day to evaluate the weight loss of the samples, which were also morphologically, thermally, chemically and mechanically assessed. The results show that the PCL/bioglass bone brick scaffolds exhibited faster degradation kinetics in comparison with the PCL, PCL/HA and PCL/TCP bone bricks. Furthermore, the degradation kinetics of rectangular scaffolds increased by increasing the pore size from 500 μm to 200 μm. The results also indicate that, for the same material composition, bone bricks degrade slower compared with rectangular scaffolds. The scanning electron microscopy (SEM) images show that the degradation process was faster on the external regions of the bone brick scaffolds (600 μm pore size) compared with the internal regions (200 μm pore size). The thermal gravimetric analysis (TGA) results show that the ceramic concentration remained constant throughout the degradation process, while differential scanning calorimetry (DSC) results show that all scaffolds exhibited a reduction in crystallinity (Xc), enthalpy (Δm) and melting temperature (Tm) throughout the degradation process, while the glass transition temperature (Tg) slightly increased. Finally, the compression results show that the mechanical properties decreased during the degradation process, with PCL/bioglass bone bricks and rectangular scaffolds presenting higher mechanical properties with the same design in comparison with the other materials.
AUTHOR Jahangir, Shahrbanoo and Vecstaudza, Jana and Augurio, Adriana and Canciani, Elena and Stipniece, Liga and Locs, Janis and Alini, Mauro and Serra, Tiziano
Title Cell-Laden 3D Printed GelMA/HAp and THA Hydrogel Bioinks: Development of Osteochondral Tissue-like Bioinks [Abstract]
Year 2023
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
Osteochondral (OC) disorders such as osteoarthritis (OA) damage joint cartilage and subchondral bone tissue. To understand the disease, facilitate drug screening, and advance therapeutic development, in vitro models of OC tissue are essential. This study aims to create a bioprinted OC miniature construct that replicates the cartilage and bone compartments. For this purpose, two hydrogels were selected: one composed of gelatin methacrylate (GelMA) blended with nanosized hydroxyapatite (nHAp) and the other consisting of tyramine-modified hyaluronic acid (THA) to mimic bone and cartilage tissue, respectively. We characterized these hydrogels using rheological testing and assessed their cytotoxicity with live-dead assays. Subsequently, human osteoblasts (hOBs) were encapsulated in GelMA-nHAp, while micropellet chondrocytes were incorporated into THA hydrogels for bioprinting the osteochondral construct. After one week of culture, successful OC tissue generation was confirmed through RT-PCR and histology. Notably, GelMA/nHAp hydrogels exhibited a significantly higher storage modulus (G′) compared to GelMA alone. Rheological temperature sweeps and printing tests determined an optimal printing temperature of 20 °C, which remained unaffected by the addition of nHAp. Cell encapsulation did not alter the storage modulus, as demonstrated by amplitude sweep tests, in either GelMA/nHAp or THA hydrogels. Cell viability assays using Ca-AM and EthD-1 staining revealed high cell viability in both GelMA/nHAp and THA hydrogels. Furthermore, RT-PCR and histological analysis confirmed the maintenance of osteogenic and chondrogenic properties in GelMA/nHAp and THA hydrogels, respectively. In conclusion, we have developed GelMA-nHAp and THA hydrogels to simulate bone and cartilage components, optimized 3D printing parameters, and ensured cell viability for bioprinting OC constructs.
AUTHOR Fuchs, Andreas and Bartolf-Kopp, Michael and Böhm, Hartmut and Straub, Anton and Kübler, Alexander C. and Linz, Christian and Gbureck, Uwe
Title Composite grafts made of polycaprolactone fiber mats and oil-based calcium phosphate cement pastes for the reconstruction of cranial and maxillofacial defects [Abstract]
Year 2023
Journal/Proceedings Clinical Oral Investigations
Reftype Fuchs2023
DOI/URL DOI
Abstract
Synthetic bone substitutes which can be adapted preoperatively and patient specific may be helpful in various bony defects in the field of oral- and maxillofacial surgery. For this purpose, composite grafts made of self-setting and oil-based calcium phosphate cement (CPC) pastes, which were reinforced with 3D-printed polycaprolactone (PCL) fiber mats were manufactured.
AUTHOR Nalesso, Paulo Roberto Lopes and Vedovatto, Matheus and Gregório, Julia Eduarda Schneider and Huang, Boyang and Vyas, Cian and Santamaria-Jr, Milton and Bártolo, Paulo and Caetano, Guilherme Ferreira
Title Early In Vivo Osteogenic and Inflammatory Response of 3D Printed Polycaprolactone/Carbon Nanotube/Hydroxyapatite/Tricalcium Phosphate Composite Scaffolds [Abstract]
Year 2023
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
The development of advanced biomaterials and manufacturing processes to fabricate biologically and mechanically appropriate scaffolds for bone tissue is a significant challenge. Polycaprolactone (PCL) is a biocompatible and degradable polymer used in bone tissue engineering, but it lacks biofunctionalization. Bioceramics, such as hydroxyapatite (HA) and β tricalcium phosphate (β-TCP), which are similar chemically to native bone, can facilitate both osteointegration and osteoinduction whilst improving the biomechanics of a scaffold. Carbon nanotubes (CNTs) display exceptional electrical conductivity and mechanical properties. A major limitation is the understanding of how PCL-based scaffolds containing HA, TCP, and CNTs behave in vivo in a bone regeneration model. The objective of this study was to evaluate the use of three-dimensional (3D) printed PCL-based composite scaffolds containing CNTs, HA, and β-TCP during the initial osteogenic and inflammatory response phase in a critical bone defect rat model. Gene expression related to early osteogenesis, the inflammatory phase, and tissue formation was evaluated using quantitative real-time PCR (RT-qPCR). Tissue formation and mineralization were assessed by histomorphometry. The CNT+HA/TCP group presented higher expression of osteogenic genes after seven days. The CNT+HA and CNT+TCP groups stimulated higher gene expression for tissue formation and mineralization, and pro- and anti-inflammatory genes after 14 and 30 days. Moreover, the CNT+TCP and CNT+HA/TCP groups showed higher gene expressions related to M1 macrophages. The association of CNTs with ceramics at 10wt% (CNT+HA/TCP) showed lower expressions of inflammatory genes and higher osteogenic, presenting a positive impact and balanced cell signaling for early bone formation. The association of CNTs with both ceramics promoted a minor inflammatory response and faster bone tissue formation.
AUTHOR Helaehil, Júlia Venturini and Helaehil, Luiza Venturini and Alves, Laryssa Fernanda and Huang, Boyang and Santamaria-Jr, Milton and Bartolo, Paulo and Caetano, Guilherme Ferreira
Title Electrical Stimulation Therapy and HA/TCP Composite Scaffolds Modulate the Wnt Pathways in Bone Regeneration of Critical-Sized Defects [Abstract]
Year 2023
Journal/Proceedings Bioengineering
Reftype
DOI/URL URL DOI
Abstract
Critical bone defects are the most difficult challenges in the area of tissue repair. Polycaprolactone (PCL) scaffolds, associated with hydroxyapatite (HA) and tricalcium phosphate (TCP), are reported to have an enhanced bioactivity. Moreover, the use of electrical stimulation (ES) has overcome the lack of bioelectricity at the bone defect site and compensated the endogenous electrical signals. Such treatments could modulate cells and tissue signaling pathways. However, there is no study investigating the effects of ES and bioceramic composite scaffolds on bone tissue formation, particularly in the view of cell signaling pathway. This study aims to investigate the application of HA/TCP composite scaffolds and ES and their effects on the Wingless-related integration site (Wnt) pathway in critical bone repair. Critical bone defects (25 mm2) were performed in rats, which were divided into four groups: PCL, PCL + ES, HA/TCP and HA/TCP + ES. The scaffolds were grafted at the defect site and applied with the ES application twice a week using 10 µA of current for 5 min. Bone samples were collected for histomorphometry, immunohistochemistry and molecular analysis. At the Wnt canonical pathway, HA/TCP and HA/TCP + ES groups showed higher Wnt1 and β-catenin gene expression levels, especially HA/TCP. Moreover, HA/TCP + ES presented higher Runx2, Osterix and Bmp-2 levels. At the Wnt non-canonical pathway, HA/TCP group showed higher voltage-gated calcium channel (Vgcc), calmodulin-dependent protein kinase II, and Wnt5a genes expression, while HA/TCP + ES presented higher protein expression of VGCC and calmodulin (CaM) at the same period. The decrease in sclerostin and osteopontin genes expressions and the lower bone sialoprotein II in the HA/TCP + ES group may be related to the early bone remodeling. This study shows that the use of ES modulated the Wnt pathways and accelerated the osteogenesis with improved tissue maturation.
AUTHOR Tan, Yadong and Fan, Shijie and Wu, Xiaoyu and Liu, Menggege and Dai, Ting and Liu, Chun and Ni, Su and Wang, Jiafeng and Yuan, Xiuchen and Zhao, Hongbin and Weng, Yiping
Title Fabrication of a three-dimensional printed gelatin/sodium alginate/nano-attapulgite composite polymer scaffold loaded with leonurine hydrochloride and its effects on osteogenesis and vascularization [Abstract]
Year 2023
Journal/Proceedings International Journal of Biological Macromolecules
Reftype
DOI/URL URL DOI
Abstract
Bone tissue engineering scaffolds have made significant progress in treating bone defects in recent decades. However, the lack of a vascular network within the scaffold limits bone formation after implantation in vivo. Recent research suggests that leonurine hydrochloride (LH) can promote healing in full-thickness cutaneous wounds by increasing vessel formation and collagen deposition. Gelatin and Sodium Alginate are both polymers. ATP is a magnesium silicate chain mineral. In this study, a Gelatin/Sodium Alginate/Nano-Attapulgite composite hydrogel was used as the base material first, and the Gelatin/Sodium Alginate/Nano-Attapulgite composite polymer scaffold loaded with LH was then created using 3D printing technology. Finally, LH was grafted onto the base material by an amide reaction to construct a scaffold loaded with LH to achieve long-term LH release. When compared to pure polymer scaffolds, in vitro results showed that LH-loaded scaffolds promoted the differentiation of BMSCs into osteoblasts, as evidenced by increased expression of osteogenic key genes. The results of in vivo tissue staining revealed that the drug-loaded scaffold promoted both angiogenesis and bone formation. Collectively, these findings suggest that LH-loaded Gelatin/Sodium Alginate/Nano-Attapulgite composite hydrogel scaffolds are a potential therapeutic strategy and can assist bone regeneration.
AUTHOR Eichholz, Kian F. and Pitacco, Pierluca and Burdis, Ross and Chariyev-Prinz, Farhad and Barceló, Xavier and Tornifoglio, Brooke and Paetzold, Ryan and Garcia, Orquidea and Kelly, Daniel J
Title Integrating Melt Electrowriting and Fused Deposition Modeling to Fabricate Hybrid Scaffolds Supportive of Accelerated Bone Regeneration [Abstract]
Year 2023
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Emerging additive manufacturing (AM) strategies can enable the engineering of hierarchal scaffold structures for guiding tissue regeneration. Here, the advantages of two AM approaches, melt electrowriting (MEW) and fused deposition modelling (FDM), are leveraged and integrated to fabricate hybrid scaffolds for large bone defect healing. MEW is used to fabricate a microfibrous core to guide bone healing, while FDM is used to fabricate a stiff outer shell for mechanical support, with constructs being coated with pro-osteogenic calcium phosphate (CaP) nano-needles. Compared to MEW scaffolds alone, hybrid scaffolds prevent soft tissue collapse into the defect region and support increased vascularization and higher levels of new bone formation 12 weeks post-implantation. In an additional group, hybrid scaffolds are also functionalized with BMP2 via binding to the CaP coating, which further accelerates healing and facilitates the complete bridging of defects after 12 weeks. Histological analyses demonstrate that such scaffolds support the formation of well-defined annular bone, with an open medullary cavity, smooth periosteal surface, and no evidence of abnormal ectopic bone formation. These results demonstrate the potential of integrating different AM approaches for the development of regenerative biomaterials, and in particular, demonstrate the enhanced bone healing outcomes possible with hybrid MEW-FDM constructs.
AUTHOR Ege, Duygu and Hasirci, Vasif
Title Is 3D Printing Promising for Osteochondral Tissue Regeneration? [Abstract]
Year 2023
Journal/Proceedings ACS Appl. Bio Mater.
Reftype
DOI/URL DOI
Abstract
Osteochondral tissue regeneration is quite difficult to achieve due to the complexity of its organization. In the design of these complex multilayer structures, a fabrication method, 3D printing, started to be employed, especially by using extrusion, stereolithography and inkjet printing approaches. In this paper, the designs are discussed including biphasic, triphasic, and gradient structures which aim to mimic the cartilage and the calcified cartilage and the whole osteochondral tissue closely. In the first section of the review paper, 3D printing of hydrogels including gelatin methacryloyl (GelMa), alginate, and polyethylene glycol diacrylate (PEGDA) are discussed. However, their physical and biological properties need to be augmented, and this generally is achieved by blending the hydrogel with other, more durable, less hydrophilic, polymers. These scaffolds are very suitable to carry growth factors, such as TGF-β1, to further stimulate chondrogenesis. The bone layer is mimicked by printing calcium phosphates (CaPs) or bioactive glasses together with the hydrogels or as a component of another polymer layer. The current research findings indicate that polyester (i.e. polycaprolactone (PCL), polylactic acid (PLA) and poly(lactide-co-glycolide) (PLGA)) reinforced hydrogels may more successfully mimic the complex structure of osteochondral tissue. Moreover, more recent printing methods such as melt electrowriting (MEW), are being used to integrate polyester fibers to enhance the mechanical properties of hydrogels. Additionally, polyester scaffolds that are 3D printed without hydrogels are discussed after the hydrogel-based scaffolds. In this review paper, the relevant studies are analyzed and discussed, and future work is recommended with support of tables of designed scaffolds. The outcome of the survey of the field is that 3D printing has significant potential to contribute to osteochondral tissue repair.
AUTHOR Mamidi, Narsimha and Ijadi, Fatemeh and Norahan, Mohammad Hadi
Title Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities [Abstract]
Year 2023
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
Abstract
The field of bone tissue engineering has seen significant advancements in recent years. Each year, over two million bone transplants are performed globally, and conventional treatments, such as bone grafts and metallic implants, have their limitations. Tissue engineering offers a new level of treatment, allowing for the creation of living tissue within a biomaterial framework. Recent advances in biomaterials have provided innovative approaches to rebuilding bone tissue function after damage. Among them, gelatin methacryloyl (GelMA) hydrogel is emerging as a promising biomaterial for supporting cell proliferation and tissue regeneration, and GelMA has exhibited exceptional physicochemical and biological properties, making it a viable option for clinical translation. Various methods and classes of additives have been used in the application of GelMA for bone regeneration, with the incorporation of nanofillers or other polymers enhancing its resilience and functional performance. Despite promising results, the fabrication of complex structures that mimic the bone architecture and the provision of balanced physical properties for both cell and vasculature growth and proper stiffness for load bearing remain as challenges. In terms of utilizing osteogenic additives, the priority should be on versatile components that promote angiogenesis and osteogenesis while reinforcing the structure for bone tissue engineering applications. This review focuses on recent efforts and advantages of GelMA-based composite biomaterials for bone tissue engineering, covering the literature from the last five years.
AUTHOR Mira, Mira and Wibowo, Arie and Tajalla, Gusti Umindya Nur and Cooper, Glen and Bartolo, Paulo Jorge Da Silva and Barlian, Anggraini
Title Osteogenic potential of a 3D printed silver nanoparticle-based electroactive scaffold for bone tissue engineering using human Wharton{'}s jelly mesenchymal stem cells [Abstract]
Year 2023
Journal/Proceedings Mater. Adv.
Reftype
DOI/URL DOI
Abstract
This study aims to perform biological assessments of an electroactive and anti-infection scaffold based on polycaprolactone/0.5 wt% silver nanoparticles (PCL/AgNPs) that was fabricated using a green synthesis approach followed by a 3D printing method without utilization of any toxic solvents{,} which has not been explored previously. For this purpose{,} human Wharton{'}s jelly mesenchymal stem cells (hWJ-MSCs) were used as a cell source to explore the biocompatibility and the ability to induce the osteogenesis process on the fabricated PCL and PCL/AgNPs scaffolds. Scanning electron microscopy (SEM){,} confocal microscopy and an alamar blue assay up to day 14 revealed that the PCL/AgNPs scaffolds have better cell attachment{,} penetration and proliferation than the PCL scaffolds. A gene expression study up to day 21 using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) showed that the PCL/AgNPs scaffolds have better osteogenic differentiation at the gene level than the PCL scaffolds. This is indicated by the 2–3 fold greater expression of runt-related transcription factor 2 (RUNX2){,} collagen type I alpha 1 chain (COL1A1){,} and osteopontin (OPN) than the PCL scaffold. A protein expression study up to day 21 using immunocytochemistry and detection of alkaline phosphatase (ALP) revealed that the PCL/AgNPs scaffolds have better osteogenic differentiation at the protein level than the PCL scaffolds. This is shown by the observed collagen type I and osteopontin protein{,} and ALP activity at day 21 of PCL/AgNPs scaffolds (768 U L−1) which is 1.3 times higher than that of the PCL scaffolds (578 U L−1). These biological assessments showed that the combination of a green synthesis approach to prepare AgNPs and solvent-free 3D printing methods to fabricate the PCL/AgNPs scaffolds led to better biocompatibility and ability to induce the osteogenesis process{,} which is attractive for bone tissue engineering and regenerative medicine applications.
AUTHOR Pan, Yiwen and Chen, Shaoqing and Meng, Yanyan and He, Mu and Liu, Chun and Wang, Cheli and Ni, Xinye
Title Study on 3D-Printed Emodin/Nano-Hydroxyapatite Scaffolds Promoting Bone Regeneration by Supporting Osteoblast Proliferation and Macrophage M2 Polarization [Abstract]
Year 2023
Journal/Proceedings ACS Appl. Polym. Mater.
Reftype
DOI/URL DOI
Abstract
The treatment of bone defects caused by diseases, trauma, or tumor has always been a great clinical challenge. Implantation of bone biomaterials into bone defect areas is an effective method for bone injury repair. In this study, we used three-dimensional (3D) printing technology to prepare nano-hydroxyapatite (nHA)/sodium alginate (SA)/gelatin (Gel) hydrogel scaffolds loaded with different ratios (0, 0.13, 0.26, 0.39, 0.53, and 0.79‰) of emodin (EM) (EM/nHA/SA/Gel). Scanning electron microscopy showed that the scaffolds had a smooth surface without fracture and nHA was evenly distributed on the surface. The cell proliferation and migration results showed that the 0.39‰ EM group, in particular, could significantly promote the proliferation and migration of mouse embryonic osteoblast precursor (MC3T3-E1) cells and significantly increase the mRNA expression of osteogenic differentiation-related genes (bone morphogenetic protein/BMP-2, BMP-9, osteocalcin). In addition, the 0.39‰ EM group exhibited the best effect on osteogenic differentiation-related proteins (alkaline phosphatase, Runx 2, OSX). The expression of M2 polarization-related genes (arginase-1, CD206) also significantly increased after the treatment with the 0.39‰ EM group. Micro-CT showed that in the rat skull defect model, the EM/nHA/SA/Gel scaffold group significantly promoted bone regeneration after being implanted into the skull for 30 days. Our results indicate that the EM/nHA/SA/Gel hydrogel scaffolds can not only directly promote the proliferation and differentiation of osteoblasts but also indirectly promote osteogenic differentiation by supporting M2 polarization of macrophages. EM/nHA/SA/Gel hydrogel scaffolds are potential bone tissue engineering materials for bone regeneration.
AUTHOR Majrashi, Majed and Kotowska, Anna and Scurr, David and Hicks, Jacqueline M. and Ghaemmaghami, Amir and Yang, Jing
Title Sustained Release of Dexamethasone from 3D-Printed Scaffolds Modulates Macrophage Activation and Enhances Osteogenic Differentiation [Abstract]
Year 2023
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
Abstract
Enhancing osteogenesis via modulating immune cells is emerging as a new approach to address the current challenges in repairing bone defects and fractures. However, much remains unknown about the crosstalk between immune cells and osteolineage cells during bone formation. Moreover, biomaterial scaffold-based approaches to effectively modulate this crosstalk to favor bone healing are also lacking. This study is the first to investigate the interactions between macrophages and mesenchymal stem cells (MSCs) in co-cultures with the sustained release of an anti-inflammatory and pro-osteogenesis drug (dexamethasone) from three-dimensional (3D)-printed scaffolds. We successfully achieved the sustained release of dexamethasone from polycaprolactone (PCL) by adding the excipient-sucrose acetate isobutyrate (SAIB). Dexamethasone was released over 35 days in the 17-163 nM range. The osteogenic differentiation of MSCs was enhanced by M1 macrophages at early time points. The late-stage mineralization was dominated by dexamethasone, with little contribution from the macrophages. Besides confirming BMP-2 whose secretion was promoted by both dexamethasone and M1 macrophages as a soluble mediator for enhanced osteogenesis, IL-6 was found to be a possible new soluble factor that mediated osteogenesis in macrophage-MSC co-cultures. The phenotype switching from M1 to M2 was drastically enhanced by the scaffold-released dexamethasone but only marginally by the co-cultured MSCs. Our results offer new insight into macrophage-MSC crosstalk and demonstrate the potential of using drug-release scaffolds to both modulate inflammation and enhance bone regeneration.
AUTHOR Hatt, Luan P. and van der Heide, Daphne and Armiento, Angela R. and Stoddart, Martin J.
Title β-TCP from 3D-printed composite scaffolds acts as an effective phosphate source during osteogenic differentiation of human mesenchymal stromal cells [Abstract]
Year 2023
Journal/Proceedings Frontiers in Cell and Developmental Biology
Reftype
DOI/URL DOI
Abstract
Introduction: Human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) are often combined with calcium phosphate (CaP)—based 3D-printed scaffolds with the goal of creating a bone substitute that can repair segmental bone defects. In vitro, the induction of osteogenic differentiation traditionally requires, among other supplements, the addition of β-glycerophosphate (BGP), which acts as a phosphate source. The aim of this study is to investigate whether phosphate contained within the 3D-printed scaffolds can effectively be used as a phosphate source during hBM-MSC in vitro osteogenesis.Methods: hBM-MSCs are cultured on 3D-printed discs composed of poly (lactic-co-glycolic acid) (PLGA) and β-tricalcium phosphate (β-TCP) for 28 days under osteogenic conditions, with and without the supplementation of BGP. The effects of BGP removal on various cellular parameters, including cell metabolic activity, alkaline phosphatase (ALP) presence and activity, proliferation, osteogenic gene expression, levels of free phosphate in the media and mineralisation, are assessed.Results: The removal of exogenous BGP increases cell metabolic activity, ALP activity, proliferation, and gene expression of matrix-related (COL1A1, IBSP, SPP1), transcriptional (SP7, RUNX2/SOX9, PPARγ) and phosphate-related (ALPL, ENPP1, ANKH, PHOSPHO1) markers in a donor dependent manner. BGP removal leads to decreased free phosphate concentration in the media and maintained of mineral deposition staining.Discussion: Our findings demonstrate the detrimental impact of exogenous BGP on hBM-MSCs cultured on a phosphate-based material and propose β-TCP embedded within 3D-printed scaffold as a sufficient phosphate source for hBM-MSCs during osteogenesis. The presented study provides novel insights into the interaction of hBM-MSCs with 3D-printed CaP based materials, an essential aspect for the advancement of bone tissue engineering strategies aimed at repairing segmental defects.
AUTHOR Pitacco, Pierluca and Sadowska, Joanna M. and O'Brien, Fergal J. and Kelly, Daniel J.
Title 3D bioprinting of cartilaginous templates for large bone defect healing [Abstract]
Year 2022
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
Damaged or diseased bone can be treated using autografts or a range of different bone grafting biomaterials, however limitations with such approaches has motivated increased interest in developmentally inspired bone tissue engineering (BTE) strategies that seek to recapitulate the process of endochondral ossification (EO) as a means of regenerating critically sized defects. The clinical translation of such strategies will require the engineering of scaled-up, geometrically defined hypertrophic cartilage grafts that can be rapidly vascularised and remodelled into bone in mechanically challenging defect environments. The goal of this study was to 3D bioprint mechanically reinforced cartilaginous templates and to assess their capacity to regenerate critically sized femoral bone defects. Human mesenchymal stem/stromal cells (hMSCs) were incorporated into fibrin based bioinks and bioprinted into polycaprolactone (PCL) frameworks to produce mechanically reinforced constructs. Chondrogenic priming of such hMSC laden constructs was required to support robust vascularisation and graft mineralisation in vivo following their subcutaneous implantation into nude mice. With a view towards maximising their potential to support endochondral bone regeneration, we next explored different in vitro culture regimes to produce chondrogenic and early hypertrophic engineered grafts. Following their implantation into femoral bone defects within transiently immunosuppressed rats, such bioprinted constructs were rapidly remodelled into bone in vivo, with early hypertrophic constructs supporting higher levels of vascularisation and bone formation compared to the chondrogenic constructs. Such early hypertrophic bioprinted constructs also supported higher levels of vascularisation and spatially distinct patterns of new formation compared to BMP-2 loaded collagen scaffolds (here used as a positive control). In conclusion, this study demonstrates that fibrin based bioinks support chondrogenesis of hMSCs in vitro, which enables the bioprinting of mechanically reinforced hypertrophic cartilaginous templates capable of supporting large bone defect regeneration. These results support the use of 3D bioprinting as a strategy to scale-up the engineering of developmentally inspired templates for BTE. Statement of significance Despite the promise of developmentally inspired tissue engineering strategies for bone regeneration, there are still challenges that need to be addressed to enable clinical translation. This work reports the development and assessment (in vitro and in vivo) of a 3D bioprinting strategy to engineer mechanically-reinforced cartilaginous templates for large bone defect regeneration using human MSCs. Using distinct in vitro priming protocols, it was possible to generate cartilage grafts with altered phenotypes. More hypertrophic grafts, engineered in vitro using TGF-β3 and BMP-2, supported higher levels of blood vessel infiltration and accelerated bone regeneration in vivo. This study also identifies some of the advantages and disadvantages of such endochondral bone TE strategies over the direct delivery of BMP-2 from collagen-based scaffolds.
AUTHOR Leu Alexa, Rebeca and Cucuruz, Andreia and Ghițulică, Cristina-Daniela and Voicu, Georgeta and Stamat (Balahura), Liliana-Roxana and Dinescu, Sorina and Vlasceanu, George Mihail and Stavarache, Cristina and Ianchis, Raluca and Iovu, Horia and Costache, Marieta
Title 3D Printable Composite Biomaterials Based on GelMA and Hydroxyapatite Powders Doped with Cerium Ions for Bone Tissue Regeneration [Abstract]
Year 2022
Journal/Proceedings International Journal of Molecular Sciences
Reftype
DOI/URL URL DOI
Abstract
The main objective was to produce 3D printable hydrogels based on GelMA and hydroxyapatite doped with cerium ions with potential application in bone regeneration. The first part of the study regards the substitution of Ca2+ ions from hydroxyapatite structure with cerium ions (Ca10-xCex(PO4)6(OH)2, xCe = 0.1, 0.3, 0.5). The second part followed the selection of the optimal concentration of HAp doped, which will ensure GelMA-based scaffolds with good biocompatibility, viability and cell proliferation. The third part aimed to select the optimal concentrations of GelMA for the 3D printing process (20%, 30% and 35%). In vitro biological assessment presented the highest level of cell viability and proliferation potency of GelMA-HC5 composites, along with a low cytotoxic potential, highlighting the beneficial effects of cerium on cell growth, also supported by Live/Dead results. According to the 3D printing experiments, the 30% GelMA enriched with HC5 was able to generate 3D scaffolds with high structural integrity and homogeneity, showing the highest suitability for the 3D printing process. The osteogenic differentiation experiments confirmed the ability of 30% GelMA-3% HC5 scaffold to support and efficiently maintain the osteogenesis process. Based on the results, 30% GelMA-3% HC5 3D printed scaffolds could be considered as biomaterials with suitable characteristics for application in bone tissue engineering.
AUTHOR Qin, Wen and Li, Chenkai and Liu, Chun and Wu, Siyu and Liu, Jun and Ma, Jiayi and Chen, Wenyang and Zhao, Hongbin and Zhao, Xiubo
Title 3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration [Abstract]
Year 2022
Journal/Proceedings Journal of Biomaterials Applications
Reftype
DOI/URL DOI
Abstract
Tissue-engineered bone material is one of the effective methods to repair bone defects, but the application is restricted in clinical because of the lack of excellent scaffolds that can induce bone regeneration as well as the difficulty in making scaffolds with personalized structures. 3D printing is an emerging technology that can fabricate bespoke 3D scaffolds with precise structure. However, it is challenging to develop the scaffold materials with excellent printability, osteogenesis ability, and mechanical strength. In this study, graphene oxide (GO), attapulgite (ATP), type I collagen (Col I) and polyvinyl alcohol were used as raw materials to prepare composite scaffolds via 3D bioprinting. The composite materials showed excellent printability. The microcosmic architecture and properties was characterized by scanning electron microscopy, Fourier transform infrared and thermal gravimetric analyzer, respectively. To verify the biocompatibility of the scaffolds, the viability, proliferation and osteogenic differentiation of Bone Marrow Stromal Cells (BMSCs) on the scaffolds were assessed by CCK-8, Live/Dead staining and Real-time PCR in vitro. The composited scaffolds were then implanted into the skull defects on rat for bone regeneration. Hematoxylin-eosin staining, Masson staining and immunohistochemistry staining were carried out in vivo to evaluate the regeneration of bone tissue.The results showed that GO/ATP/COL scaffolds have been demonstrated to possess controlled porosity, water absorption, biodegradability and good apatite-mineralization ability. The scaffold consisting of 0.5% GO/ATP/COL have excellent biocompatibility and was able to promote the growth, proliferation and osteogenic differentiation of mouse BMSCs in vitro. Furthermore, the 0.5% GO/ATP/COL scaffolds were also able to promote bone regeneration of in rat skull defects. Our results illustrated that the 3D printed GO/ATP/COL composite scaffolds have good mechanical properties, excellent cytocompatibility for enhanced mouse BMSCs adhesion, proliferation, and osteogenic differentiation. All these advantages made it potential as a promising biomaterial for osteogenic reconstruction.
AUTHOR Leu Alexa, Rebeca and Cucuruz, Andreia and Ghițulică, Cristina-Daniela and Voicu, Georgeta and Stamat (Balahura), Liliana-Roxana and Dinescu, Sorina and Vlasceanu, George Mihail and Iovu, Horia and Serafim, Andrada and Ianchis, Raluca and Ciocan, Lucian-Toma and Costache, Marieta
Title 3D Printed Composite Scaffolds of GelMA and Hydroxyapatite Nanopowders Doped with Mg/Zn Ions to Evaluate the Expression of Genes and Proteins of Osteogenic Markers [Abstract]
Year 2022
Journal/Proceedings Nanomaterials
Reftype
DOI/URL URL DOI
Abstract
As bone diseases and defects are constantly increasing, the improvement of bone regeneration techniques is constantly evolving. The main purpose of this scientific study was to obtain and investigate biomaterials that can be used in tissue engineering. In this respect, nanocomposite inks of GelMA modified with hydroxyapatite (HA) substituted with Mg and Zn were developed. Using a 3D bioprinting technique, scaffolds with varying shapes and dimensions were obtained. The following analyses were used in order to study the nanocomposite materials and scaffolds obtained by the 3D printing technique: Fourier transform infrared spectrometry and X-ray diffraction (XRD), scanning electron microscopy (SEM), and micro-computed tomography (Micro-CT). The swelling and dissolvability of each scaffold were also studied. Biological studies, osteopontin (OPN), and osterix (OSX) gene expression evaluations were confirmed at the protein levels, using immunofluorescence coupled with confocal microscopy. These findings suggest the positive effect of magnesium and zinc on the osteogenic differentiation process. OSX fluorescent staining also confirmed the capacity of GelMA-HM5 and GelMA-HZ5 to support osteogenesis, especially of the magnesium enriched scaffold.
AUTHOR Hashimi, Noura Sayed Al and Soman, Soja Saghar and Govindharaj, Mano and Vijayavenkataraman, Sanjairaj
Title 3D printing of complex architected metamaterial structures by simple material extrusion for bone tissue engineering [Abstract]
Year 2022
Journal/Proceedings Materials Today Communications
Reftype
DOI/URL URL DOI
Abstract
Triply periodic minimal surfaces (TPMS) are gaining popularity as scaffolds for bioapplications due to their unique structure, offering strong mechanical properties and biomorphic surfaces which enhance cell attachment and proliferation. In this work, polymer TPMS sheet lattices were printed using a well-known yet unprecedented technique of manufacturing such structures; which is material extrusion (specifically, pneumatic melt extrusion). This method offers a one step, straightforward yet reliable way to print complex porous structures while retaining design accuracy and significantly simplifying the process. Multiple primitive, gyroid and cubic structures were designed using MSLattice and Solidworks with 70% porosity and 2×2×3 unit cells. The scaffolds were printed by melt extrusion of polycaprolactone (PCL) at different parameters to establish the optimal settings. Morphological features (pore size and strut thickness) were determined using scanning electron microscopy (SEM) and the accuracy of print was determined by comparing to the design, showing high print accuracy and minimal percentage errors of less than 15% in all prints. Uniaxial compression testing was used to demonstrate the different deformation processes of the scaffolds and evaluate their mechanical properties, with primitive having the highest modulus and gyroid the highest yield strength. Finally, cell viability was quantified by alamar blue cell viability assay and visualized by SEM, displaying significant increase in cell proliferation and attachment, specifically in the primitive structure. Herein we will explain the challenges faced with design and print optimization and how we overcame them, making this work the first of its kind in material extrusion (pneumatic melt extrusion) printing of TPMS scaffolds.
AUTHOR Dairaghi, Jacob and Rogozea, Dan and Cadle, Rachel and Bustamante, Joseph and Moldovan, Leni and Petrache, Horia I. and Moldovan, Nicanor I.
Title 3D Printing of Human Ossicle Models for the Biofabrication of Personalized Middle Ear Prostheses [Abstract]
Year 2022
Journal/Proceedings Applied Sciences
Reftype
DOI/URL URL DOI
Abstract
The middle ear bones (‘ossicles’) may become severely damaged due to accidents or to diseases. In these situations, the most common current treatments include replacing them with cadaver-derived ossicles, using a metal (usually titanium) prosthesis, or introducing bridges made of biocompatible ceramics. Neither of these solutions is ideal, due to the difficulty in finding or producing shape-matching replacements. However, the advent of additive manufacturing applications to biomedical problems has created the possibility of 3D-printing anatomically correct, shape- and size-personalized ossicle prostheses. To demonstrate this concept, we generated and printed several models of ossicles, as solid, porous, or soft material structures. These models were first printed with a plottable calcium phosphate/hydroxyapatite paste by extrusion on a solid support or embedded in a Carbopol hydrogel bath, followed by temperature-induced hardening. We then also printed an ossicle model with this ceramic in a porous format, followed by loading and crosslinking an alginate hydrogel within the pores, which was validated by microCT imaging. Finally, ossicle models were printed using alginate as well as a cell-containing nanocellulose-based bioink, within the supporting hydrogel bath. In selected cases, the devised workflow and the printouts were tested for repeatability. In conclusion, we demonstrate that moving beyond simplistic geometric bridges to anatomically realistic constructs is possible by 3D printing with various biocompatible materials and hydrogels, thus opening the way towards the in vitro generation of personalized middle ear prostheses for implantation.
AUTHOR Dairaghi, Jacob and Rogozea, Dan and Cadle, Rachel and Bustamante, Joseph and Moldovan, Leni and Petrache, Horia I. and Moldovan, Nicanor I.
Title 3D Printing of Human Ossicle Models for the Biofabrication of Personalized Middle Ear Prostheses [Abstract]
Year 2022
Journal/Proceedings Applied Sciences
Reftype
DOI/URL URL DOI
Abstract
The middle ear bones (‘ossicles’) may become severely damaged due to accidents or to diseases. In these situations, the most common current treatments include replacing them with cadaver-derived ossicles, using a metal (usually titanium) prosthesis, or introducing bridges made of biocompatible ceramics. Neither of these solutions is ideal, due to the difficulty in finding or producing shape-matching replacements. However, the advent of additive manufacturing applications to biomedical problems has created the possibility of 3D-printing anatomically correct, shape- and size-personalized ossicle prostheses. To demonstrate this concept, we generated and printed several models of ossicles, as solid, porous, or soft material structures. These models were first printed with a plottable calcium phosphate/hydroxyapatite paste by extrusion on a solid support or embedded in a Carbopol hydrogel bath, followed by temperature-induced hardening. We then also printed an ossicle model with this ceramic in a porous format, followed by loading and crosslinking an alginate hydrogel within the pores, which was validated by microCT imaging. Finally, ossicle models were printed using alginate as well as a cell-containing nanocellulose-based bioink, within the supporting hydrogel bath. In selected cases, the devised workflow and the printouts were tested for repeatability. In conclusion, we demonstrate that moving beyond simplistic geometric bridges to anatomically realistic constructs is possible by 3D printing with various biocompatible materials and hydrogels, thus opening the way towards the in vitro generation of personalized middle ear prostheses for implantation.
AUTHOR Dairaghi, Jacob and Rogozea, Dan and Cadle, Rachel and Bustamante, Joseph and Moldovan, Leni and Petrache, Horia I. and Moldovan, Nicanor I.
Title 3D Printing of Human Ossicle Models for the Biofabrication of Personalized Middle Ear Prostheses [Abstract]
Year 2022
Journal/Proceedings Applied Sciences
Reftype
DOI/URL URL DOI
Abstract
The middle ear bones (‘ossicles’) may become severely damaged due to accidents or to diseases. In these situations, the most common current treatments include replacing them with cadaver-derived ossicles, using a metal (usually titanium) prosthesis, or introducing bridges made of biocompatible ceramics. Neither of these solutions is ideal, due to the difficulty in finding or producing shape-matching replacements. However, the advent of additive manufacturing applications to biomedical problems has created the possibility of 3D-printing anatomically correct, shape- and size-personalized ossicle prostheses. To demonstrate this concept, we generated and printed several models of ossicles, as solid, porous, or soft material structures. These models were first printed with a plottable calcium phosphate/hydroxyapatite paste by extrusion on a solid support or embedded in a Carbopol hydrogel bath, followed by temperature-induced hardening. We then also printed an ossicle model with this ceramic in a porous format, followed by loading and crosslinking an alginate hydrogel within the pores, which was validated by microCT imaging. Finally, ossicle models were printed using alginate as well as a cell-containing nanocellulose-based bioink, within the supporting hydrogel bath. In selected cases, the devised workflow and the printouts were tested for repeatability. In conclusion, we demonstrate that moving beyond simplistic geometric bridges to anatomically realistic constructs is possible by 3D printing with various biocompatible materials and hydrogels, thus opening the way towards the in vitro generation of personalized middle ear prostheses for implantation.
AUTHOR Mao, Qiuyi and Zhu, Bowen and Zhuang, Hai and Bu, Shoushan
Title 3D-Printing Assisted SF-SA Based MgP Hybrid Hydrogel Scaffold for Bone Tissue Engineering [Abstract]
Year 2022
Journal/Proceedings Frontiers in Materials
Reftype
DOI/URL DOI
Abstract
A new prototype of hybrid silk fibroin and sodium alginate (SF-SA) based osteogenic hydrogel scaffold with a concentration of 2.5% magnesium phosphate (MgP) based gel was prepared with the assistance of an extrusion-based three-dimensional (3D) printing machine in this study. To determine the optimum ratio of MgP-based gel in the hydrogel, a series of physical and biochemical experiments were performed to determine the proper concentration of MgP in two-dimensional hydrogel films, as well as the cell compatibility with these materials in sequence. The SF-SA hydrogel with 2.5wt% magnesium phosphate (SF-SA/MgP) stood out and then was used to fabricate 3D hydrogel scaffolds according to the consequences of the experiments, with SF-SA hydrogel as a control. Then the morphology and osteogenic activity of the scaffolds were further characterized by field emission scanning electron microscope (SEM), calcium mineralization staining, and reverse transcription-polymerase chain reaction (rt-PCR). The SF-SA/MgP hydrogel scaffold promoted the adhesion of rat mesenchymal stem cells with higher degrees of efficiency under dynamic culture conditions. After co-culturing in an osteogenic differentiation medium, cells seeded on SF-SA/MgP hydrogel scaffold were shown to have better performance on osteogenesis in the early stage than the control group. This work illustrates that the 3D structures of hybrid SF-SA/MgP hydrogel are promising headstones for osteogenic tissue engineering.
AUTHOR Anand, Resmi and Amoli, Mehdi Salar and Huysecom, An-Sofie and Amorim, Paulo Alexandre and Agten, Hannah and Geris, Liesbet and Bloemen, Veerle
Title A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing [Abstract]
Year 2022
Journal/Proceedings Biomedical Materials
Reftype
DOI/URL DOI
Abstract
Methacryloyl gelatin (GelMA) is a versatile material for bioprinting because of its tunable physical properties and inherent bioactivity. Bioprinting of GelMA is often met with challenges such as lower viscosity of GelMA inks due to higher methacryloyl substitution and longer physical gelation time at room temperature. In this study, a tunable interpenetrating polymer network (IPN) hydrogel was prepared from gelatin-hyaluronan dialdehyde (Gel-HDA) Schiff’s polymer, and 100% methacrylamide substituted GelMA for biofabrication through extrusion based bioprinting. Temperature sweep rheology measurements show a higher sol-gel transition temperature for IPN (30 °C) compared to gold standard GelMA (27 °C). Furthermore, to determine the tunability of the IPN hydrogel, several IPN samples were prepared by combining different ratios of Gel-HDA and GelMA achieving a compressive modulus ranging from 20.6 ± 2.48 KPa to 116.7 ± 14.80 KPa. Our results showed that the mechanical properties and printability at room temperature could be tuned by adjusting the ratios of GelMA and Gel-HDA. To evaluate cell response to the material, MC3T3-E1 mouse pre-osteoblast cells were embedded in hydrogels and 3D-printed, demonstrating excellent cell viability and proliferation after 10 d of 3D in vitro culture, making the IPN an interesting bioink for the fabrication of 3D constructs for tissue engineering applications.
AUTHOR Özcan, Mutlu and Magini, Eduarda Blasi and Volpato, Guilherme Maziero and Cruz, Ariadne and Volpato, Claudia Angela Maziero
Title Additive Manufacturing Technologies for Fabrication of Biomaterials for Surgical Procedures in Dentistry: A Narrative Review [Abstract]
Year 2022
Journal/Proceedings Journal of Prosthodontics
Reftype
DOI/URL DOI
Abstract
Abstract Purpose To screen and critically appraise available literature regarding additive manufacturing technologies for bone graft material fabrication in dentistry. Material and Methods PubMed and Scopus were searched up to May 2021. Studies reporting the additive manufacturing techniques to manufacture scaffolds for intraoral bone defect reconstruction were considered eligible. A narrative review was synthesized to discuss the techniques for bone graft material fabrication in dentistry and the biomaterials used. Results The databases search resulted in 933 articles. After removing duplicate articles (128 articles), the titles and abstracts of the remaining articles (805 articles) were evaluated. A total of 89 articles were included in this review. Reading these articles, 5 categories of additive manufacturing techniques were identified: material jetting, powder bed fusion, vat photopolymerization, binder jetting, and material extrusion. Conclusions Additive manufacturing technologies for bone graft material fabrication in dentistry, especially 3D bioprinting approaches, have been successfully used to fabricate bone graft material with distinct compositions.
AUTHOR Murab, Sumit and Gupta, Aastha and Włodarczyk-Biegun, Małgorzata Katarzyna and Kumar, Anuj and van Rijn, Patrick and Whitlock, Patrick and Han, Sung Soo and Agrawal, Garima
Title Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues [Abstract]
Year 2022
Journal/Proceedings Carbohydrate Polymers
Reftype
DOI/URL URL DOI
Abstract
3D printed hydrogels have emerged as a novel tissue engineering and regeneration platform due to their ability to provide a suitable environment for cell growth. To obtain a well-defined scaffold with good post-printing shape fidelity, a proper hydrogel ink formulation plays a crucial role. In this regard, alginate has received booming interest owing to its biocompatibility, biodegradability, easy functionalization, and fast gelling behavior. Hence, this review highlights the significance of alginate-based hydrogel inks for fabricating 3D printed scaffolds for bone and cartilage regeneration. Herein, we discuss the fundamentals of direct extrusion 3D bioprinting method and provide a comprehensive overview of various alginate-based hydrogel ink formulations that have been used so far. We also summarize the requirements of hydrogel inks and 3D printed scaffolds to achieve similarity to the native tissue environment. Finally, we discuss the challenges, and research directions relevant for future clinical translation.
AUTHOR Daskalakis, Evangelos and Huang, Boyang and Vyas, Cian and Acar, Anil A. and Liu, Fengyuan and Fallah, Ali and Cooper, Glen and Weightman, Andrew and Blunn, Gordon and Koç, Bahattin and Bartolo, Paulo
Title Bone Bricks: The Effect of Architecture and Material Composition on the Mechanical and Biological Performance of Bone Scaffolds [Abstract]
Year 2022
Journal/Proceedings ACS Omega
Reftype
DOI/URL DOI
Abstract
Large bone loss injuries require high-performance scaffolds with an architecture and material composition resembling native bone. However, most bone scaffold studies focus on three-dimensional (3D) structures with simple rectangular or circular geometries and uniform pores, not able to recapitulate the geometric characteristics of the native tissue. This paper addresses this limitation by proposing novel anatomically designed scaffolds (bone bricks) with nonuniform pore dimensions (pore size gradients) designed based on new lay-dawn pattern strategies. The gradient design allows one to tailor the properties of the bricks and together with the incorporation of ceramic materials allows one to obtain structures with high mechanical properties (higher than reported in the literature for the same material composition) and improved biological characteristics.
AUTHOR Cao, Chuanliang and Huang, Pengren and Prasopthum, Aruna and Parsons, Andrew J. and Ai, Fanrong and Yang, Jing
Title Characterisation of bone regeneration in 3D printed ductile PCL/PEG/hydroxyapatite scaffolds with high ceramic microparticle concentrations [Abstract]
Year 2022
Journal/Proceedings Biomater. Sci.
Reftype
DOI/URL DOI
Abstract
3D printed bioactive glass or bioceramic particle reinforced composite scaffolds for bone tissue engineering currently suffer from low particle concentration (100% breaking strain) by adding poly(ethylene glycol) which is biocompatible and FDA approved. The scaffolds require no post-printing washing to remove hazardous components. More exposure of HA microparticles on strut surfaces is enabled by incorporating higher HA concentrations. Compared to scaffolds with 72 wt% HA{,} scaffolds with higher HA content (90 wt%) enhance matrix formation but not new bone volume after 12 weeks implantation in rat calvarial defects. Histological analyses demonstrate that bone regeneration within the 3D printed scaffolds is via intramembranous ossification and starts in the central region of pores. Fibrous tissue that resembles non-union tissue within bone fractures is formed within pores that do not have new bone. The amount of blood vessels is similar between scaffolds with mainly fibrous tissue and those with more bone tissue{,} suggesting vascularization is not a deciding factor for determining the type of tissues regenerated within the pores of 3D printed scaffolds. Multinucleated immune cells are commonly present in all scaffolds surrounding the struts{,} suggesting a role of managing inflammation in bone regeneration within 3D printed scaffolds.
AUTHOR Monaco, Graziana and Qawasmi, Feras and El Haj, Alicia J. and Forsyth, Nicolas R. and Stoddart, Martin J.
Title Chondrogenic differentiation of human bone marrow MSCs in osteochondral implants under kinematic mechanical load is dependent on the underlying osteo component [Abstract]
Year 2022
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
Chondrogenic models utilizing human mesenchymal stromal cells (hMSCs) are often simplistic, with a single cell type and the absence of mechanical stimulation. Considering the articulating joint as an organ it would be beneficial to include more complex stimulation. Within this study we applied clinically relevant kinematic load to biphasic constructs. In each case, the upper layer consisted of fibrin embedded hMSCs retained within an elastomeric polyurethane (PU) scaffold. These were randomly assigned to five base scaffolds, a cell-free fibrin PU base, viable bone, decellularized bone, 3D printed calcium phosphate or clinically used cement. This allowed the study of cross talk between viable bone and chondrogenically differentiating MSCs, while controlling for the change in stiffness of the base material. Data obtained showed that the bulk stiffness of the construct was not the defining factor in the response obtained, with viable and decellularized bone producing similar results to the softer PU base. However, the stiff synthetic materials led to reduced chondrogenesis and increased calcification in the upper MSC seeded layer. This demonstrates that the underlying base material must be considered when driving chondrogenesis of human cells using a clinically relevant loading protocol. It also indicates that the material used for bony reconstruction of osteochondral defects may influence subsequent chondrogenic potential.
AUTHOR Man, Kenny and Barroso, Inês A. and Brunet, Mathieu Y. and Peacock, Ben and Federici, Angelica S. and Hoey, David A. and Cox, Sophie C.
Title Controlled Release of Epigenetically-Enhanced Extracellular Vesicles from a GelMA/Nanoclay Composite Hydrogel to Promote Bone Repair [Abstract]
Year 2022
Journal/Proceedings International Journal of Molecular Sciences
Reftype
DOI/URL URL DOI
Abstract
Extracellular vesicles (EVs) have garnered growing attention as promising acellular tools for bone repair. Although EVs’ potential for bone regeneration has been shown, issues associated with their therapeutic potency and short half-life in vivo hinders their clinical utility. Epigenetic reprogramming with the histone deacetylase inhibitor Trichostatin A (TSA) has been reported to promote the osteoinductive potency of osteoblast-derived EVs. Gelatin methacryloyl (GelMA) hydrogels functionalised with the synthetic nanoclay laponite (LAP) have been shown to effectively bind, stabilise, and improve the retention of bioactive factors. This study investigated the potential of utilising a GelMA-LAP hydrogel to improve local retention and control delivery of epigenetically enhanced osteoblast-derived EVs as a novel bone repair strategy. LAP was found to elicit a dose-dependent increase in GelMA compressive modulus and shear-thinning properties. Incorporation of the nanoclay was also found to enhance shape fidelity when 3D printed compared to LAP-free gels. Interestingly, GelMA hydrogels containing LAP displayed increased mineralisation capacity (1.41-fold) (p ≤ 0.01) over 14 days. EV release kinetics from these nanocomposite systems were also strongly influenced by LAP concentration with significantly more vesicles being released from GelMA constructs as detected by a CD63 ELISA (p ≤ 0.001). EVs derived from TSA-treated osteoblasts (TSA-EVs) enhanced proliferation (1.09-fold), migration (1.83-fold), histone acetylation (1.32-fold) and mineralisation (1.87-fold) of human bone marrow stromal cells (hBMSCs) when released from the GelMA-LAP hydrogel compared to the untreated EV gels (p ≤ 0.01). Importantly, the TSA-EV functionalised GelMA-LAP hydrogel significantly promoted encapsulated hBMSCs extracellular matrix collagen production (≥1.3-fold) and mineralisation (≥1.78-fold) in a dose-dependent manner compared to untreated EV constructs (p ≤ 0.001). Taken together, these findings demonstrate the potential of combining epigenetically enhanced osteoblast-derived EVs with a nanocomposite photocurable hydrogel to promote the therapeutic efficacy of acellular vesicle approaches for bone regeneration.
AUTHOR Wei, Shan and Zhang, Ren-Gang and Wang, Zheng-Yu
Title Deferoxamine/magnesium modified β-tricalcium phosphate promotes the bone regeneration in osteoporotic rats [Abstract]
Year 2022
Journal/Proceedings Journal of Biomaterials Applications
Reftype
DOI/URL DOI
Abstract
Recently, Deferoxamine (DFO) and magnesium (Mg) have been identified as critical factors for angiogenesis and bone formation. However, in current research studies, there is a lack of focus on whether DFO plus Mg can affect the regeneration of β-tricalcium phosphate (β-TCP) in osteoporosis and through what biological mechanisms. Therefore, the present work was aimed to preparation and evaluate the effect of Deferoxamine/magnesium modified β-tricalcium phosphate promotes (DFO/Mg-TCP) in ovariectomized rats model and preliminary exploration of possible mechanisms. The MC3T3-E1 cells were co-cultured with the exudate of DFO/Mg-TCP and induced to osteogenesis, and the cell viability, osteogenic activity were observed by Cell Counting Kit-8(CCK-8), Alkaline Phosphatase (ALP) staining, Alizarin Red Staining (RES) and Western Blot. In vitro experiments, CCK-8, ALP and ARS staining results show that the mineralization and osteogenic activity of MC3T3-E1increased significantly after intervention by DFO/Mg-TCP, as well as a higher levels of protein expressions including VEGF, OC, Runx-2 and HIF-1α. In vivo experiment, Micro-CT and Histological analysis evaluation show that DFO/Mg-TCP treatment presented the stronger effect on bone regeneration, bone mineralization and biomaterial degradation, when compared with OVX+Mg-TCP group and OVX+TCP group, as well as a higher VEGF, OC, Runx-2 and HIF-1α gene expression. The present study indicates that treatment with DFO/Mg-TCP was associated with increased regeneration by enhancing the function of osteoblasts in an OVX rat.
AUTHOR Curti, Filis and Serafim, Andrada and Olaret, Elena and Dinescu, Sorina and Samoila, Iuliana and Vasile, Bogdan Stefan and Iovu, Horia and Lungu, Adriana and Stancu, Izabela Cristina and Marinescu, Rodica
Title Development of Biocomposite Alginate-Cuttlebone-Gelatin 3D Printing Inks Designed for Scaffolds with Bone Regeneration Potential [Abstract]
Year 2022
Journal/Proceedings Marine Drugs
Reftype
DOI/URL URL DOI
Abstract
Fabrication of three-dimensional (3D) scaffolds using natural biomaterials introduces valuable opportunities in bone tissue reconstruction and regeneration. The current study aimed at the development of paste-like 3D printing inks with an extracellular matrix-inspired formulation based on marine materials: sodium alginate (SA), cuttlebone (CB), and fish gelatin (FG). Macroporous scaffolds with microporous biocomposite filaments were obtained by 3D printing combined with post-printing crosslinking. CB fragments were used for their potential to stimulate biomineralization. Alginate enhanced CB embedding within the polymer matrix as confirmed by scanning electron microscopy (ESEM) and micro-computer tomography (micro-CT) and improved the deformation under controlled compression as revealed by micro-CT. SA addition resulted in a modulation of the bulk and surface mechanical behavior, and lead to more elongated cell morphology as imaged by confocal microscopy and ESEM after the adhesion of MC3T3-E1 preosteoblasts at 48 h. Formation of a new mineral phase was detected on the scaffold’s surface after cell cultures. All the results were correlated with the scaffolds’ compositions. Overall, the study reveals the potential of the marine materials-containing inks to deliver 3D scaffolds with potential for bone regeneration applications.
AUTHOR Yan Li and Lijing Huang and Guangpin Tai and Feifei Yan and Lin Cai and Chenxing Xin and Shamoon {Al Islam}
Title Graphene Oxide-loaded magnetic nanoparticles within 3D hydrogel form High-performance scaffolds for bone regeneration and tumour treatment [Abstract]
Year 2022
Journal/Proceedings Composites Part A: Applied Science and Manufacturing
Reftype
DOI/URL URL DOI
Abstract
The treatment of tumour-related bone defects should ideally combine bone regeneration with tumour treatment. Additive manufacturing (AM) could feasibly place functional bone-repair materials within composite materials with functional-grade structures, giving them bone repair and anti-tumour effects. Magnetothermal therapy is a promising non-invasive method of tumour treatment that has attracted increasing attention. In this study, we prepared novel hydrogel composite scaffolds of polyvinyl alcohol/sodium alginate/hydroxyapatite (PVA/SA/HA) at low temperature via AM. The scaffolds were loaded with various concentrations of magnetic graphene oxide (MGO) @Fe3O4 nanoparticles. The scaffolds were characterised by fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and thermal gravimetric analysis (TGA), which showed that the scaffolds have good moulding qualities and strong hydrogen bonding between the MGO/PVA/SA/HA components. TGA analysis demonstrated the expected thermal stability of the MGO and scaffolds. Thermal effects can be adjusted by varying the contents of MGO and the strength of an external alternating magnetic field. The prepared MGO hydrogel composite scaffolds enhance biological functions and support bone mesenchymal stem cell differentiation in vitro. The scaffolds also show favourable anti-tumour characteristics with effective magnetothermal conversion in vivo.
AUTHOR Bedell, Matthew L. and Torres, Angelica L. and Hogan, Katie J. and Wang, Ziwen and Wang, Bonnie and Melchiorri, Anthony J. and Grande-Allen, K. Jane and Mikos, Antonios G.
Title Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting [Abstract]
Year 2022
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
The investigation of novel hydrogel systems allows for the study of relationships between biomaterials, cells, and other factors within osteochondral tissue engineering. Three-dimensional (3D) printing is a popular research method that can allow for further interrogation of these questions via the fabrication of 3D hydrogel environments that mimic tissue-specific, complex architectures. However, the adaptation of promising hydrogel biomaterial systems into 3D-printable bioinks remains a challenge. Here, we delineated an approach to that process. First, we characterized a novel methacryloylated gelatin composite hydrogel system and assessed how calcium phosphate and glycosaminoglycan additives upregulated bone- and cartilage-like matrix deposition and certain genetic markers of differentiation within human mesenchymal stem cells (hMSCs), such as RUNX2 and SOX9. Then, new assays were developed and utilized to study the effects of xanthan gum and nanofibrillated cellulose, which allowed for cohesive fiber deposition, reliable droplet formation, and non-fracturing digital light processing (DLP)-printed constructs within extrusion, inkjet, and DLP techniques, respectively. Finally, these bioinks were used to 3D print constructs containing viable encapsulated hMSCs over a 7 d period, where DLP printed constructs facilitated the highest observed increase in cell number over 7 d (∼2.4×). The results presented here describe the promotion of osteochondral phenotypes via these novel composite hydrogel formulations, establish their ability to bioprint viable, cell-encapsulating constructs using three different 3D printing methods on multiple bioprinters, and document how a library of modular bioink additives affected those physicochemical properties important to printability.
AUTHOR Helaehil, Júlia Venturini and Lourenço, Carina Basqueira and Huang, Boyang and Helaehil, Luiza Venturini and de Camargo, Isaque Xavier and Chiarotto, Gabriela Bortolança and Santamaria-Jr, Milton and Bártolo, Paulo and Caetano, Guilherme Ferreira
Title In Vivo Investigation of Polymer-Ceramic PCL/HA and PCL/β-TCP 3D Composite Scaffolds and Electrical Stimulation for Bone Regeneration [Abstract]
Year 2022
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
Critical bone defects are a major clinical challenge in reconstructive bone surgery. Polycaprolactone (PCL) mixed with bioceramics, such as hydroxyapatite (HA) and tricalcium phosphate (TCP), create composite scaffolds with improved biological recognition and bioactivity. Electrical stimulation (ES) aims to compensate the compromised endogenous electrical signals and to stimulate cell proliferation and differentiation. We investigated the effects of composite scaffolds (PCL with HA; and PCL with β-TCP) and the use of ES on critical bone defects in Wistar rats using eight experimental groups: untreated, ES, PCL, PCL/ES, HA, HA/ES, TCP, and TCP/ES. The investigation was based on histomorphometry, immunohistochemistry, and gene expression analysis. The vascular area was greater in the HA/ES group on days 30 and 60. Tissue mineralization was greater in the HA, HA/ES, and TCP groups at day 30, and TCP/ES at day 60. Bmp-2 gene expression was higher in the HA, TCP, and TCP/ES groups at day 30, and in the TCP/ES and PCL/ES groups at day 60. Runx-2, Osterix, and Osteopontin gene expression were also higher in the TCP/ES group at day 60. These results suggest that scaffolds printed with PCL and TCP, when paired with electrical therapy application, improve bone regeneration.
AUTHOR Lai, Jiahui and Wang, Chong and Liu, Jia and Chen, Shangsi and Liu, Chaoyu and Huang, Xiangxuan and Wu, Jing and Pan, Yue and Xie, Yuancai and Wang, Min
Title Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with in situ delivery of osteogenic peptide and mesenchymal stem cells [Abstract]
Year 2022
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Compared to other conventional scaffold fabrication techniques, three-dimensional (3D) printing is advantageous in producing bone tissue engineering scaffolds with customized shape, tailored pore size/porosity, required mechanical properties and even desirable biomolecule delivery capability. However, for scaffolds with a large volume, it is highly difficult to get seeded cells to migrate to the central region of the scaffolds, resulting in an inhomogeneous cell distribution and therefore lowering the bone forming ability. To overcome this major obstacle, in this study, cell-laden bone tissue engineering scaffolds consisting of osteogenic peptide (OP) loaded β-tricalcium phosphate (TCP)/poly(lactic-co-glycolic acid) (PLGA) (OP/TCP/PLGA, designated as OTP) nanocomposite struts and rat bone marrow derived mesenchymal stem cell (rBMSC)-laden gelatin/GelMA hydrogel rods were produced through ‘dual-nozzle’ low temperature hybrid 3D printing. The cell-laden scaffolds exhibited a bi-phasic structure and had a mechanical modulus of about 19.6 MPa, which was similar to that of human cancellous bone. OP can be released from the hybrid scaffolds in a sustained manner and achieved a cumulative release level of about 78% after 24 d. rBMSCs encapsulated in the hydrogel rods exhibited a cell viability of about 87.4% right after low temperature hybrid 3D printing and could be released from the hydrogel rods to achieve cell anchorage on the surface of adjacent OTP struts. The OP released from OTP struts enhanced rBMSCs proliferation. Compared to rBMSC-laden hybrid scaffolds without OP incorporation, the rBMSC-laden hybrid scaffolds incorporated with OP significantly up-regulated osteogenic differentiation of rBMSCs by showing a higher level of alkaline phosphatase expression and calcium deposition. This ‘proof-of-concept’ study has provided a facile method to form cell-laden bone tissue engineering scaffolds with not only required mechanical strength, biomimetic structure and sustained biomolecule release profile but also excellent cell delivery capability with uniform cell distribution, which can improve the bone forming ability in the body.
AUTHOR Bucciarelli, Alessio and Petretta, Mauro and Grigolo, Brunella and Gambari, Laura and Bossi, Alessandra Maria and Grassi, Francesco and Maniglio, Devid
Title Methacrylated Silk Fibroin Additive Manufacturing of Shape Memory Constructs with Possible Application in Bone Regeneration [Abstract]
Year 2022
Journal/Proceedings Gels
Reftype
DOI/URL URL DOI
Abstract
Methacrylated silk (Sil-MA) is a chemically modified silk fibroin specifically designed to be crosslinkable under UV light, which makes this material applicable in additive manufacturing techniques and allows the prototyping and development of patient-specific 2D or 3D constructs. In this study, we produced a thin grid structure based on crosslinked Sil-MA that can be withdrawn and ejected and that can recover its shape after rehydration. A complete chemical and physical characterization of Sil-MA was first conducted. Additionally, we tested Sil-MA biocompatibility according to the International Standard Organization protocols (ISO 10993) ensuring the possibility of using it in future trials. Sil-MA was also tested to verify its ability to support osteogenesis. Overall, Sil-MA was shown to be biocompatible and osteoconductive. Finally, two different additive manufacturing technologies, a Digital Light Processing (DLP) UV projector and a pneumatic extrusion technique, were used to develop a Sil-MA grid construct. A proof-of-concept of its shape-memory property was provided. Together, our data support the hypothesis that Sil-MA grid constructs can be injectable and applicable in bone regeneration applications.
AUTHOR Daskalakis, Evangelos and Huang, Boyang and Vyas, Cian and Acar, Anil Ahmet and Fallah, Ali and Cooper, Glen and Weightman, Andrew and Koc, Bahattin and Blunn, Gordon and Bartolo, Paulo
Title Novel 3D Bioglass Scaffolds for Bone Tissue Regeneration [Abstract]
Year 2022
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
The design of scaffolds with optimal biomechanical properties for load-bearing applications is an important topic of research. Most studies have addressed this problem by focusing on the material composition and not on the coupled effect between the material composition and the scaffold architecture. Polymer–bioglass scaffolds have been investigated due to the excellent bioactivity properties of bioglass, which release ions that activate osteogenesis. However, material preparation methods usually require the use of organic solvents that induce surface modifications on the bioglass particles, compromising the adhesion with the polymeric material thus compromising mechanical properties. In this paper, we used a simple melt blending approach to produce polycaprolactone/bioglass pellets to construct scaffolds with pore size gradient. The results show that the addition of bioglass particles improved the mechanical properties of the scaffolds and, due to the selected architecture, all scaffolds presented mechanical properties in the cortical bone region. Moreover, the addition of bioglass indicated a positive long-term effect on the biological performance of the scaffolds. The pore size gradient also induced a cell spreading gradient.
AUTHOR Eichholz, Kian and Freeman, Fiona and Pitacco, Pierluca and Nulty, Jessica and Ahern, Daniel and Burdis, Ross and Browe, David and Garcia, Orquidea and Hoey, David and Kelly, Daniel John
Title Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects [Abstract]
Year 2022
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Emerging 3D printing technologies can provide exquisite control over the external shape and internal architecture of scaffolds and tissue engineered constructs, enabling systematic studies to explore how geometric design features influence the regenerative process. Here we used fused deposition modelling (FDM) and melt electrowriting (MEW) to investigate how scaffold microarchitecture influences the healing of large bone defects. FDM was used to fabricate scaffolds with relatively large fibre diameters and low porosities, while MEW was used to fabricate scaffolds with smaller fibre diameters and higher porosities, with both scaffolds being designed to have comparable surface areas. Scaffold microarchitecture significantly influenced the healing response following implantation into critically sized femoral defects in rats, with the FDM scaffolds supporting the formation of larger bone spicules through its pores, while the MEW scaffolds supported the formation of a more round bone front during healing. After 12 weeks in vivo, both MEW and FDM scaffolds supported significantly higher levels of defect vascularisation compared to empty controls, while the MEW scaffolds supported higher levels of new bone formation. Somewhat surprisingly, this superior healing in the MEW group did not correlate with higher levels of angiogenesis, with the FDM scaffold supporting greater total vessel formation and the formation of larger vessels, while the MEW scaffold promoted the formation of a dense microvasculature with minimal evidence of larger vessels infiltrating the defect region. To conclude, the small fibre diameter, high porosity and high specific surface area of the MEW scaffold proved beneficial for osteogenesis and bone regeneration, demonstrating that changes in scaffold architecture enabled by this additive manufacturing technique can dramatically modulate angiogenesis and tissue regeneration without the need for complex exogenous growth factors. These results provide a valuable insight into the importance of 3D printed scaffold architecture when developing new bone tissue engineering strategies.
AUTHOR Burdis, Ross and Chariyev-Prinz, Farhad and Browe, David C. and Freeman, Fiona E. and Nulty, Jessica and McDonnell, Emily E. and Eichholz, Kian F. and Wang, Bin and Brama, Pieter and Kelly, Daniel J.
Title Spatial patterning of phenotypically distinct microtissues to engineer osteochondral grafts for biological joint resurfacing [Abstract]
Year 2022
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Modular biofabrication strategies using microtissues or organoids as biological building blocks have great potential for engineering replacement tissues and organs at scale. Here we describe the development of a biofabrication strategy to engineer osteochondral tissues by spatially localising phenotypically distinct cartilage microtissues within an instructive 3D printed polymer framework. We first demonstrate that immature cartilage microtissues can spontaneously fuse to form homogeneous macrotissues, and that combining less cellular microtissues results in superior fusion and the generation of a more hyaline-like cartilage containing higher levels of sulphated glycosaminoglycans and type II collagen. Furthermore, temporally exposing developing microtissues to transforming growth factor-β accelerates their volumetric growth and subsequent capacity to fuse into larger hyaline cartilage grafts. Next, 3D printed polymeric frameworks are used to further guide microtissue fusion and the subsequent self-organisation process, resulting in the development of a macroscale tissue with zonal collagen organisation analogous to the structure seen in native articular cartilage. To engineer osteochondral grafts, hypertrophic cartilage microtissues are engineered as bone precursor tissues and spatially localised below phenotypically stable cartilage microtissues. Implantation of these engineered grafts into critically-sized caprine osteochondral defects results in effective defect stabilisation and histologically supports the restoration of a more normal articular surface after 6 months in vivo. These findings support the use of such modular biofabrication strategies for biological joint resurfacing.
AUTHOR Hatt, Luan P. and Armiento, Angela R. and Mys, Karen and Thompson, Keith and Hildebrand, Maria and Nehrbass, Dirk and Müller, Werner E. G. and Zeiter, Stephan and Eglin, David and Stoddart, Martin J.
Title Standard in vitro evaluations of engineered bone substitutes are not sufficient to predict in vivo preclinical model outcomes [Abstract]
Year 2022
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
Understanding the optimal conditions required for bone healing can have a substantial impact to target the problem of non–unions and large bone defects. The combination of bioactive factors, regenerative progenitor cells and biomaterials to form a tissue engineered (TE) complex is a promising solution but translation to the clinic has been slow. We hypothesized the typical material testing algorithm used is insufficient and leads to materials being mischaracterized as promising. In the first part of this study, human bone marrow – derived mesenchymal stromal cells (hBM-MSCs) were embedded in three commonly used biomaterials (hyaluronic acid methacrylate, gelatin methacrylate and fibrin) and combined with relevant bioactive osteogenesis factors (dexamethasone microparticles and polyphosphate nanoparticles) to form a TE construct that underwent in vitro osteogenic differentiation for 28 days. Gene expression of relevant transcription factors and osteogenic markers, and von Kossa staining were performed. In the second and third part of this study, the same combination of TE constructs were implanted subcutaneously (cell containing) in T cell-deficient athymic Crl:NIH-Foxn1rnu rats for 8 weeks or cell free in an immunocompetent New Zealand white rabbit calvarial model for 6 weeks, respectively. Osteogenic performance was investigated via MicroCT imaging and histology staining. The in vitro study showed enhanced upregulation of relevant genes and significant mineral deposition within the three biomaterials, generally considered as a positive result. Subcutaneous implantation indicates none to minor ectopic bone formation. No enhanced calvarial bone healing was detected in implanted biomaterials compared to the empty defect. The reasons for the poor correlation of in vitro and in vivo outcomes are unclear and needs further investigation. This study highlights the discrepancy between in vitro and in vivo outcomes, demonstrating that in vitro data should be interpreted with extreme caution. In vitro models with higher complexity are necessary to increase value for translational studies. Statement of significance Preclinical testing of newly developed biomaterials is a crucial element of the development cycle. Despite this, there is still significant discrepancy between in vitro and in vivo test results. Within this study we investigate multiple combinations of materials and osteogenic stimulants and demonstrate a poor correlation between the in vitro and in vivo data. We propose rationale for why this may be the case and suggest a modified testing algorithm.
AUTHOR Ma, Jiayi and Wu, Siyu and Liu, Jun and Liu, Chun and Ni, Su and Dai, Ting and Wu, Xiaoyu and Zhang, Zhenyu and Qu, Jixin and Zhao, Hongbin and Zhou, Dong and Zhao, Xiubo
Title Synergistic effects of nanoattapulgite and hydroxyapatite on vascularization and bone formation in a rabbit tibia bone defect model [Abstract]
Year 2022
Journal/Proceedings Biomater. Sci.
Reftype
DOI/URL DOI
Abstract
Hydroxyapatite (HA) is a promising scaffold material for the treatment of bone defects. However{,} the lack of angiogenic properties and undesirable mechanical properties (such as fragility) limits the application of HA. Nanoattapulgite (ATP) is a nature-derived clay mineral and has been proven to be a promising bioactive material for bone regeneration due to its ability to induce osteogenesis. In this study{,} polyvinyl alcohol/collagen/ATP/HA (PVA/COL/ATP/HA) scaffolds were printed. Mouse bone marrow mesenchymal stem/stromal cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) were used in vitro to assess the biocompatibility and the osteogenesis and vascularization induction potentials of the scaffolds. Subsequently{,} in vivo micro-CT and histological staining were carried out to evaluate new bone formation in a rabbit tibial defect model. The in vitro results showed that the incorporation of ATP increased the printing fidelity and mechanical properties{,} with values of compressive strengths up to 200% over raw PC-H scaffolds. Simultaneously{,} the expression levels of osteogenic-related genes and vascularization-related genes were significantly increased after the incorporation of ATP. The in vivo results showed that the PVA/COL/ATP/HA scaffolds exhibited synergistic effects on promoting vascularization and bone formation. The combination of ATP and HA provides a promising strategy for vascularized bone tissue engineering.
AUTHOR Anderson, Margaret and Dubey, Nileshkumar and Bogie, Kath and Cao, Chen and Li, Junying and Lerchbacker, Joseph and Mendonça, Gustavo and Kauffmann, Frederic and Bottino, Marco C. and Kaigler, Darnell
Title Three-dimensional printing of clinical scale and personalized calcium phosphate scaffolds for alveolar bone reconstruction [Abstract]
Year 2022
Journal/Proceedings Dental Materials
Reftype
DOI/URL URL DOI
Abstract
Objective Alveolar bone defects can be highly variable in their morphology and, as the defect size increases, they become more challenging to treat with currently available therapeutics and biomaterials. This investigation sought to devise a protocol for fabricating customized clinical scale and patient-specific, bioceramic scaffolds for reconstruction of large alveolar bone defects. Methods Two types of calcium phosphate (CaP)-based bioceramic scaffolds (alginate/β-TCP and hydroxyapatite/α-TCP, hereafter referred to as hybrid CaP and Osteoink™, respectively) were designed, 3D printed, and their biocompatibility with alveolar bone marrow stem cells and mechanical properties were determined. Following scaffold optimization, a workflow was developed to use cone beam computed tomographic (CBCT) imaging to design and 3D print, defect-specific bioceramic scaffolds for clinical-scale bone defects. Results Osteoink™ scaffolds had the highest compressive strength when compared to hybrid CaP with different infill orientation. In cell culture medium, hybrid CaP degradation resulted in decreased pH (6.3) and toxicity to stem cells; however, OsteoInk™ scaffolds maintained a stable pH (7.2) in culture and passed the ISO standard for cytotoxicity. Finally, a clinically feasible laboratory workflow was developed and evaluated using CBCT imaging to engineer customized and defect-specific CaP scaffolds using OsteoInk™. It was determined that printed scaffolds had a high degree of accuracy to fit the respective clinical defects for which they were designed (0.27 mm morphological deviation of printed scaffolds from digital design). Significance From patient to patient, large alveolar bone defects are difficult to treat due to high variability in their complex morphologies and architecture. Our findings shows that Osteoink™ is a biocompatible material for 3D printing of clinically acceptable, patient-specific scaffolds with precision-fit for use in alveolar bone reconstructive procedures. Collectively, emerging digital technologies including CBCT imaging, 3D surgical planning, and (bio)printing can be integrated to address this unmet clinical challenge.
AUTHOR Zhang, Xiao and Liu, Yang and Zuo, Qiang and Wang, Qingyun and Li, Zuxi and Yan, Kai and Yuan, Tao and Zhang, Yi and Shen, Kai and Xie, Rui and Fan, Weimin
Title 3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair [Abstract]
Year 2021
Journal/Proceedings International Journal of Bioprinting; Vol 7, No 4 (2021)
Reftype
DOI/URL URL DOI
Abstract
Recently, three-dimensional (3D) bioprinting technology is becoming an appealing approach for osteochondral repair. However, it is challenging to develop a bilayered scaffold with anisotropic structural properties to mimic a native osteochondral tissue. Herein, we developed a bioink consisting of decellularized extracellular matrix and silk fibroin to print the bilayered scaffold. The bilayered scaffold mimics the natural osteochondral tissue by controlling the composition, mechanical properties, and growth factor release in each layer of the scaffold. The in vitro results show that each layer of scaffolds had a suitable mechanical strength and degradation rate. Furthermore, the scaffolds encapsulating transforming growth factor-beta (TGF-β) and bone morphogenetic protein-2 (BMP-2) can act as a controlled release system and promote directed differentiation of bone marrow-derived mesenchymal stem cells. Furthermore, the in vivo experiments suggested that the scaffolds loaded with growth factors promoted osteochondral regeneration in the rabbit knee joint model. Consequently, the biomimetic bilayered scaffold loaded with TGF-β and BMP-2 would be a promising strategy for osteochondral repair.
AUTHOR Nulty, Jessica and Freeman, Fiona E. and Browe, David C. and Burdis, Ross and Ahern, Daniel P. and Pitacco, Pierluca and Lee, Yu Bin and Alsberg, Eben and Kelly, Daniel J.
Title 3D Bioprinting of prevascularised implants for the repair of critically-sized bone defects [Abstract]
Year 2021
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
For 3D bioprinted tissues to be scaled-up to clinically relevant sizes, effective prevascularisation strategies are required to provide the necessary nutrients for normal metabolism and to remove associated waste by-products. The aim of this study was to develop a bioprinting strategy to engineer prevascularised tissues in vitro and to investigate the capacity of such constructs to enhance the vascularisation and regeneration of large bone defects in vivo. From a screen of different bioinks, a fibrin-based hydrogel was found to best support human umbilical vein endothelial cell (HUVEC) sprouting and the establishment of a microvessel network. When this bioink was combined with HUVECs and supporting human bone marrow stem/stromal cells (hBMSCs), these microvessel networks persisted in vitro. Furthermore, only bioprinted tissues containing both HUVECs and hBMSCs, that were first allowed to mature in vitro, supported robust blood vessel development in vivo. To assess the therapeutic utility of this bioprinting strategy, these bioinks were used to prevascularise 3D printed polycaprolactone (PCL) scaffolds, which were subsequently implanted into critically-sized femoral bone defects in rats. Microcomputed tomography (µCT) angiography revealed increased levels of vascularisation in vivo, which correlated with higher levels of new bone formation. Such prevascularised constructs could be used to enhance the vascularisation of a range of large tissue defects, forming the basis of multiple new bioprinted therapeutics. Statement of Significance This paper demonstrates a versatile 3D bioprinting technique to improve the vascularisation of tissue engineered constructs and further demonstrates how this method can be incorporated into a bone tissue engineering strategy to improve vascularisation in a rat femoral defect model.
AUTHOR Francesca Cestari and Mauro Petretta and Yuejiao Yang and Antonella Motta and Brunella Grigolo and Vincenzo M. Sglavo
Title 3D printing of PCL/nano-hydroxyapatite scaffolds derived from biogenic sources for bone tissue engineering [Abstract]
Year 2021
Journal/Proceedings Sustainable Materials and Technologies
Reftype
DOI/URL URL DOI
Abstract
Bioactive composites made of ∽85 wt% poly(ε-caprolactone) (PCL) and ∽15 wt% nanometric hydroxyapatite (HA) produced from biogenic sources were 3D printed by an extrusion-based process to obtain porous scaffolds suitable for bone regeneration. Three different composite formulations were considered by using HA synthesized from three distinct natural sources, which were collected as food wastes: cuttlefish bones, mussel shells and chicken eggshells. Composition and thermal properties of the materials were analysed by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and x-ray spectroscopy (XRD), while the morphological and mechanical properties of the 3D scaffolds were studied by means of electron microscopy (SEM) and compression tests. Bioactivity was tested by seeding human osteoblast cell line (MG63) onto the scaffolds which were analysed by confocal microscopy and Alamar Blue and PicoGreen® tests after 1 to 7 culture days. The elastic modulus (177–316 MPa) is found to be within the range reported for typical trabecular bones being increased by the presence of the bio-HA particles. Moreover, cells adhesion, viability and proliferation are largely promoted in the scaffolds containing nanometric HA with respect to pure PCL, the best results being revealed when mussel shell-derived HA is used. Indeed, different biological sources result in different cell proliferation rates, pointing that the biological origin has an impact on the cells-scaffold interaction. In general, the results show that PCL/bio-HA scaffolds possess improved mechanical properties and enhanced bioactivity when compared with pure PCL ones.
AUTHOR Vyas, Cian and Zhang, Jun and Øvrebø, Øystein and Huang, Boyang and Roberts, Iwan and Setty, Mohan and Allardyce, Benjamin and Haugen, Håvard and Rajkhowa, Rangam and Bartolo, Paulo
Title 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Polycaprolactone (PCL) scaffolds have been widely investigated for tissue engineering applications, however, they exhibit poor cell adhesion and mechanical properties. Subsequently, PCL composites have been produced to improve the material properties. This study utilises a natural material, Bombyx mori silk microparticles (SMP) prepared by milling silk fibre, to produce a composite to enhance the scaffolds properties. Silk is biocompatible and biodegradable with excellent mechanical properties. However, there are no studies using SMPs as a reinforcing agent in a 3D printed thermoplastic polymer scaffold. PCL/SMP (10, 20, 30 wt%) composites were prepared by melt blending. Rheological analysis showed that SMP loading increased the shear thinning and storage modulus of the material. Scaffolds were fabricated using a screw-assisted extrusion-based additive manufacturing system. Scanning electron microscopy and X-ray microtomography was used to determine scaffold morphology. The scaffolds had high interconnectivity with regular printed fibres and pore morphologies within the designed parameters. Compressive mechanical testing showed that the addition of SMP significantly improved the compressive Young's modulus of the scaffolds. The scaffolds were more hydrophobic with the inclusion of SMP which was linked to a decrease in total protein adsorption. Cell behaviour was assessed using human adipose derived mesenchymal stem cells. A cytotoxic effect was observed at higher particle loading (30 wt%) after 7 days of culture. By day 21, 10 wt% loading showed significantly higher cell metabolic activity and proliferation, high cell viability, and cell migration throughout the scaffold. Calcium mineral deposition was observed on the scaffolds during cell culture. Large calcium mineral deposits were observed at 30 wt% and smaller calcium deposits were observed at 10 wt%. This study demonstrates that SMPs incorporated into a PCL scaffold provided effective mechanical reinforcement, improved the rate of degradation, and increased cell proliferation, demonstrating potential suitability for bone tissue engineering applications.
AUTHOR Golafshan, Nasim and Willemsen, Koen and Kadumudi, Firoz Babu and Vorndran, Elke and Dolatshahi-Pirouz, Alireza and Weinans, Harrie and van der Wal, Bart C. H. and Malda, Jos and Castilho, Miguel
Title 3D-Printed Regenerative Magnesium Phosphate Implant Ensures Stability and Restoration of Hip Dysplasia [Abstract]
Year 2021
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Osteoarthritis of the hip is a painful and debilitating condition commonly occurring in humans and dogs. One of the main causes that leads to hip osteoarthritis is hip dysplasia. Although the current surgical methods to correct dysplasia work satisfactorily in many circumstances, these are associated with serious complications, tissue resorption, and degeneration. In this study, a one-step fabrication of a regenerative hip implant with a patient-specific design and load-bearing properties is reported. The regenerative hip implant is fabricated based on patient imaging files and by an extrusion assisted 3D printing process using a flexible, bone-inducing biomaterial. The novel implant can be fixed with metallic screws to host bone and can be loaded up to physiological loads without signs of critical permanent deformation or failure. Moreover, after exposing the hip implant to accelerated in vitro degradation, it is confirmed that it is still able to support physiological loads even after losing ≈40% of its initial mass. In addition, the osteopromotive properties of the novel hip implant is demonstrated as shown by an increased expression of osteonectin and osteocalcin by cultured human mesenchymal stem cells after 21 days. Overall, the proposed hip implant provides an innovative regenerative and mechanically stable solution for hip dysplasia treatment.
AUTHOR Chelsea Twohig and Mari Helsinga and Amin Mansoorifar and Avathamsa Athirasala and Anthony Tahayeri and Cristiane Miranda França and Silvia Amaya Pajares and Reyan Abdelmoniem and Susanne Scherrer and Stéphane Durual and Jack Ferracane and Luiz E. Bertassoni
Title A dual-ink 3D printing strategy to engineer pre-vascularized bone scaffolds in-vitro [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
A functional vascular supply is a key component of any large-scale tissue, providing support for the metabolic needs of tissue-remodeling cells. Although well-studied strategies exist to fabricate biomimetic scaffolds for bone regeneration, success rates for regeneration in larger defects can be improved by engineering microvascular capillaries within the scaffolds to enhance oxygen and nutrient supply to the core of the engineered tissue as it grows. Even though the role of calcium and phosphate has been well understood to enhance osteogenesis, it remains unclear whether calcium and phosphate may have a detrimental effect on the vasculogenic and angiogenic potential of endothelial cells cultured on 3D printed bone scaffolds. In this study, we presented a novel dual-ink bioprinting method to create vasculature interwoven inside CaP bone constructs. In this method, strands of a CaP ink and a sacrificial template material was used to form scaffolds containing CaP fibers and microchannels seeded with vascular endothelial and mesenchymal stem cells (MSCs) within a photo-crosslinkable gelatin methacryloyl (GelMA) hydrogel material. Our results show similar morphology of growing vessels in the presence of CaP bioink, and no significant difference in endothelial cell sprouting was found. Furthermore, our initial results showed the differentiation of hMSCs into pericytes in the presence of CaP ink. These results indicate the feasibility of creating vascularized bone scaffolds, which can be used for enhancing vascular formation in the core of bone scaffolds.
AUTHOR Nulty, Jessica and Burdis, Ross and Kelly, Daniel J.
Title Biofabrication of Prevascularised Hypertrophic Cartilage Microtissues for Bone Tissue Engineering [Abstract]
Year 2021
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
Bone tissue engineering (TE) has the potential to transform the treatment of challenging musculoskeletal pathologies. To date, clinical translation of many traditional TE strategies has been impaired by poor vascularisation of the implant. Addressing such challenges has motivated research into developmentally inspired TE strategies, whereby implants mimicking earlier stages of a tissue’s development are engineered in vitro and then implanted in vivo to fully mature into the adult tissue. The goal of this study was to engineer in vitro tissues mimicking the immediate developmental precursor to long bones, specifically a vascularised hypertrophic cartilage template, and to then assess the capacity of such a construct to support endochondral bone formation in vivo. To this end, we first developed a method for the generation of large numbers of hypertrophic cartilage microtissues using a microwell system, and encapsulated these microtissues into a fibrin-based hydrogel capable of supporting vasculogenesis by human umbilical vein endothelial cells (HUVECs). The microwells supported the formation of bone marrow derived stem/stromal cell (BMSC) aggregates and their differentiation toward a hypertrophic cartilage phenotype over 5 weeks of cultivation, as evident by the development of a matrix rich in sulphated glycosaminoglycan (sGAG), collagen types I, II, and X, and calcium. Prevascularisation of these microtissues, undertaken in vitro 1 week prior to implantation, enhanced their capacity to mineralise, with significantly higher levels of mineralised tissue observed within such implants after 4 weeks in vivo within an ectopic murine model for bone formation. It is also possible to integrate such microtissues into 3D bioprinting systems, thereby enabling the bioprinting of scaled-up, patient-specific prevascularised implants. Taken together, these results demonstrate the development of an effective strategy for prevascularising a tissue engineered construct comprised of multiple individual microtissue “building blocks,” which could potentially be used in the treatment of challenging bone defects.
AUTHOR Fisch, Philipp and Broguiere, Nicolas and Finkielsztein, Sergio and Linder, Thomas and Zenobi-Wong, Marcy
Title Bioprinting of Cartilaginous Auricular Constructs Utilizing an Enzymatically Crosslinkable Bioink [Abstract]
Year 2021
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract Bioprinting of functional tissues could overcome tissue shortages and allow a more rapid response for treatments. However, despite recent progress in bioprinting, and its outstanding ability to position cells and biomaterials in a precise 3D manner, its success has been limited, due to insufficient maturation of constructs into functional tissue. Here, a novel calcium-triggered enzymatic crosslinking (CTEC) mechanism for bioinks based on the activation cascade of Factor XIII is presented and utilized for the biofabrication of cartilaginous constructs. Hyaluronan transglutaminase (HA-TG), an enzymatically crosslinkable material, has shown excellent characteristics for chondrogenesis and builds the basis of the CTEC bioink. The bioink supports tissue maturation with neocartilage formation and stiffening of constructs up to 400 kPa. Bioprinted constructs remain stable in vivo for 24 weeks and bioprinted auricular constructs transform into cartilaginous grafts. A major limitation of the current study is the deposition of collagen I, indicating the maturation toward fibrocartilage rather than elastic cartilage. Shifting the maturation process toward elastic cartilage will therefore be essential in order for the developed bioinks to offer a novel tissue engineered treatment for microtia patients. CTEC bioprinting furthermore opens up use of enzymatically crosslinkable biopolymers and their modularity to support a multitude of tissues.
AUTHOR Bagnol, Romain and Sprecher, Christoph and Peroglio, Marianna and Chevalier, Jerome and Mahou, Redouan and Büchler, Philippe and Richards, Geoff and Eglin, David
Title Coaxial micro-extrusion of a calcium phosphate ink with aqueous solvents improves printing stability, structure fidelity and mechanical properties [Abstract]
Year 2021
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
Micro-extrusion-based 3D printing of complex geometrical and porous calcium phosphate (CaP) can improve treatment of bone defects through the production of personalized bone substitutes. However, achieving printing and post-printing shape stabilities for the efficient fabrication and application of rapid hardening protocol are still challenging. In this work, the coaxial printing of a self-setting CaP cement with water and ethanol mixtures aiming to increase the ink yield stress upon extrusion and the stability of fabricated structures was explored. Printing height of overhang structure was doubled when aqueous solvents were used and a 2 log increase of the stiffness was achieved post-printing. A standard and fast steam sterilization protocol applied as hardening step on the coaxial printed CaP cement (CPC) ink resulted in constructs with 4 to 5 times higher compressive moduli in comparison to extrusion process in the absence of solvent. This improved mechanical performance is likely due to rapid CPC setting, preventing cracks formation during hardening process. Thus, coaxial micro-extrusion-based 3D printing of a CPC ink with aqueous solvent enhances printability and allows the use of the widespread steam sterilization cycle as a standalone post-processing technique for production of 3D printed personalized CaP bone substitutes. Statement of Significance Coaxial micro-extrusion-based 3D printing of a self-setting CaP cement with water:ethanol mixtures increased the ink yield stress upon extrusion and the stability of fabricated structures. Printing height of overhang structure was doubled when aqueous solvents were used, and a 2 orders of magnitude log increase of the stiffness was achieved post-printing. A fast hardening step consisting of a standard steam sterilization was applied. Four to 5 times higher compressive moduli was obtained for hardened coaxially printed constructs. This improved mechanical performance is likely due to rapid CPC setting in the coaxial printing, preventing cracks formation during hardening process.
AUTHOR Fenelon, Mathilde and Etchebarne, Marion and Siadous, Robin and Grémare, Agathe and Durand, Marlène and Sentilhes, Loic and Catros, Sylvain and Gindraux, Florelle and L'Heureux, Nicolas and Fricain, Jean-Christophe
Title Comparison of amniotic membrane versus the induced membrane for bone regeneration in long bone segmental defects using calcium phosphate cement loaded with BMP-2 [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Thanks to its biological properties, the human amniotic membrane (HAM) combined with a bone substitute could be a single-step surgical alternative to the two-step Masquelet induced membrane (IM) technique for regeneration of critical bone defects. However, no study has directly compared these two membranes. We first designed a 3D-printed scaffold using calcium phosphate cement (CPC). We assessed its suitability in vitro to support human bone marrow mesenchymal stromal cells (hBMSCs) attachment and osteodifferentiation. We then performed a rat femoral critical size defect to compare the two-step IM technique with a single-step approach using the HAM. Five conditions were compared. Group 1 was left empty. Group 2 received the CPC scaffold loaded with rh-BMP2 (CPC/BMP2). Group 3 and 4 received the CPC/BMP2 scaffold covered with lyophilized or decellularized/lyophilized HAM. Group 5 underwent a two- step induced membrane procedure with insertion of a polymethylmethacrylate (PMMA) spacer followed by, after 4 weeks, its replacement with the CPC/BMP2 scaffold wrapped in the IM. Micro-CT and histomorphometric analysis were performed after six weeks. Results showed that the CPC scaffold supported the proliferation and osteodifferentiation of hBMSCs in vitro. In vivo, the CPC/BMP2 scaffold very efficiently induced bone formation and led to satisfactory healing of the femoral defect, in a single-step, without autograft or the need for any membrane covering. In this study, there was no difference between the two-step induced membrane procedure and a single step approach. However, the results indicated that none of the tested membranes further enhanced bone healing compared to the CPC/BMP2 group.
AUTHOR Petretta, Mauro and Gambardella, Alessandro and Boi, Marco and Berni, Matteo and Cavallo, Carola and Marchiori, Gregorio and Maltarello, Maria Cristina and Bellucci, Devis and Fini, Milena and Baldini, Nicola and Grigolo, Brunella and Cannillo, Valeria
Title Composite Scaffolds for Bone Tissue Regeneration Based on PCL and Mg-Containing Bioactive Glasses [Abstract]
Year 2021
Journal/Proceedings Biology
Reftype
DOI/URL DOI
Abstract
Polycaprolactone (PCL) is widely used in additive manufacturing for the construction of scaffolds for tissue engineering because of its good bioresorbability, biocompatibility, and processability. Nevertheless, its use is limited by its inadequate mechanical support, slow degradation rate and the lack of bioactivity and ability to induce cell adhesion and, thus, bone tissue regeneration. In this study, we fabricated 3D PCL scaffolds reinforced with a novel Mg-doped bioactive glass (Mg-BG) characterized by good mechanical properties and biological reactivity. An optimization of the printing parameters and scaffold fabrication was performed; furthermore, an extensive microtopography characterization by scanning electron microscopy and atomic force microscopy was carried out. Nano-indentation tests accounted for the mechanical properties of the scaffolds, whereas SBF tests and cytotoxicity tests using human bone-marrow-derived mesenchymal stem cells (BM-MSCs) were performed to evaluate the bioactivity and in vitro viability. Our results showed that a 50/50 wt% of the polymer-to-glass ratio provides scaffolds with a dense and homogeneous distribution of Mg-BG particles at the surface and roughness twice that of pure PCL scaffolds. Compared to pure PCL (hardness H = 35 ± 2 MPa and Young’s elastic modulus E = 0.80 ± 0.05 GPa), the 50/50 wt% formulation showed H = 52 ± 11 MPa and E = 2.0 ± 0.2 GPa, hence, it was close to those of trabecular bone. The high level of biocompatibility, bioactivity, and cell adhesion encourages the use of the composite PCL/Mg-BG scaffolds in promoting cell viability and supporting mechanical loading in the host trabecular bone.
AUTHOR Götz, Lisa-Marie and Holeczek, Katharina and Groll, Jürgen and Jüngst, Tomasz and Gbureck, Uwe
Title Extrusion-Based 3D Printing of Calcium Magnesium Phosphate Cement Pastes for Degradable Bone Implants [Abstract]
Year 2021
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
This study aimed to develop printable calcium magnesium phosphate pastes that harden by immersion in ammonium phosphate solution post-printing. Besides the main mineral compound, biocompatible ceramic, magnesium oxide and hydroxypropylmethylcellulose (HPMC) were the crucial components. Two pastes with different powder to liquid ratios of 1.35 g/mL and 1.93 g/mL were characterized regarding their rheological properties. Here, ageing over the course of 24 h showed an increase in viscosity and extrusion force, which was attributed to structural changes in HPMC as well as the formation of magnesium hydroxide by hydration of MgO. The pastes enabled printing of porous scaffolds with good dimensional stability and enabled a setting reaction to struvite when immersed in ammonium phosphate solution. Mechanical performance under compression was approx. 8–20 MPa as a monolithic structure and 1.6–3.0 MPa for printed macroporous scaffolds, depending on parameters such as powder to liquid ratio, ageing time, strand thickness and distance.
AUTHOR Paulo Roberto {Lopes Nalesso} and Weiguang Wang and Yanhao Hou and Leonardo Bagne and Amanda Tavares Pereira and Julia Venturini Helaehil and Thiago Antônio {Moretti de Andrade} and Gabriela Bortolança Chiarotto and Paulo Bártolo and Guilherme Ferreira Caetano
Title In vivo investigation of 3D printed polycaprolactone/graphene electro-active bone scaffolds [Abstract]
Year 2021
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Additive manufactured scaffolds are widely used as 3D support structures for tissue engineering. This paper investigates the mechanisms behind bone regeneration due to the combined use of 3D printed poly (ϵ-caprolactone)/graphene (PCL/G) electro-active scaffolds and electrical stimulation. A comprehensive in vivo study was conducted to assess the proposed approach, using a rat model. Results show that the combined use of electro-active scaffolds and electrical stimulation therapy accelerates the bone regeneration process and the formation of more organized new bone, through fast angiogenesis, and a rapid transition to the mineralization and bone remodelling phase. The mechanism is investigated and explained.
AUTHOR e Silva, Edney P. and Huang, Boyang and Helaehil, Júlia V. and Nalesso, Paulo R. L. and Bagne, Leonardo and de Oliveira, Maraiara A. and Albiazetti, Gabriela C. C. and Aldalbahi, Ali and El-Newehy, Mohamed and Santamaria-Jr, Milton and Mendonça, Fernanda A. S. and Bártolo, Paulo and Caetano, Guilherme F.
Title In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering [Abstract]
Year 2021
Journal/Proceedings Bio-Design and Manufacturing
Reftype e Silva2021
DOI/URL DOI
Abstract
Critical bone defects are considered one of the major clinical challenges in reconstructive bone surgery. The combination of 3D printed conductive scaffolds and exogenous electrical stimulation (ES) is a potential favorable approach for bone tissue repair. In this study, 3D conductive scaffolds made with biocompatible and biodegradable polycaprolactone (PCL) and multi-walled carbon nanotubes (MWCNTs) were produced using the extrusion-based additive manufacturing to treat large calvary bone defects in rats. Histology results show that the use of PCL/MWCNTs scaffolds and ES contributes to thicker and increased bone tissue formation within the bone defect. Angiogenesis and mineralization are also significantly promoted using high concentration of MWCNTs (3 wt%) and ES. Moreover, scaffolds favor the tartrate-resistant acid phosphatase (TRAP) positive cell formation, while the addition of MWCNTs seems to inhibit the osteoclastogenesis but present limited effects on the osteoclast functionalities (receptor activator of nuclear factor κβ ligand (RANKL) and osteoprotegerin (OPG) expressions). The use of ES promotes the osteoclastogenesis and RANKL expressions, showing a dominant effect in the bone remodeling process. These results indicate that the combination of 3D printed conductive PCL/MWCNTs scaffold and ES is a promising strategy to treat critical bone defects and provide a cue to establish an optimal protocol to use conductive scaffolds and ES for bone tissue engineering.
AUTHOR Zamani, Yasaman and Amoabediny, Ghassem and Mohammadi, Javad and Zandieh-Doulabi, Behrouz and Klein-Nulend, Jenneke and Helder, Marco N.
Title Increased Osteogenic Potential of Pre-Osteoblasts on Three-Dimensional Printed Scaffolds Compared to Porous Scaffolds for Bone Regeneration [Abstract]
Year 2021
Journal/Proceedings Iranian Biomedical Journal
Reftype
DOI/URL URL DOI
Abstract
Background: One of the main challenges with conventional scaffold fabrication methods is the inability to control scaffold architecture. Recently, scaffolds with controlled shape and architecture have been fabricated using three-dimensional printing (3DP). Herein, we aimed to determine whether the much tighter control of microstructure of 3DP poly(lactic-co-glycolic) acid/β-tricalcium phosphate (PLGA/β-TCP) scaffolds is more effective in promoting osteogenesis than porous scaffolds produced by solvent casting/porogen leaching. Methods: Physical and mechanical properties of porous and 3DP scaffolds were studied. The response of pre-osteoblasts to the scaffolds was analyzed after 14 days. Results: The 3DP scaffolds had a smoother surface (Ra: 22 ± 3 µm) relative to the highly rough surface of porous scaffolds (Ra: 110 ± 15 µm). Water contact angle was 112 ± 4° on porous and 76 ± 6° on 3DP scaffolds. Porous and 3DP scaffolds had the pore size of 408 ± 90 and 315 ± 17 µm and porosity of 85 ± 5% and 39 ± 7%, respectively. Compressive strength of 3DP scaffolds (4.0 ± 0.3 MPa) was higher than porous scaffolds (1.7 ± 0.2 MPa). Collagenous matrix deposition was similar on both scaffolds. Cells proliferated from day 1 to day 14 by fourfold in porous and by 3.8-fold in 3DP scaffolds. Alkaline phosphatase (ALP) activity was 21-fold higher in 3DP scaffolds than porous scaffolds. Conclusion: The 3DP scaffolds show enhanced mechanical properties and ALP activity compared to porous scaffolds in vitro, suggesting that 3DP PLGA/β-TCP scaffolds are possibly more favorable for bone formation.
AUTHOR Daskalakis, Evangelos and Liu, Fengyuan and Huang, Boyang and Acar, Anil A. and Cooper, Glen and Weightman, Andrew and Blunn, Gordon and Koç, Bahattin and Bartolo, Paulo
Title Investigating the Influence of Architecture and Material Composition of 3D Printed Anatomical Design Scaffolds for Large Bone Defects [Abstract]
Year 2021
Journal/Proceedings International Journal of Bioprinting; Vol 7, No 2 (2021)
Reftype
DOI/URL URL
Abstract
There is a significant unmet clinical need to prevent amputations due to large bone loss injuries. We are addressing this problem by developing a novel, cost-effective osseointegrated prosthetic solution based on the use of modular pieces, bone bricks, made with biocompatible and biodegradable materials that fit together in a Lego-like way to form the prosthesis. This paper investigates the anatomical designed bone bricks with different architectures, pore size gradients, and material compositions. Polymer and polymer-composite 3D printed bone bricks are extensively morphological, mechanical, and biological characterized. Composite bone bricks were produced by mixing polycaprolactone (PCL) with different levels of hydroxyapatite (HA) and β-tri-calcium phosphate (TCP). Results allowed to establish a correlation between bone bricks architecture and material composition and bone bricks performance. Reinforced bone bricks showed improved mechanical and biological results. Best mechanical properties were obtained with PCL/TCP bone bricks with 38 double zig-zag filaments and 14 spiral-like pattern filaments, while the best biological results were obtained with PCL/HA bone bricks based on 25 double zig-zag filaments and 14 spiral-like pattern filaments.
AUTHOR Wang, Weiguang and Chen, Jun-Xiang and Hou, Yanhao and Bartolo, Paulo and Chiang, Wei-Hung
Title Investigations of Graphene and Nitrogen-Doped Graphene Enhanced Polycaprolactone 3D Scaffolds for Bone Tissue Engineering [Abstract]
Year 2021
Journal/Proceedings Nanomaterials
Reftype
DOI/URL URL DOI
Abstract
Scaffolds play a key role in tissue engineering applications. In the case of bone tissue engineering, scaffolds are expected to provide both sufficient mechanical properties to withstand the physiological loads, and appropriate bioactivity to stimulate cell growth. In order to further enhance cell–cell signaling and cell–material interaction, electro-active scaffolds have been developed based on the use of electrically conductive biomaterials or blending electrically conductive fillers to non-conductive biomaterials. Graphene has been widely used as functioning filler for the fabrication of electro-active bone tissue engineering scaffolds, due to its high electrical conductivity and potential to enhance both mechanical and biological properties. Nitrogen-doped graphene, a unique form of graphene-derived nanomaterials, presents significantly higher electrical conductivity than pristine graphene, and better surface hydrophilicity while maintaining a similar mechanical property. This paper investigates the synthesis and use of high-performance nitrogen-doped graphene as a functional filler of poly(ɛ-caprolactone) (PCL) scaffolds enabling to develop the next generation of electro-active scaffolds. Compared to PCL scaffolds and PCL/graphene scaffolds, these novel scaffolds present improved in vitro biological performance.
AUTHOR Petretta, Mauro and Gambardella, Alessandro and Desando, Giovanna and Cavallo, Carola and Bartolotti, Isabella and Shelyakova, Tatiana and Goranov, Vitaly and Brucale, Marco and Dediu, Valentin Alek and Fini, Milena and Grigolo, Brunella
Title Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering [Abstract]
Year 2021
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
Multifunctional and resistant 3D structures represent a great promise and a great challenge in bone tissue engineering. This study addresses this problem by employing polycaprolactone (PCL)-based scaffolds added with hydroxyapatite (HAp) and superparamagnetic iron oxide nanoparticles (SPION), able to drive on demand the necessary cells and other bioagents for a high healing efficiency. PCL-HAp-SPION scaffolds with different concentrations of the superparamagnetic component were developed through the 3D-printing technology and the specific topographical features were detected by Atomic Force and Magnetic Force Microscopy (AFM-MFM). AFM-MFM measurements confirmed a homogenous distribution of HAp and SPION throughout the surface. The magnetically assisted seeding of cells in the scaffold resulted most efficient for the 1% SPION concentration, providing good cell entrapment and adhesion rates. Mesenchymal Stromal Cells (MSCs) seeded onto PCL-HAp-1% SPION showed a good cell proliferation and intrinsic osteogenic potential, indicating no toxic effects of the employed scaffold materials. The performed characterizations and the collected set of data point on the inherent osteogenic potential of the newly developed PCL-HAp-1% SPION scaffolds, endorsing them towards next steps of in vitro and in vivo studies and validations.
AUTHOR Lin, Che-Wei and Su, Yu-Feng and Lee, Chih-Yun and Kang, Lin and Wang, Yan-Hsiung and Lin, Sung-Yen and Wang, Chih-Kuang
Title 3D printed bioceramics fabricated using negative thermoresponsive hydrogels and silicone oil sealing to promote bone formation in calvarial defects [Abstract]
Year 2020
Journal/Proceedings Ceramics International
Reftype
DOI/URL URL DOI
Abstract
The purpose of the present work was to investigate the potential for application and the effectiveness of osteoconductive scaffolds with bicontinuous phases of 3D printed bioceramics (3DP-BCs) based on reverse negative thermoresponsive hydrogels (poly[(N-isopropylacrylamide)-co-(methacrylic acid)]; p(NiPAAm-MAA)). 3DP-BCs have bioceramic objects and microchannel pores when created using robotic deposition additive manufacturing. We evaluated the benefits of silicone oil sealing on the 3DP-BC green body during the sintering process in terms of densification and structural stability. The shrinkage, density, porosity, element composition, phase structure and microstructural analyses and compression strength measurements of sintered 3DP-BC objects are presented and discussed in this study. In addition, the results of cell viability assays and bone healing analyses of the calvarial bone defects in a rabbit model were used to evaluate 3DP-BC performance. The main results indicated that these 3DP-BC scaffolds have optimal continuous pores and adequate compressive strength, which can enable the protection of calvarial defects and provide an environment for cell growth. Therefore, 3DP-BC scaffolds have better new bone regeneration efficiency in rabbit calvarial bone defect models than empty scaffolds and mold-forming bioceramic scaffolds (MF-BCs).
AUTHOR Critchley, Susan and Sheehy, Eamon J. and Cunniffe, Gráinne and Diaz-Payno, Pedro and Carroll, Simon F. and Jeon, Oju and Alsberg, Eben and Brama, Pieter A. J. and Kelly, Daniel J.
Title 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects [Abstract]
Year 2020
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
Successful osteochondral defect repair requires regenerating the subchondral bone whilst simultaneously promoting the development of an overlying layer of articular cartilage that is resistant to vascularization and endochondral ossification. During skeletal development articular cartilage also functions as a surface growth plate, which postnatally is replaced by a more spatially complex bone-cartilage interface. Motivated by this developmental process, the hypothesis of this study is that bi-phasic, fibre-reinforced cartilaginous templates can regenerate both the articular cartilage and subchondral bone within osteochondral defects created in caprine joints. To engineer mechanically competent implants, we first compared a range of 3D printed fibre networks (PCL, PLA and PLGA) for their capacity to mechanically reinforce alginate hydrogels whilst simultaneously supporting mesenchymal stem cell (MSC) chondrogenesis in vitro. These mechanically reinforced, MSC-laden alginate hydrogels were then used to engineer the endochondral bone forming phase of bi-phasic osteochondral constructs, with the overlying chondral phase consisting of cartilage tissue engineered using a co-culture of infrapatellar fat pad derived stem/stromal cells (FPSCs) and chondrocytes. Following chondrogenic priming and subcutaneous implantation in nude mice, these bi-phasic cartilaginous constructs were found to support the development of vascularised endochondral bone overlaid by phenotypically stable cartilage. These fibre-reinforced, bi-phasic cartilaginous templates were then evaluated in clinically relevant, large animal (caprine) model of osteochondral defect repair. Although the quality of repair was variable from animal-to-animal, in general more hyaline-like cartilage repair was observed after 6 months in animals treated with bi-phasic constructs compared to animals treated with commercial control scaffolds. This variability in the quality of repair points to the need for further improvements in the design of 3D bioprinted implants for joint regeneration. Statement of Significance Successful osteochondral defect repair requires regenerating the subchondral bone whilst simultaneously promoting the development of an overlying layer of articular cartilage. In this study, we hypothesised that bi-phasic, fibre-reinforced cartilaginous templates could be leveraged to regenerate both the articular cartilage and subchondral bone within osteochondral defects. To this end we used 3D printed fibre networks to mechanically reinforce engineered transient cartilage, which also contained an overlying layer of phenotypically stable cartilage engineered using a co-culture of chondrocytes and stem cells. When chondrogenically primed and implanted into caprine osteochondral defects, these fibre-reinforced bi-phasic cartilaginous grafts were shown to spatially direct tissue development during joint repair. Such developmentally inspired tissue engineering strategies, enabled by advances in biofabrication and 3D printing, could form the basis of new classes of regenerative implants in orthopaedic medicine.
AUTHOR Wibowo, Arie and Vyas, Cian and Cooper, Glen and Qulub, Fitriyatul and Suratman, Rochim and Mahyuddin, Andi Isra and Dirgantara, Tatacipta and Bartolo, Paulo
Title 3D Printing of Polycaprolactone-Polyaniline Electroactive Scaffolds for Bone Tissue Engineering. [Abstract]
Year 2020
Journal/Proceedings Materials
Reftype
DOI/URL DOI
Abstract
Electrostimulation and electroactive scaffolds can positively influence and guide cellular behaviour and thus has been garnering interest as a key tissue engineering strategy. The development of conducting polymers such as polyaniline enables the fabrication of conductive polymeric composite scaffolds. In this study, we report on the initial development of a polycaprolactone scaffold incorporating different weight loadings of a polyaniline microparticle filler. The scaffolds are fabricated using screw-assisted extrusion-based 3D printing and are characterised for their morphological, mechanical, conductivity, and preliminary biological properties. The conductivity of the polycaprolactone scaffolds increases with the inclusion of polyaniline. The in vitro cytocompatibility of the scaffolds was assessed using human adipose-derived stem cells to determine cell viability and proliferation up to 21 days. A cytotoxicity threshold was reached at 1% wt. polyaniline loading. Scaffolds with 0.1% wt. polyaniline showed suitable compressive strength (6.45 ± 0.16 MPa) and conductivity (2.46 ± 0.65 × 10(-4) S/cm) for bone tissue engineering applications and demonstrated the highest cell viability at day 1 (88%) with cytocompatibility for up to 21 days in cell culture.
AUTHOR Zamani, Yasaman and Amoabediny, Ghassem and Mohammadi, Javad and Seddiqi, Hadi and Helder, Marco N. and Zandieh-Doulabi, Behrouz and Klein-Nulend, Jenneke and Koolstra, Jan Harm
Title 3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering [Abstract]
Year 2020
Journal/Proceedings Journal of the Mechanical Behavior of Biomedical Materials
Reftype
DOI/URL URL DOI
Abstract
In bone tissue engineering, prediction of forces induced to the native bone during normal functioning is important in the design, fabrication, and integration of a scaffold with the host. The aim of this study was to customize the mechanical properties of a layer-by-layer 3D-printed poly(ϵ-caprolactone) (PCL) scaffold estimated by finite element (FE) modeling in order to match the requirements of the defect, to prevent mechanical failure, and ensure optimal integration with the surrounding tissue. Forces and torques induced on the mandibular symphysis during jaw opening and closing were predicted by FE modeling. Based on the predicted forces, homogeneous-structured PCL scaffolds with 3 different void sizes (0.3, 0.6, and 0.9 mm) were designed and 3D-printed using an extrusion based 3D-bioprinter. In addition, 2 gradient-structured scaffolds were designed and 3D-printed. The first gradient scaffold contained 2 regions (0.3 mm and 0.6 mm void size in the upper and lower half, respectively), whereas the second gradient scaffold contained 3 regions (void sizes of 0.3, 0.6, and 0.9 mm in the upper, middle and lower third, respectively). Scaffolds were tested for their compressive and tensile strength in the upper and lower halves. The actual void size of the homogeneous scaffolds with designed void size of 0.3, 0.6, and 0.9 mm was 0.20, 0.59, and 0.95 mm, respectively. FE modeling showed that during opening and closing of the jaw, the highest force induced on the symphysis was a compressive force in the transverse direction. The compressive force was induced throughout the symphyseal line and reduced from top (362.5 N, compressive force) to bottom (107.5 N, tensile force) of the symphysis. Compressive and tensile strength of homogeneous scaffolds decreased by 1.4-fold to 3-fold with increasing scaffold void size. Both gradient scaffolds had higher compressive strength in the upper half (2 region-gradient scaffold: 4.9 MPa; 3 region-gradient scaffold: 4.1 MPa) compared with the lower half (2 region-gradient scaffold: 2.5 MPa; 3 region-gradient scaffold: 2.7 MPa) of the scaffold. 3D-printed PCL scaffolds had higher compressive strength in the scaffold layer-by-layer building direction compared with the side direction, and a very low tensile strength in the scaffold layer-by-layer building direction. Fluid shear stress and fluid pressure distribution in the gradient scaffolds were more homogeneous than in the 0.3 mm void size scaffold and similar to the 0.6 mm and 0.9 mm void size scaffolds. In conclusion, these data show that the mechanical properties of 3D-printed PCL scaffolds can be tailored based on the predicted forces on the mandibular symphysis. These 3D-printed PCL scaffolds had different mechanical properties in scaffold building direction compared with the side direction, which should be taken into account when placing the scaffold in the defect site. Our findings might have implications for improved performance and integration of scaffolds with native tissue.
AUTHOR Wang, Zehao and Hui, Aiping and Zhao, Hongbin and Ye, Xiaohan and Zhang, Chao and Wang, Aiqin and Zhang, Changqing
Title A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration [Abstract]
Year 2020
Journal/Proceedings International Journal of Nanomedicine
Reftype
DOI/URL URL
Abstract
BACKGROUND: Natural clay nanomaterials are an emerging class of biomaterial with great potential for tissue engineering and regenerative medicine applications, most notably for osteogenesis. MATERIALS AND METHODS: Herein, for the first time, novel tissue engineering scaffolds were prepared by 3D bioprinter using nontoxic and bioactive natural attapulgite (ATP) nanorods as starting materials, with polyvinyl alcohol as binder, and then sintered to obtain final scaffolds. The microscopic morphology and structure of ATP particles and scaffolds were observed by transmission electron microscope and scanning electron microscope. In vitro biocompatibility and osteogenesis with osteogenic precursor cell (hBMSCs) were assayed using MTT method, Live/Dead cell staining, alizarin red staining and RT-PCR. In vivo bone regeneration was evaluated with micro-CT and histology analysis in rat cranium defect model. RESULTS: We successfully printed a novel porous nano-ATP scaffold designed with inner channels with a dimension of 500 µm and wall structures with a thickness of 330 µm. The porosity of current 3D-printed scaffolds ranges from 75% to 82% and the longitudinal compressive strength was up to 4.32±0.52 MPa. We found firstly that nano-ATP scaffolds with excellent biocompatibility for hBMSCscould upregulate the expression of osteogenesis-related genes bmp2 and runx2 and calcium deposits in vitro. Interestingly, micro-CT and histology analysis revealed abundant newly formed bone was observed along the defect margin, even above and within the 3D bioprinted porous ATP scaffolds in a rat cranial defect model. Furthermore, histology analysis demonstrated that bone was formed directly following a process similar to membranous ossification without any intermediate cartilage formation and that many newly formed blood vessels are within the pores of 3D-printed scaffolds at four and eight weeks. CONCLUSION: These results suggest that the 3D-printed porous nano-ATP scaffolds are promising candidates for bone tissue engineering by osteogenesis and angiogenesis.
AUTHOR Huang, Boyang and Vyas, Cian and Byun, Jae Jong and El-Newehy, Mohamed and Huang, Zhucheng and Bártolo, Paulo
Title Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation [Abstract]
Year 2020
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
The development of highly biomimetic scaffolds in terms of composition and structures, to repair or replace damaged bone tissues, is particularly relevant for tissue engineering. This paper investigates a 3D printed porous scaffold containing aligned multi-walled carbon nanotubes (MWCNTs) and nano-hydroxyapatite (nHA), mimicking the natural bone tissue from the nanoscale to macroscale level. MWCNTs with similar dimensions as collagen fibres are coupled with nHA and mixed within a polycaprolactone (PCL) matrix to produce scaffolds using a screw-assisted extrusion-based additive manufacturing system. Scaffolds with different material compositions were extensively characterised from morphological, mechanical and biological points of views. Transmission electron microscopy and polarised Raman spectroscopy confirm the presence of aligned MWCNTs within the printed filaments. The PCL/HA/MWCNTs scaffold are similar to the nanostructure of native bone and shows overall increased mechanical properties, cell proliferation, osteogenic differentiation and scaffold mineralisation, indicating a promising approach for bone tissue regeneration.
AUTHOR Zamani, Yasaman and Mohammadi, Javad and Amoabediny, Ghassem and Helder, Marco N. and Zandieh-Doulabi, Behrouz and Klein-Nulend, Jenneke
Title Bioprinting of Alginate-Encapsulated Pre-osteoblasts in PLGA/β-TCP Scaffolds Enhances Cell Retention but Impairs Osteogenic Differentiation Compared to Cell Seeding after 3D-Printing [Abstract]
Year 2020
Journal/Proceedings Regenerative Engineering and Translational Medicine
Reftype Zamani2020
DOI/URL DOI
Abstract
In tissue engineering, cellularization of scaffolds has typically been performed by seeding the cells after scaffold fabrication. 3D-printing technology now allows bioprinting of cells encapsulated in a hydrogel simultaneously with the scaffold material. Here, we aimed to investigate whether bioprinting or cell seeding post-printing is more effective in enhancing responses of pre-osteoblastic MC3T3-E1 cell line derived from mouse calvaria.
AUTHOR Diloksumpan, Paweena and de Ruijter, Myl{`{e}}ne and Castilho, Miguel and Gbureck, Uwe and Vermonden, Tina and van Weeren, P. Ren{'{e}} and Malda, Jos and Levato, Riccardo
Title Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces [Abstract]
Year 2020
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Multi-material 3D printing technologies that resolve features at different lengths down to the microscale open new avenues for regenerative medicine, particularly in the engineering of tissue interfaces. Herein, extrusion printing of a bone-biomimetic ceramic ink and melt electrowriting (MEW) of spatially organized polymeric microfibres are integrated for the biofabrication of an osteochondral plug, with a mechanically reinforced bone-to-cartilage interface. A printable physiological temperature-setting bioceramic, based on α-tricalcium phosphate, nanohydroxyapatite and a custom-synthesized biodegradable and crosslinkable poloxamer, was developed as bone support. The mild setting reaction of the bone ink enabled us to print directly within melt electrowritten polycaprolactone meshes, preserving their micro-architecture. Ceramic-integrated MEW meshes protruded into the cartilage region of the composite plug, and were embedded with mechanically soft gelatin-based hydrogels, laden with articular cartilage chondroprogenitor cells. Such interlocking design enhanced the hydrogel-to-ceramic adhesion strength >6.5-fold, compared with non-interlocking fibre architectures, enabling structural stability during handling and surgical implantation in osteochondral defects ex vivo. Furthermore, the MEW meshes endowed the chondral compartment with compressive properties approaching those of native cartilage (20-fold reinforcement versus pristine hydrogel). The osteal and chondral compartment supported osteogenesis and cartilage matrix deposition in vitro, and the neo-synthesized cartilage matrix further contributed to the mechanical reinforcement at the ceramic-hydrogel interface. This multi-material, multi-scale 3D printing approach provides a promising strategy for engineering advanced composite constructs for the regeneration of musculoskeletal and connective tissue interfaces.
AUTHOR Müller, Michael and Fisch, Philipp and Molnar, Marc and Eggert, Sebastian and Binelli, Marco and Maniura-Weber, Katharina and Zenobi-Wong, Marcy
Title Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering [Abstract]
Year 2020
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Achieving reproducibility in the 3D printing of biomaterials requires a robust polymer synthesis method to reduce batch-to-batch variation as well as methods to assure a thorough characterization throughout the manufacturing process. Particularly biomaterial inks containing large solid fractions such as ceramic particles, often required for bone tissue engineering applications, are prone to inhomogeneity originating from inadequate mixing or particle aggregation which can lead to inconsistent printing results. The production of such an ink for bone tissue engineering consisting of gellan gum methacrylate (GG-MA), hyaluronic acid methacrylate and hydroxyapatite (HAp) particles was therefore optimized in terms of GG-MA synthesis and ink preparation process, and the ink's printability was thoroughly characterized to assure homogeneous and reproducible printing results. A new buffer mediated synthesis method for GG-MA resulted in consistent degrees of substitution which allowed the creation of large 5 g batches. We found that both the new synthesis as well as cryomilling of the polymer components of the ink resulted in a decrease in viscosity from 113 kPa·s to 11.3 kPa·s at a shear rate of 0.1 s−1 but increased ink homogeneity. The ink homogeneity was assessed through thermogravimetric analysis and a newly developed extrusion force measurement setup. The ink displayed strong inter-layer adhesion between two printed ink layers as well as between a layer of ink with and a layer without HAp. The large polymer batch production along with the characterization of the ink during the manufacturing process allows ink production in the gram scale and could be used in applications such as the printing of osteochondral grafts.
AUTHOR Huang, Boyang and Aslan, Enes and Jiang, Zhengyi and Daskalakis, Evangelos and Jiao, Mohan and Aldalbahi, Ali and Vyas, Cian and Bártolo, Paulo
Title Engineered dual-scale poly (ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration [Abstract]
Year 2020
Journal/Proceedings Additive Manufacturing
Reftype
DOI/URL URL DOI
Abstract
Large bone defects due to trauma or disease present a significant clinical challenge with limited efficacy of current therapies. A key aim is to develop biomimetic scaffolds that reflect the native tissue structure with 3D printing being an important enabling technology. However, the incorporation of multiple length scales and anisotropic features, mimicking the native architecture, is difficult with current processes. In this study, we propose a simple and versatile hybrid printing process using a screw-assisted additive manufacturing technique combined with rotational electrospinning to fabricate dual-scale anisotropic scaffolds. 3D microscale porous polycaprolactone (PCL) structures with highly aligned nanoscale fibres were successfully produced layer-by-layer. The scaffolds were morphological, mechanical and biological characterised. Human adipose-derived stem cells (hADSCs) were seeded on the hybrid scaffold to evaluate the effects of structural and anisotropic topographic cues on cell attachment, proliferation and osteogenesis differentiation. Results show that the 3D printed microscale structures have uniform and well-defined geometries and the alignment of nanoscale electrospun fibres increases by increasing the electrospinning rotational velocity. Mechanical results show that there is no significant difference between 3D printed scaffolds with or without electrospun meshes. In vitro results show higher cell seeding efficiency and proliferation in dual-scale scaffolds with high density electrospun meshes. A more stretched and elongated cell morphology was observed in aligned nanofibre scaffolds showing higher anisotropic cytoskeletal organization than 3D printed PCL scaffolds without electrospun meshes. The dual-scale scaffolds present improved overall osteogenic markers expressions (COL-1, ALP and OCN). However, no statistical difference between normalised osteogenic marker expressions were observed between dual-scale scaffolds and 3D printed scaffolds. This might be attributed to the poor bioactivity of the substrate material, PCL, suggesting topographical cues might not be sufficient to stimulate cell fate towards to an osteogenic linage. The results suggest that the proposed fabrication strategy is a promising approach for the design of novel bone scaffolds to modulate cell fates by integrating the topographic cue reported in this paper with biochemical cues associated to the use of more bioactive materials.
AUTHOR Song, Jie-Liang and Fu, Xin-Ye and Raza, Ali and Shen, Nai-An and Xue, Ya-Qi and Wang, Hua-Jie and Wang, Jin-Ye
Title Enhancement of mechanical strength of TCP-alginate based bioprinted constructs [Abstract]
Year 2020
Journal/Proceedings Journal of the Mechanical Behavior of Biomedical Materials
Reftype
DOI/URL URL DOI
Abstract
To overcome the mechanical drawback of bioink, we proposed a supporter model to enhance the mechanical strength of bioprinted 3D constructs, in which a unit-assembly idea was involved. Based on Computed Tomography images of critical-sized rabbit bone defect, the 3D re-construction was accomplished by a sequenced process using Mimics 17.0, BioCAM and BioCAD software. 3D constructs were bioprinted using polycaprolactone (PCL) ink for the outer supporter under extrusion mode, and cell-laden tricalcium phosphate (TCP)/alginate bioink for the inner filler under air pressure dispensing mode. The relationship of viscosity of bioinks, 3D bioprinting pressure, TCP/alginate ratio and cell survival were investigated by the shear viscosities analysis, live/dead cell test and cell-counting kit 8 measurement. The viscosity of bioinks at 1.0 s−1-shear rate could be adjusted within the range of 1.75 ± 0.29 Pa·s to 155.65 ± 10.86 Pa·s by changing alginate concentration, corresponding to 10 kPa–130 kPa of printing pressure. This design with PCL supporter could significantly enhance the compressive strength and compressive modulus of standardized 3D mechanical testing specimens up to 2.15 ± 0.14 MPa to 2.58 ± 0.09 MPa, and 42.83 ± 4.75 MPa to 53.12 ± 1.19 MPa, respectively. Cells could maintain the high viability (over 80%) under the given printing pressure but cell viability declined with the increase of TCP content. Cell survival after experiencing 7 days of cell culture could be achieved when the ratio of TCP/alginate was 1 : 4. All data supported the feasibility of the supporter and unit-assembly model to enhance mechanical properties of bioprinted 3D constructs.
AUTHOR Dubey, Nileshkumar and Ferreira, Jessica A. and Malda, Jos and Bhaduri, Sarit B. and Bottino, Marco C.
Title Extracellular Matrix/Amorphous Magnesium Phosphate Bioink for 3D Bioprinting of Craniomaxillofacial Bone Tissue [Abstract]
Year 2020
Journal/Proceedings ACS Applied Materials & Interfaces
Reftype
DOI/URL DOI
Abstract
Bioprinting, a promising field in regenerative medicine, holds great potential to create three-dimensional, defect-specific vascularized bones with tremendous opportunities to address unmet craniomaxillofacial reconstructive challenges. A cytocompatible bioink is a critical prerequisite to successfully regenerate functional bone tissue. Synthetic self-assembling peptides have a nanofibrous structure resembling the native extracellular matrix (ECM), making them an excellent bioink component. Amorphous magnesium phosphates (AMPs) have shown greater levels of resorption while maintaining high biocompatibility, osteoinductivity, and low inflammatory response, as compared to their calcium phosphate counterparts. Here, we have established a novel bioink formulation (ECM/AMP) that combines an ECM-based hydrogel containing 2% octapeptide FEFEFKFK and 98% water with AMP particles to realize high cell function with desirable bioprintability. We analyzed the osteogenic differentiation of dental pulp stem cells (DPSCs) encapsulated in the bioink, as well as in vivo bone regeneration, to define the potential of the formulated bioink as a growth factor-free bone-forming strategy. Cell-laden AMP-modified bioprinted constructs showed an improved cell morphology but similar cell viability (∼90%) compared to their AMP-free counterpart. In functional assays, the cell-laden bioprinted constructs modified with AMP exhibited a high level of mineralization and osteogenic gene expression without the use of growth factors, thus suggesting that the presence of AMP-triggered DPSCs’ osteogenic differentiation. Cell-free ECM-based bioprinted constructs were implanted in vivo. In comparison with the ECM group, bone volume per total volume for ECM/1.0AMP was approximately 1.7- and 1.4-fold higher at 4 and 8 weeks, respectively. Further, a significant increase in the bone density was observed in ECM/1.0AMP from 4 to 8 weeks. These results demonstrate that the presence of AMP in the bioink significantly increased bone formation, thus showing promise for in situ bioprinting strategies. We foresee significant potential in translating this innovative bioink toward the regeneration of patient-specific bone tissue for regenerative dentistry. Bioprinting, a promising field in regenerative medicine, holds great potential to create three-dimensional, defect-specific vascularized bones with tremendous opportunities to address unmet craniomaxillofacial reconstructive challenges. A cytocompatible bioink is a critical prerequisite to successfully regenerate functional bone tissue. Synthetic self-assembling peptides have a nanofibrous structure resembling the native extracellular matrix (ECM), making them an excellent bioink component. Amorphous magnesium phosphates (AMPs) have shown greater levels of resorption while maintaining high biocompatibility, osteoinductivity, and low inflammatory response, as compared to their calcium phosphate counterparts. Here, we have established a novel bioink formulation (ECM/AMP) that combines an ECM-based hydrogel containing 2% octapeptide FEFEFKFK and 98% water with AMP particles to realize high cell function with desirable bioprintability. We analyzed the osteogenic differentiation of dental pulp stem cells (DPSCs) encapsulated in the bioink, as well as in vivo bone regeneration, to define the potential of the formulated bioink as a growth factor-free bone-forming strategy. Cell-laden AMP-modified bioprinted constructs showed an improved cell morphology but similar cell viability (∼90%) compared to their AMP-free counterpart. In functional assays, the cell-laden bioprinted constructs modified with AMP exhibited a high level of mineralization and osteogenic gene expression without the use of growth factors, thus suggesting that the presence of AMP-triggered DPSCs’ osteogenic differentiation. Cell-free ECM-based bioprinted constructs were implanted in vivo. In comparison with the ECM group, bone volume per total volume for ECM/1.0AMP was approximately 1.7- and 1.4-fold higher at 4 and 8 weeks, respectively. Further, a significant increase in the bone density was observed in ECM/1.0AMP from 4 to 8 weeks. These results demonstrate that the presence of AMP in the bioink significantly increased bone formation, thus showing promise for in situ bioprinting strategies. We foresee significant potential in translating this innovative bioink toward the regeneration of patient-specific bone tissue for regenerative dentistry.
AUTHOR Abu Awwad, Hosam Al-Deen M. and Thiagarajan, Lalitha and Kanczler, Janos M. and Amer, Mahetab H. and Bruce, Gordon and Lanham, Stuart and Rumney, Robin M. H. and Oreffo, Richard O. C. and Dixon, James E.
Title Genetically-programmed, mesenchymal stromal cell-laden & mechanically strong 3D bioprinted scaffolds for bone repair [Abstract]
Year 2020
Journal/Proceedings Journal of Controlled Release
Reftype
DOI/URL URL DOI
Abstract
Additive manufacturing processes used to create regenerative bone tissue engineered implants are not biocompatible, thereby restricting direct use with stem cells and usually require cell seeding post-fabrication. Combined delivery of stem cells with the controlled release of osteogenic factors, within a mechanically-strong biomaterial combined during manufacturing would replace injectable defect fillers (cements) and allow personalized implants to be rapidly prototyped by 3D bioprinting. Through the use of direct genetic programming via the sustained release of an exogenously delivered transcription factor RUNX2 (delivered as recombinant GET-RUNX2 protein) encapsulated in PLGA microparticles (MPs), we demonstrate that human mesenchymal stromal (stem) cells (hMSCs) can be directly fabricated into a thermo-sintered 3D bioprintable material and achieve effective osteogenic differentiation. Importantly we observed osteogenic programming of gene expression by released GET-RUNX2 (8.2-, 3.3- and 3.9-fold increases in OSX, RUNX2 and OPN expression, respectively) and calcification (von Kossa staining) in our scaffolds. The developed biodegradable PLGA/PEG paste formulation augments high-density bone development in a defect model (~2.4-fold increase in high density bone volume) and can be used to rapidly prototype clinically-sized hMSC-laden implants within minutes using mild, cytocompatible extrusion bioprinting. The ability to create mechanically strong 'cancellous bone-like’ printable implants for tissue repair that contain stem cells and controlled-release of programming factors is innovative, and will facilitate the development of novel localized delivery approaches to direct cellular behaviour for many regenerative medicine applications including those for personalized bone repair.
AUTHOR Hou, Yanhao and Wang, Weiguang and Bartolo, Paulo Jorge Da Silva
Title Investigating the Effect of Carbon Nanomaterials Reinforcing Poly(Ε-Caprolactone) Scaffolds for Bone Repair Applications [Abstract]
Year 2020
Journal/Proceedings International Journal of Bioprinting
Reftype
DOI/URL URL
Abstract
Scaffolds, three-dimensional (3D) substrates providing appropriate mechanical support and biological environments for new tissue formation, are the most common approaches in tissue engineering. To improve scaffold properties such as mechanical properties, surface characteristics, biocompatibility and biodegradability, different types of fillers have been used reinforcing biocompatible and biodegradable polymers. This paper investigates and compares the mechanical and biological behaviors of 3D printed poly(ε-caprolactone) scaffolds reinforced with graphene (G) and graphene oxide (GO) at different concentrations. Results show that contrary to G which improves mechanical properties and enhances cell attachment and proliferation, GO seems to show some cytotoxicity, particular at high contents.
AUTHOR Hou, Yanhao and Wang, Weiguang and Bártolo, Paulo
Title Novel Poly(ɛ-caprolactone)/Graphene Scaffolds for Bone Cancer Treatment and Bone Regeneration [Abstract]
Year 2020
Journal/Proceedings 3D Printing and Additive Manufacturing
Reftype
DOI/URL DOI
Abstract
Scaffold-based bone tissue engineering is the most relevant approach for critical-sized bone defects. It is based on the use of three-dimensional substrates to provide the appropriate biomechanical environment for bone regeneration. Despite some successful results previously reported, scaffolds were never designed for disease treatment applications. This article proposes a novel dual-functional scaffold for cancer applications, comprising both treatment and regeneration functions. These functions are achieved by combining a biocompatible and biodegradable polymer and graphene. Results indicate that high concentrations of graphene enhance the mechanical properties of the scaffolds, also increasing the inhibition on cancer cell viability and proliferation.
AUTHOR Diloksumpan, Paweena and Bolaños, Rafael Vindas and Cokelaere, Stefan and Pouran, Behdad and de Grauw, Janny and van Rijen, Mattie and van Weeren, René and Levato, Riccardo and Malda, Jos
Title Orthotopic Bone Regeneration within 3D Printed Bioceramic Scaffolds with Region-Dependent Porosity Gradients in an Equine Model [Abstract]
Year 2020
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract The clinical translation of three-dimensionally printed bioceramic scaffolds with tailored architectures holds great promise toward the regeneration of bone to heal critical-size defects. Herein, the long-term in vivo performance of printed hydrogel-ceramic composites made of methacrylated-oligocaprolactone-poloxamer and low-temperature self-setting calcium-phosphates is assessed in a large animal model. Scaffolds printed with different internal architectures, displaying either a designed porosity gradient or a constant pore distribution, are implanted in equine tuber coxae critical size defects. Bone ingrowth is challenged and facilitated only from one direction via encasing the bioceramic in a polycaprolactone shell. After 7 months, total new bone volume and scaffold degradation are significantly greater in structures with constant porosity. Interestingly, gradient scaffolds show lower extent of remodeling and regeneration even in areas having the same porosity as the constant scaffolds. Low regeneration in distal regions from the interface with native bone impairs ossification in proximal regions of the construct, suggesting that anisotropic architectures modulate the cross-talk between distant cells within critical-size defects. The study provides key information on how engineered architectural patterns impact osteoregeneration in vivo, and also indicates the equine tuber coxae as promising orthotopic model for studying materials stimulating bone formation.
AUTHOR Vyas, Cian and Ates, Gokhan and Aslan, Enes and Hart, Jack and Huang, Boyang and Bartolo, Paulo
Title Three-Dimensional Printing and Electrospinning Dual-Scale Polycaprolactone Scaffolds with Low-Density and Oriented Fibers to Promote Cell Alignment [Abstract]
Year 2020
Journal/Proceedings 3D Printing and Additive Manufacturing
Reftype
DOI/URL DOI
Abstract
Complex and hierarchically functionalized scaffolds composed of micro- and nanoscale structures are a key goal in tissue engineering. The combination of three-dimensional (3D) printing and electrospinning enables the fabrication of these multiscale structures. This study presents a polycaprolactone 3D-printed and electrospun scaffold with multiple mesh layers and fiber densities. The results show successful fabrication of a dual-scale scaffold with the 3D-printed scaffold acting as a gap collector with the printed microfibers as the electrodes and the pores a series of insulating gaps resulting in aligned nanofibers. The electrospun fibers are highly aligned perpendicular to the direction of the printed fiber and form aligned meshes within the pores of the scaffold. Mechanical testing showed no significant difference between the number of mesh layers whereas the hydrophobicity of the scaffold increased with increasing fiber density. Biological results indicate that increasing the number of mesh layers improves cell proliferation, migration, and adhesion. The aligned nanofibers within the microscale pores allowed enhanced cell bridging and cell alignment that was not observed in the 3D-printed only scaffold. These results demonstrate a facile method of incorporating low-density and aligned fibers within a 3D-printed scaffold that is a promising development in multiscale hierarchical scaffolds where alignment of cells can be desirable.
AUTHOR Nasim Golafshan and Elke Vorndran and Stefan Zaharievski and Harold Brommer and Firoz Babu Kadumudi and Alireza Dolatshahi-Pirouz and Uwe Gbureck and René {van Weeren} and Miguel Castilho and Jos Malda
Title Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model [Abstract]
Year 2020
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
One of the important challenges in bone tissue engineering is the development of biodegradable bone substitutes with appropriate mechanical and biological properties for the treatment of larger defects and those with complex shapes. Recently, magnesium phosphate (MgP) doped with biologically active ions like strontium (Sr2+) have shown to significantly enhance bone formation when compared with the standard calcium phosphate-based ceramics. However, such materials can hardly be shaped into large and complex geometries and more importantly lack the adequate mechanical properties for the treatment of load-bearing bone defects. In this study, we have fabricated bone implants through extrusion assisted three-dimensional (3D) printing of MgP ceramics modified with Sr2+ ions (MgPSr) and a medical grade polycaprolactone (PCL) polymer phase. MgPSr with 30 wt% PCL (MgPSr-PCL30) allowed the printability of relevant size structures (>780 mm3) at room temperature with an interconnected macroporosity of approximately 40%. The printing resulted in implants with a compressive strength of 4.3 MPa, which were able to support up to 50 cycles of loading without plastic deformation. Notably, MgPSr-PCL30 scaffolds were able to promote in vitro bone formation in medium without the supplementation with osteo-inducing components. In addition, long-term in vivo performance of the 3D printed scaffolds was investigated in an equine tuber coxae model over 6 months. The micro-CT and histological analysis showed that implantation of MgPSr-PCL30 induced bone regeneration, while no bone formation was observed in the empty defects. Overall, the novel polymer modified MgP ceramic material and extrusion-based 3D printing process presented here greatly improved the shape ability and load bearing properties of MgP-based ceramics with simultaneously induction of new bone formation.
AUTHOR Shen, Jie and Wang, Wenhao and Zhai, Xinyun and Chen, Bo and Qiao, Wei and Li, Wan and Li, Penghui and Zhao, Ying and Meng, Yuan and Qian, Shi and Liu, Xuanyong and Chu, Paul K. and Yeung, Kelvin W. K.
Title 3D-printed nanocomposite scaffolds with tunable magnesium ionic microenvironment induce in situ bone tissue regeneration [Abstract]
Year 2019
Journal/Proceedings Applied Materials Today
Reftype
DOI/URL URL DOI
Abstract
Local tissue microenvironment is able to regulate cell-to-cell interaction that leads to effective tissue repair. This study aims to demonstrate a tunable magnesium ionic (Mg2+) microenvironment in bony tissue that can significantly induce bone defect repair. The concept can be realized by using a newly fabricated nanocomposite comprising of custom-made copolymer polycaprolactone-co-poly(ethylene glycol)-co-polycaprolactone (PCL-PEG-PCL) and surface-modified magnesium oxide (MgO) nanoparticles. In this study, additive manufacturing (AM) technology had been adopted to help design the porous three-dimensional (3D) scaffolds with tunable Mg2+ microenvironment. We found that the wettability and printability of new copolymer had been improved as compared with that of PCL polymer. Additionally, when MgO nanoparticles incorporated into the newly synthesized hydrophilic copolymer matrix, it could lead to increased compressive moduli significantly. In the in vitro studies, the fabricated nanocomposite scaffold with low concentration of Mg2+ microenvironment not only demonstrated better cytocompatibility, but also remarkably enhanced osteogenic differentiation in vitro as compared with the pure PCL and PCL-PEG-PCL co-polymer controls. In the animal studies, we also found that superior and early bone formation and tissue mineralization could be observed in the same 3D printed scaffold. However, the nanocomposite scaffold with high concentration of Mg2+ jeopardized the in situ bony tissue regeneration capability due to excessive magnesium ions in bone tissue microenvironment. Lastly, this study demonstrates that the nanocomposite 3D scaffold with controlled magnesium concentration in bone tissue microenvironment can effectively promote bone defect repair.
AUTHOR Wang, Weiguang and Huang, Boyang and Byun, Jae Jong and Bártolo, Paulo
Title Assessment of PCL/carbon material scaffolds for bone regeneration [Abstract]
Year 2019
Journal/Proceedings Journal of the Mechanical Behavior of Biomedical Materials
Reftype
DOI/URL URL DOI
Abstract
Biomanufacturing is a relatively new research domain focusing on the use of additive manufacturing technologies, biomaterials, cells and biomolecular signals to produce tissue constructs for tissue engineering. For bone regeneration, researchers are focusing on the use of polymeric and polymer/ceramic scaffolds seeded with osteoblasts or mesenchymal stem cells. However, the design of high-performance scaffolds in terms of mechanical, cell-stimulation and biological performance is still required. This is the first paper investigating the use of an extrusion additive manufacturing system to produce poly(ε-caprolactone) (PCL), PCL/graphene nanosheet (GNS) and PCL/carbon nanotube (CNT) scaffolds for bone applications. Scaffolds with regular and reproducible architecture were produced and evaluated from chemical, physical and biological points of view. Results suggest that the addition of both graphene and CNT allow the fabrication of scaffolds with improved properties. It also shows that scaffolds containing graphene present better mechanical properties and high cell-affinity improving cell attachment, proliferation and differentiation.
AUTHOR Freeman, F. E. and Browe, D. C. and Nulty, J. and Von Euw, S. and Grayson, W. L. and Kelly, D. J.
Title Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering. [Abstract]
Year 2019
Journal/Proceedings European Cells and Materials Journal
Reftype
DOI/URL URL DOI
Abstract
Interconnected porosity is critical to the design of regenerative scaffolds, as it permits cell migration, vascularisation and diffusion of nutrients and regulatory molecules inside the scaffold. 3D printing is a promising strategy to achieve this as it allows the control over scaffold pore size, porosity and interconnectivity. Thus, the aim of the present study was to integrate distinct biofabrication strategies to develop a multiscale porous scaffold that was not only mechanically functional at the time of implantation, but also facilitated rapid vascularisation and provided stem cells with appropriate cues to enable their differentiation into osteoblasts. To achieve this, polycaprolactone (PCL) was functionalised with decellularised bone extracellular matrix (ECM), to produce osteoinductive filaments for 3D printing. The addition of bone ECM to the PCL not only increased the mechanical properties of the resulting scaffold, but also increased cellular attachment and enhanced osteogenesis of mesenchymal stem cells (MSCs). In vivo, scaffold pore size determined the level of vascularisation, with a larger filament spacing supporting faster vessel in-growth and more new bone formation. By freeze-drying solubilised bone ECM within these 3D-printed scaffolds, it was possible to introduce a matrix network with microscale porosity that further enhanced cellular attachment in vitro and increased vessel infiltration and overall levels of new bone formation in vivo. To conclude, an "off-the-shelf" multiscale bone-ECM-derived scaffold was developed that was mechanically stable and, once implanted in vivo, will drive vascularisation and, ultimately, lead to bone regeneration.
AUTHOR Marques, C. F. and Diogo, G. S. and Pina, S. and Oliveira, J. M. and Silva, T. H. and Reis, R. L.
Title Collagen-based bioinks for hard tissue engineering applications: a comprehensive review [Abstract]
Year 2019
Journal/Proceedings Journal of Materials Science: Materials in Medicine
Reftype
DOI/URL DOI
Abstract
In the last few years, additive manufacturing (AM) has been gaining great interest in the fabrication of complex structures for soft-to-hard tissues regeneration, with tailored porosity, and boosted structural, mechanical, and biological properties. 3D printing is one of the most known AM techniques in the field of biofabrication of tissues and organs. This technique opened up opportunities over the conventional ones, with the capability of creating replicable, customized, and functional structures that can ultimately promote effectively different tissues regeneration. The uppermost component of 3D printing is the bioink, i.e. a mixture of biomaterials that can also been laden with different cell types, and bioactive molecules. Important factors of the fabrication process include printing fidelity, stability, time, shear-thinning properties, mechanical strength and elasticity, as well as cell encapsulation and cell-compatible conditions. Collagen-based materials have been recognized as a promising choice to accomplish an ideal mimetic bioink for regeneration of several tissues with high cell-activating properties. This review presents the state-of-art of the current achievements on 3D printing using collagen-based materials for hard tissue engineering, particularly on the development of scaffolds for bone and cartilage repair/regeneration. The ultimate aim is to shed light on the requirements to successfully print collagen-based inks and the most relevant properties exhibited by the so fabricated scaffolds. In this regard, the adequate bioprinting parameters are addressed, as well as the main materials properties, namely physicochemical and mechanical properties, cell compatibility and commercial availability, covering hydrogels, microcarriers and decellularized matrix components. Furthermore, the fabrication of these bioinks with and without cells used in inkjet printing, laser-assisted printing, and direct in writing technologies are also overviewed. Finally, some future perspectives of novel bioinks are given.
AUTHOR Marchiori, Gregorio and Berni, Matteo and Boi, Marco and Petretta, Mauro and Grigolo, Brunella and Bellucci, Devis and Cannillo, Valeria and Garavelli, Chiara and Bianchi, Michele
Title Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA [Abstract]
Year 2019
Journal/Proceedings Medical Engineering and Physics
Reftype
DOI/URL URL DOI
Abstract
In order to increase manufacturing and experimental efficiency, a certain degree of control over design performances before realization phase is recommended. In this context, this paper presents an integrated procedure to design 3D scaffolds for bone tissue engineering. The procedure required a combination of Computer Aided Design (CAD), Finite Element Analysis (FEA), and Design methodologies Of Experiments (DOE), firstly to understand the influence of the design parameters, and then to control them. Based on inputs from the literature and limitations imposed by the chosen manufacturing process (Precision Extrusion Deposition), 36 scaffold architectures have been drawn. The porosity of each scaffold has been calculated with CAD. Thereafter, a generic scaffold material was considered and its variable parameters were combined with the geometrical ones according to the Taguchi method, i.e. a DOE method. The compressive response of those principal combinations was simulated by FEA, and the influence of each design parameter on the scaffold compressive behaviour was clarified. Finally, a regression model was obtained correlating the scaffold's mechanical performances to its geometrical and material parameters. This model has been applied to a novel composite material made of polycaprolactone and innovative bioactive glass. By setting specific porosity (50%) and stiffness (0.05 GPa) suitable for trabecular bone substitutes, the model selected 4 of the 36 initial scaffold architectures. Only these 4 more promising geometries will be realized and physically tested for advanced indications on compressive strength and biocompatibility.
AUTHOR Wang, Weiguang and Junior, José Roberto Passarini and Nalesso, Paulo Roberto Lopes and Musson, David and Cornish, Jillian and Mendonça, Fernanda and Caetano, Guilherme Ferreira and Bártolo, Paulo
Title Engineered 3D printed poly(ɛ-caprolactone)/graphene scaffolds for bone tissue engineering [Abstract]
Year 2019
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Scaffolds are important physical substrates for cell attachment, proliferation and differentiation. Multiple factors could influence the optimal design of scaffolds for a specific tissue, such as the geometry, the materials used to modulate cell proliferation and differentiation, its biodegradability and biocompatibility. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes. Previous studies of human adipose-derived stem cells (hADSCs) seeded on poly(ε-caprolactone) (PCL)/graphene scaffolds have proved that the addition of small concentrations of graphene to PCL scaffolds improves cell proliferation. Based on such results, this paper further investigates, for the first time, both in vitro and in vivo characteristics of 3D printed PCL/graphene scaffolds. Scaffolds were evaluated from morphological, biological and short term immune response points of view. Results show that the produced scaffolds induce an acceptable level of immune response, suggesting high potential for in vivo applications. Finally, the scaffolds were used to treat a rat calvaria critical size defect with and without applying micro electrical stimulation (10 μA). Quantification of connective and new bone tissue formation and the levels of ALP, RANK, RANKL, OPG were considered. Results show that the use of scaffolds containing graphene and electrical stimulation seems to increase cell migration and cell influx, leading to new tissue formation, well-organized tissue deposition and bone remodelling.
AUTHOR Huang, Boyang and Vyas, Cian and Roberts, Iwan and Poutrel, Quentin-Arthur and Chiang, Wei-Hung and Blaker, Jonny J. and Huang, Zhucheng and Bártolo, Paulo
Title Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration [Abstract]
Year 2019
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Carbon nanotubes (CNTs) with exceptional physical and chemical properties are attracting significant interest in the field of tissue engineering. Several reports investigated CNTs biocompatibility and their impact in terms of cell attachment, proliferation and differentiation mainly using polymer/CNTs membranes. However, these 2D membranes are not able to emulate the complex in vivo environment. In this paper, additive manufacturing (3D printing) is used to create composite 3D porous scaffolds containing different loadings of multi-walled carbon nanotubes (MWCNT) (0.25, 0.75 and 3 wt%) for bone tissue regeneration. Pre-processed and processed materials were extensively characterised in terms of printability, morphological and topographic characteristics and thermal, mechanical and biological properties. Scaffolds with pore sizes ranging between 366 μm and 397 μm were successfully produced and able to sustain early-stage human adipose-derived mesenchymal stem cells attachment and proliferation. Results show that MWCNTs enhances protein adsorption, mechanical and biological properties. Composite scaffolds, particularly the 3 wt% loading of MWCNTs, seem to be good candidates for bone tissue regeneration.
AUTHOR Sharma, Aarushi and Desando, Giovanna and Petretta, Mauro and Chawla, Shikha and Bartolotti, Isabella and Manferdini, Cristina and Paolella, Francesca and Gabusi, Elena and Trucco, Diego and Ghosh, Sourabh and Lisignoli, Gina
Title Investigating the Role of Sustained Calcium Release in Silk-Gelatin-Based Three-Dimensional Bioprinted Constructs for Enhancing the Osteogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stromal Cells
Year 2019
Journal/Proceedings ACS Biomaterials Science & Engineering
Reftype
DOI/URL DOI
AUTHOR Dooley, Max and Prasopthum, Aruna and Liao, Zhiyu and Sinjab, Faris and McLaren, Jane and Rose, Felicity R. A. J. and Yang, Jing and Notingher, Ioan
Title Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples [Abstract]
Year 2019
Journal/Proceedings Biomedical Optics Express
Reftype
DOI/URL URL DOI
Abstract
Using phantom samples, we investigated the feasibility of spatially-offset Raman spectroscopy (SORS) as a tool for monitoring non-invasively the mineralization of bone tissue engineering scaffold in-vivo. The phantom samples consisted of 3D-printed scaffolds of poly-caprolactone (PCL) and hydroxyapatite (HA) blends, with varying concentrations of HA, to mimic the mineralisation process. The scaffolds were covered by a 4 mm layer of skin to simulate the real in-vivo measurement conditions. At a concentration of HA approximately 1/3 that of bone (~0.6 g/cm3), the characteristic Raman band of HA (960 cm−1) was detectable when the PCL:HA layer was located at 4 mm depth within the scaffold (i.e. 8 mm below the skin surface). For the layers of the PCL:HA immediately under the skin (i.e. top of the scaffold), the detection limit of HA was 0.18 g/cm3, which is approximately one order of magnitude lower than that of bone. Similar results were also found for the phantoms simulating uniform and inward gradual mineralisation of the scaffold, indicating the suitability of SORS to detect early stages of mineralisation. Nevertheless, the results also show that the contribution of the materials surrounding the scaffold can be significant and methods for subtraction need to be investigated in the future. In conclusion, these results indicate that spatially-offset Raman spectroscopy is a promising technique for in-vivo longitudinal monitoring scaffold mineralization and bone re-growth.
AUTHOR Caetano, Guilherme and Wang, Weiguang and Murashima, Adriana and Passarini, José Roberto and Bagne, Leonardo and Leite, Marcel and Hyppolito, Miguel and Al-Deyab, Salem and El-Newehy, Mohamed and Bártolo, Paulo and Frade, Marco Andrey Cipriani
Title Tissue Constructs with Human Adipose-Derived Mesenchymal Stem Cells to Treat Bone Defects in Rats [Abstract]
Year 2019
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
The use of porous scaffolds created by additive manufacturing is considered a viable approach for the regeneration of critical-size bone defects. This paper investigates the xenotransplantation of polycaprolactone (PCL) tissue constructs seeded with differentiated and undifferentiated human adipose-derived mesenchymal stem cells (hADSCs) to treat calvarial critical-sized defect in Wistar rats. PCL scaffolds without cells were also considered. In vitro and in vivo biological evaluations were performed to assess the feasibility of these different approaches. In the case of cell seeded scaffolds, it was possible to observe the presence of hADSCs in the rat tissue contributing directly (osteoblasts) and indirectly (stimulation by paracrine factors) to tissue formation, organization and mineralization. The presence of bone morphogenetic protein-2 (BMP-2) in the rat tissue treated with cell-seeded PCL scaffolds suggests that the paracrine factors of undifferentiated hADSC cells could stimulate BMP-2 production by surrounding cells, leading to osteogenesis. Moreover, BMP-2 acts synergistically with growth factors to induce angiogenesis, leading to higher numbers of blood vessels in the groups containing undifferentiated and differentiated hADSCs.
AUTHOR Caetano, Guilherme Ferreira and Wang, Weiguang and Chiang, Wei-Hung and Cooper, Glen and Diver, Carl and Blaker, Jonny James and Frade, Marco Andrey and Bártolo, Paulo
Title 3D-Printed Poly(ɛ-caprolactone)/Graphene Scaffolds Activated with P1-Latex Protein for Bone Regeneration [Abstract]
Year 2018
Journal/Proceedings 3D Printing and Additive Manufacturing
Reftype
DOI/URL DOI
Abstract
Abstract Biomanufacturing is a relatively new research domain focusing on the use of additive manufacturing technologies, biomaterials, cells, and biomolecular signals to produce tissue constructs for tissue engineering. For bone regeneration, researchers are focusing on the use of polymeric and polymer/ceramic scaffolds seeded with osteoblasts or mesenchymal stem cells. However, high-performance scaffolds in terms of mechanical, cell stimulation, and biological performance are still required. This article investigates the use of an extrusion additive manufacturing system to produce poly(ɛ-caprolactone) (PCL) and PCL/graphene nanosheet scaffolds for bone applications. Scaffolds with regular and reproducible architecture and uniform dispersion of graphene were produced and coated with P1-latex protein extracted from the Hevea brasiliensis rubber tree. Results show that the obtained scaffolds cultivated with human adipose-derived stem cells present no toxicity effects. The presence of graphene nanosheet and P1-latex protein in the scaffolds increased cell proliferation compared with PCL scaffolds. Moreover, the presence of P1-latex protein promotes earlier osteogenic differentiation, suggesting that PCL/graphene/P1-latex protein scaffolds are suitable for bone regeneration applications.
AUTHOR Wang, Hanxiao and das Neves Domingos, Marco Andre and Scenini, Fabio
Title Advanced mechanical and thermal characterization of 3D bioextruded poly(ε-caprolactone)-based composites [Abstract]
Year 2018
Journal/Proceedings Rapid Prototyping Journal
Reftype
DOI/URL DOI
Abstract
Purpose The main purpose of the present work is to study the effect of nano hydroxyapatite (HA) and graphene oxide (GO) particles on thermal and mechanical performances of 3D printed poly(ε-caprolactone) (PCL) filaments used in Bone Tissue Engineering (BTE). Design/methodology/approach Raw materials were prepared by melt blending, followed by 3D printing via 3D Discovery (regenHU Ltd., CH) with all fabricating parameters kept constant. Filaments, including pure PCL, PCL/HA, and PCL/GO, were tested under the same conditions. Several techniques were used to mechanically, thermally, and microstructurally evaluate properties of these filaments, including Differential Scanning Calorimetry (DSC), tensile test, nano indentation, and Scanning Electron Microscope (SEM). Findings Results show that both HA and GO nano particles are capable of improving mechanical performance of PCL. Enhanced mechanical properties of PCL/HA result from reinforcing effect of HA, while a different mechanism is observed in PCL/GO, where degree of crystallinity plays an important role. In addition, GO is more efficient at enhancing mechanical performance of PCL compared with HA. Originality/value For the first time, a systematic study about effects of nano HA and GO particles on bioactive scaffolds produced by Additive Manufacturing (AM) for bone tissue engineering applications is conducted in this work. Mechanical and thermal behaviors of each sample, pure PCL, PCL/HA and PCL/GO, are reported, correlated, and compared with literature.
AUTHOR Prasopthum, Aruna and Shakesheff, Kevin M. and Yang, Jing
Title Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography [Abstract]
Year 2018
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Three-dimensional (3D) printing is a powerful manufacturing tool for making 3D structures with well-defined architectures for a wide range of applications. The field of tissue engineering has also adopted this technology to fabricate scaffolds for tissue regeneration. The ability to control architecture of scaffolds, e.g. matching anatomical shapes and having defined pore size, has since been improved significantly. However, the material surface of these scaffolds is smooth and does not resemble that found in natural extracellular matrix (ECM), in particular, the nanofibrous morphology of collagen. This natural nanoscale morphology plays a critical role in cell behaviour. Here, we have developed a new approach to directly fabricate polymeric scaffolds with an ECM-like nanofibrous topography and defined architectures using extrusion-based 3D printing. 3D printed tall scaffolds with interconnected pores were created with disparate features spanning from nanometres to centimetres. Our approach removes the need for a sacrificial mould and subsequent mould removal compared to previous methods. Moreover, the nanofibrous topography of the 3D printed scaffolds significantly enhanced protein absorption, cell adhesion and differentiation of human mesenchymal stem cells when compared to those with smooth material surfaces. These 3D printed scaffolds with both defined architectures and nanoscale ECM-mimicking morphologies have potential applications in cartilage and bone regeneration.
AUTHOR Zamani, Yasaman and Mohammadi, Javad and Amoabediny, Ghassem and Visscher, Dafydd O. and Helder, Marco N. and Zandieh-Doulabi, Behrouz and Klein-Nulend, Jenneke
Title Enhanced osteogenic activity by {MC}3T3-E1 pre-osteoblasts on chemically surface-modified poly($upepsilon$-caprolactone) 3D-printed scaffolds compared to {RGD} immobilized scaffolds [Abstract]
Year 2018
Journal/Proceedings Biomedical Materials
Reftype
DOI/URL DOI
Abstract
In bone tissue engineering, the intrinsic hydrophobicity and surface smoothness of three-dimensional (3D)-printed poly(ε-caprolactone) scaffolds hamper cell attachment, proliferation and differentiation. This intrinsic hydrophobicity of poly(ε-caprolactone) can be overcome by surface modifications, such as surface chemical modification or immobilization of biologically active molecules on the surface. Moreover, surface chemical modification may alter surface smoothness. Whether surface chemical modification or immobilization of a biologically active molecule on the surface is more effective to enhance pre-osteoblast proliferation and differentiation is currently unknown. Therefore, we aimed to investigate the osteogenic response of MC3T3-E1 pre-osteoblasts to chemically surface-modified and RGD-immobilized 3D-printed poly(ε-caprolactone) scaffolds. Poly(ε-caprolactone) scaffolds were 3D-printed consisting of strands deposited layer by layer with alternating 0°/90° lay-down pattern. 3D-printed poly(ε-caprolactone) scaffolds were surface-modified by either chemical modification using 3 M sodium hydroxide (NaOH) for 24 or 72 h, or by RGD-immobilization. Strands were visualized by scanning electron microscopy. MC3T3-E1 pre-osteoblasts were seeded onto the scaffolds and cultured up to 14 d. The strands of the unmodified poly(ε-caprolactone) scaffold had a smooth surface. NaOH treatment changed the scaffold surface topography from smooth to a honeycomb-like surface pattern, while RGD immobilization did not alter the surface topography. MC3T3-E1 pre-osteoblast seeding efficiency was similar (44%–54%) on all scaffolds after 12 h. Cell proliferation increased from day 1 to day 14 in unmodified controls (1.9-fold), 24 h NaOH-treated scaffolds (3-fold), 72 h NaOH-treated scaffolds (2.2-fold), and RGD-immobilized scaffolds (4.5-fold). At day 14, increased collagenous matrix deposition was achieved only on 24 h NaOH-treated (1.8-fold) and RGD-immobilized (2.2-fold) scaffolds compared to unmodified controls. Moreover, 24 h, but not 72 h, NaOH-treated scaffolds, increased alkaline phosphatase activity by 5-fold, while the increase by RGD immobilization was only 2.5-fold. Only 24 h NaOH-treated scaffolds enhanced mineralization (2.0-fold) compared to unmodified controls. In conclusion, RGD immobilization (0.011 μg mg−1 scaffold) on the surface and 24 h NaOH treatment of the surface of 3D-printed PCL scaffold both enhance pre-osteoblast proliferation and matrix deposition while only 24 h NaOH treatment results in increased osteogenic activity, making it the treatment of choice to promote bone formation by osteogenic cells.
AUTHOR Monz{'o}n, Mario and Liu, Chaozong and Ajami, Sara and Oliveira, Miguel and Donate, Ricardo and Ribeiro, Viviana and Reis, Rui L.
Title Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds
Year 2018
Journal/Proceedings Bio-Design and Manufacturing
Reftype
DOI/URL DOI
AUTHOR D'Amora, Ugo and D'Este, Matteo and Eglin, David and Safari, Fatemeh and Sprecher, Christoph and Gloria, Antonio and De Santis, Roberto and Alini, Mauro and Ambrosio, Luigi
Title Collagen Density Gradient on 3D Printed Poly(ε-Caprolactone) Scaffolds for Interface Tissue Engineering
Year 2017
Journal/Proceedings Journal of tissue engineering and regenerative medicine
Reftype
DOI/URL DOI
AUTHOR Freeman, Fiona E. and Kelly, Daniel J.
Title Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues [Abstract]
Year 2017
Journal/Proceedings Scientific Reports
Reftype Freeman2017
DOI/URL DOI
Abstract
Alginate is a commonly used bioink in 3D bioprinting. Matrix stiffness is a key determinant of mesenchymal stem cell (MSC) differentiation, suggesting that modulation of alginate bioink mechanical properties represents a promising strategy to spatially regulate MSC fate within bioprinted tissues. In this study, we define a printability window for alginate of differing molecular weight (MW) by systematically varying the ratio of alginate to ionic crosslinker within the bioink. We demonstrate that the MW of such alginate bioinks, as well as the choice of ionic crosslinker, can be tuned to control the mechanical properties (Young’s Modulus, Degradation Rate) of 3D printed constructs. These same factors are also shown to influence growth factor release from the bioinks. We next explored if spatially modulating the stiffness of 3D bioprinted hydrogels could be used to direct MSC fate inside printed tissues. Using the same alginate and crosslinker, but varying the crosslinking ratio, it is possible to bioprint constructs with spatially varying mechanical microenvironments. Moreover, these spatially varying microenvironments were found to have a significant effect on the fate of MSCs within the alginate bioinks, with stiffer regions of the bioprinted construct preferentially supporting osteogenesis over adipogenesis.
AUTHOR Daly, Andrew C. and Cunniffe, Gr{'{a}}inne M. and Sathy, Binulal N. and Jeon, Oju and Alsberg, Eben and Kelly, Daniel J.
Title 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering [Abstract]
Year 2016
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
The ability to print defined patterns of cells and extracellular-matrix components in three dimensions has enabled the engineering of simple biological tissues; however, bioprinting functional solid organs is beyond the capabilities of current biofabrication technologies. An alternative approach would be to bioprint the developmental precursor to an adult organ, using this engineered rudiment as a template for subsequent organogenesis in vivo. This study demonstrates that developmentally inspired hypertrophic cartilage templates can be engineered in vitro using stem cells within a supporting gamma-irradiated alginate bioink incorporating Arg-Gly-Asp adhesion peptides. Furthermore, these soft tissue templates can be reinforced with a network of printed polycaprolactone fibers, resulting in a ≈350 fold increase in construct compressive modulus providing the necessary stiffness to implant such immature cartilaginous rudiments into load bearing locations. As a proof-of-principal, multiple-tool biofabrication is used to engineer a mechanically reinforced cartilaginous template mimicking the geometry of a vertebral body, which in vivo supported the development of a vascularized bone organ containing trabecular-like endochondral bone with a supporting marrow structure. Such developmental engineering approaches could be applied to the biofabrication of other solid organs by bioprinting precursors that have the capacity to mature into their adult counterparts over time in vivo.
AUTHOR Visscher, Dafydd O. and Farré-Guasch, Elisabet and Helder, Marco N. and Gibbs, Susan and Forouzanfar, Tymour and van Zuijlen, Paul P. and Wolff, Jan
Title Advances in Bioprinting Technologies for Craniofacial Reconstruction [Abstract]
Year 2016
Journal/Proceedings Trends in Biotechnology
Reftype
DOI/URL DOI
Abstract
Recent developments in craniofacial reconstruction have shown important advances in both the materials and methods used. While autogenous tissue is still considered to be the gold standard for these reconstructions, the harvesting procedure remains tedious and in many cases causes significant donor site morbidity. These limitations have subsequently led to the development of less invasive techniques such as 3D bioprinting that could offer possibilities to manufacture patient-tailored bioactive tissue constructs for craniofacial reconstruction. Here, we discuss the current technological and (pre)clinical advances of 3D bioprinting for use in craniofacial reconstruction and highlight the challenges that need to be addressed in the coming years. Recent developments in craniofacial reconstruction have shown important advances in both the materials and methods used. While autogenous tissue is still considered to be the gold standard for these reconstructions, the harvesting procedure remains tedious and in many cases causes significant donor site morbidity. These limitations have subsequently led to the development of less invasive techniques such as 3D bioprinting that could offer possibilities to manufacture patient-tailored bioactive tissue constructs for craniofacial reconstruction. Here, we discuss the current technological and (pre)clinical advances of 3D bioprinting for use in craniofacial reconstruction and highlight the challenges that need to be addressed in the coming years.
AUTHOR Caetano, Guilherme and Violante, Ricardo and Sant{'{}}Ana, Ana Beatriz and Murashima, Adriana Batista and Domingos, Marco and Gibson, Andrew and B{'{a}}rtolo, Paulo and Frade, Marco Andrey
Title Cellularized versus decellularized scaffolds for bone regeneration [Abstract]
Year 2016
Journal/Proceedings Materials Letters
Reftype
DOI/URL URL DOI
Abstract
Abstract An optimal scaffold based strategy for in vivo repair of large bone defects and its associated problems is presented in this work. Three polymeric scaffolds produced by using an extrusion-based additive manufacturing system were examined in a rat critical bone defect model: scaffolds without cells, with undifferentiated Adipose-derived mesenchymal stem cells (ADSCs) and differentiated {ADSCs} (osteoblasts). Scaffolds with undifferentiated cells seem to be the best strategy as they exhibited around 22% more bone formation than natural bone healing, and around 15% more than the two other cases. Authors observed that scaffolds enabled cell migration and tissue formation. Results suggest that undifferentiated {ADSCs} strongly contribute to new bone formation with no rejection if scaffolds are used to support cell migration, proliferation and differentiation. Our long-term goal is to engineer high-quality cell seeded-scaffolds (autograft and allograft) for bone regeneration, mainly in elderly patients.
AUTHOR Carrel, Jean‐Pierre and Wiskott, Anselm and Scherrer, Susanne and Durual, Stéphane
Title Large Bone Vertical Augmentation Using a Three‐Dimensional Printed TCP/HA Bone Graft: A Pilot Study in Dog Mandible [Abstract]
Year 2016
Journal/Proceedings Clinical Implant Dentistry and Related Research
Reftype
DOI/URL DOI
Abstract
Abstract Background Osteoflux is a three‐dimensional printed calcium phosphate porous structure for oral bone augmentation. It is a mechanically stable scaffold with a well‐defined interconnectivity and can be readily shaped to conform to the bone bed's morphology. Purpose An animal experiment is reported whose aim was to assess the performance and safety of the scaffold in promoting vertical growth of cortical bone in the mandible. Materials and methods Four three‐dimensional blocks (10 mm length, 5 mm width, 5 mm height) were affixed to edentulous segments of the dog's mandible and covered by a collagen membrane. During bone bed preparation, particular attention was paid not to create defects 0.5 mm or more so that the real potential of the three‐dimensional block in driving vertical bone growth can be assessed. Histomorphometric analyses were performed after 8 weeks. Results At 8 weeks, the three‐dimensional blocks led to substantial vertical bone growth up to 4.5 mm from the bone bed. Between 0 and 1 mm in height, 44% of the surface was filled with new bone, at 1 to 3 mm it was 20% to 35%, 18% at 3 to 4, and ca. 6% beyond 4 mm. New bone was evenly distributed along in mesio‐distal direction and formed a new crest contour in harmony with the natural mandibular shape. Conclusions After two months of healing, the three‐dimensional printed blocks conducted new bone growth above its natural bed, up to 4.5 mm in a canine mandibular model. Furthermore, the new bone was evenly distributed in height and density along the block. These results are very promising and need to be further evaluated by a complete powerful study using the same model.
AUTHOR Wang, Weiguang and Caetano, Guilherme and Chiang, Wei-Hung and Sousa, Ana Leticia and Blaker, Jonny and Frade, M. A. R. C. O. and Frade, Cipriani and Jorge Bártolo, Paulo
Title Morphological, mechanical and biological assessment of PCL/pristine graphene scaffolds for bone regeneration [Abstract]
Year 2016
Journal/Proceedings International Journal of Bioprinting
Reftype
DOI/URL URL
Abstract
Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements such as mechanical properties, surface characteristics, biodegradability, biocompatibility, and porosity. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes. Polymeric scaffolds reinforced with electro-active particles could play a key role in tissue engineering by modulating cell proliferation and differentiation. This paper investigates the use of an extrusion additive manufacturing system to produce PCL/pristine graphene scaffolds for bone tissue applications. PCL/pristine graphene blends were prepared using a melt blending process. Scaffolds with regular and reproducible architecture were produced with different concentrations of pristine graphene. Scaffolds were evaluated from morphological, mechanical, and biological view. The results suggest that the addition of pristine graphene improves the mechanical performance of the scaffolds, reduces the hydrophobicity, and improves cell viability and proliferation.
AUTHOR Moussa, Mira and Carrel, Jean-Pierre and Scherrer, Susanne and Cattani-Lorente, Maria and Wiskott, Anselm and Durual, Stéphane
Title Medium-Term Function of a 3D Printed TCP/HA Structure as a New Osteoconductive Scaffold for Vertical Bone Augmentation: A Simulation by BMP-2 Activation [Abstract]
Year 2015
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
Introduction: A 3D-printed construct made of orthogonally layered strands of tricalcium phosphate (TCP) and hydroxyapatite has recently become available. The material provides excellent osteoconductivity. We simulated a medium-term experiment in a sheep calvarial model by priming the blocks with BMP-2. Vertical bone growth/maturation and material resorption were evaluated. Materials and methods: Titanium hemispherical caps were filled with either bare- or BMP-2 primed constructs and placed onto the calvaria of adult sheep (n = 8). Histomorphometry was performed after 8 and 16 weeks. Results: After 8 weeks, relative to bare constructs, BMP-2 stimulation led to a two-fold increase in bone volume (Bare: 22% ± 2.1%; BMP-2 primed: 50% ± 3%) and a 3-fold decrease in substitute volume (Bare: 47% ± 5%; BMP-2 primed: 18% ± 2%). These rates were still observed at 16 weeks. The new bone grew and matured to a haversian-like structure while the substitute material resorbed via cell- and chemical-mediation. Conclusion: By priming the 3D construct with BMP-2, bone metabolism was physiologically accelerated, that is, enhancing vertical bone growth and maturation as well as material bioresorption. The scaffolding function of the block was maintained, leaving time for the bone to grow and mature to a haversian-like structure. In parallel, the material resorbed via cell-mediated and chemical processes. These promising results must be confirmed in clinical tests.
AUTHOR Carrel, Jean-Pierre and Wiskott, Anselm and Moussa, Mira and Rieder, Philippe and Scherrer, Susanne and Durual, St{'{e}}phane
Title A 3D printed TCP/HA structure as a new osteoconductive scaffold for vertical bone augmentation [Abstract]
Year 2014
Journal/Proceedings Clinical Oral Implants Research
Reftype
DOI/URL DOI
Abstract
Introduction OsteoFlux® (OF) is a 3D printed porous block of layered strands of tricalcium phosphate (TCP) and hydroxyapatite. Its porosity and interconnectivity are defined, and it can be readily shaped to conform the bone bed's morphology. We investigated the performance of OF as a scaffold to promote the vertical growth of cortical bone in a sheep calvarial model. Materials and methods Six titanium hemispheres were filled with OF, Bio-Oss (particulate bovine bone, BO), or Ceros (particulate TCP, CO) and placed onto the calvaria of 12 adult sheep (6 hemispheres/sheep). Histomorphometric analyses were performed after 8 and 16 weeks. Results OF led to substantial vertical bone growth by 8 weeks and outperformed BO and CO by a factor 2 yielding OF 22% ± 2.1; BO 11.5% ± 1.9; and CO 12.9% ± 2.1 total new bone. 3 mm away from the bony bed, OF led to a fourfold increase in new bone relative to BO and CO (n = 8, P < 0.002). At 16 weeks, OF, BO, and CO behaved similarly and showed marked new bone synthesis. A moderate degradation was observed at 16 weeks for all bone substitutes. Conclusion When compared to existing bone substitutes, OF enhances vertical bone growth during the first 2 months after implantation in a sheep calvarial model. The controlled porous structure translated in a high osteoconductivity and resulted in a bone mass 3 mm above the bony bed that was four times greater than that obtained with standard substitutes. These results are promising but must be confirmed in clinical tests.