SCIENTIFIC PUBLICATIONS

You are researching: Biomaterial Processing
Matching entries: 177 /177
All Groups
AUTHOR Kleger, Nicole and Cihova, Martina and Masania, Kunal and Studart, André R. and Löffler, Jörg F.
Title 3d printing of salt as a template for magnesium with structured porosity [Abstract]
Year 2019
Journal/Proceedings advanced materials
Reftype
DOI/URL DOI
Abstract
Abstract Porosity is an essential feature in a wide range of applications that combine light weight with high surface area and tunable density. Porous materials can be easily prepared with a vast variety of chemistries using the salt-leaching technique. However, this templating approach has so far been limited to the fabrication of structures with random porosity and relatively simple macroscopic shapes. Here, a technique is reported that combines the ease of salt leaching with the complex shaping possibilities given by additive manufacturing (AM). By tuning the composition of surfactant and solvent, the salt-based paste is rheologically engineered and printed via direct ink writing into grid-like structures displaying structured pores that span from the sub-millimeter to the macroscopic scale. As a proof of concept, dried and sintered NaCl templates are infiltrated with magnesium (Mg), which is typically highly challenging to process by conventional AM techniques due to its highly oxidative nature and high vapor pressure. Mg scaffolds with well-controlled, ordered porosity are obtained after salt removal. The tunable mechanical properties and the potential to be predictably bioresorbed by the human body make these Mg scaffolds attractive for biomedical implants and demonstrate the great potential of this additive technique.
AUTHOR Zhang, Danwei and Jonhson, Win and Herng, Tun Seng and Ang, Yong Quan and Yang, Lin and Tan, Swee Ching and Peng, Erwin and He, Hui and Ding, Jun
Title A 3D-printing method of fabrication for metals{,} ceramics{,} and multi-materials using a universal self-curable technique for robocasting [Abstract]
Year 2019
Journal/Proceedings Materials Horizons
Reftype
DOI/URL DOI
Abstract
Ceramics and metals are important materials that modern technologies are constructed from. The capability to produce such materials in a complex geometry with good mechanical properties can revolutionize the way we engineer our devices. Current curing techniques pose challenges such as high energy requirements{,} limitations of materials with high refractive index{,} tedious post-processing heat treatment processes{,} uneven drying shrinkages{,} and brittleness of green bodies. In this paper{,} a novel modified self-curable epoxide–amine 3D printing system is proposed to print a wide range of ceramics (metal oxides{,} nitrides{,} and carbides) and metals without the need for an external curing source. Through this technique{,} complex multi-material structures (with metal–ceramic and ceramic–ceramic combinations) can also be realized. Tailoring and matching the sintering temperatures of different materials through sintering additives and dopants{,} combined with a structural design providing maximum adhesion between interfaces{,} allow us to successfully obtain superior quality sintered multi-material structures. High-quality ceramic and metallic materials have been achieved (e.g.{,} zirconia with >98% theoretical density). Also{,} highly conductive metals and magnetic ceramics were printed and shaped uniquely without the need for a sacrificial support. With the addition of low molecular weight plasticizers and a multi-stage heat treatment process{,} crack-free and dense high-quality integrated multi-material structures fabricated by 3D printing can thus be a reality in the near future.
AUTHOR Padilla-Lopategui, Soraya and Ligorio, Cosimo and Bu, Wenhuan and Yin, Chengcheng and Laurenza, Domenico and Redondo, Carlos and Owen, Robert and Sun, Hongchen and Rose, Felicity R.A.J. and Iskratsch, Thomas and Mata, Alvaro
Title Biocooperative Regenerative Materials by Harnessing Blood-Clotting and Peptide Self-Assembly [Abstract]
Year 2024
Journal/Proceedings Advanced Materials
Reftype
DOI/URL DOI
Abstract
Abstract The immune system has evolved to heal small ruptures and fractures with remarkable efficacy through regulation of the regenerative hematoma (RH); a rich and dynamic environment that coordinates numerous molecular and cellular processes to achieve complete repair. Here, a biocooperative approach that harnesses endogenous molecules and natural healing to engineer personalized regenerative materials is presented. Peptide amphiphiles (PAs) are co-assembled with blood components during coagulation to engineer a living material that exhibits key compositional and structural properties of the RH. By exploiting non-selective and selective PA-blood interactions, the material can be immediately manipulated, mechanically-tuned, and 3D printed. The material preserves normal platelet behavior, generates and provides a continuous source of growth factors, and promotes in vitro growth of mesenchymal stromal cells, endothelial cells, and fibroblasts. Furthermore, using a personalized autologous approach to convert whole blood into PA-blood gel implants, bone regeneration is shown in a critical-sized rat calvarial defect. This study provides proof-of-concept for a biocooperative approach that goes beyond biomimicry by using mechanisms that Nature has evolved to heal as tools to engineer accessible, personalized, and regenerative biomaterials that can be readily formed at point of use.
AUTHOR Wu, Dongwei and Pang, Shumin and Berg, Johanna and Mei, Yikun and Ali, Ahmed S. M. and Röhrs, Viola and Tolksdorf, Beatrice and Hagenbuchner, Judith and Ausserlechner, Michael J. and Deubzer, Hedwig E. and Gurlo, Aleksander and Kurreck, Jens
Title Bioprinting of Perfusable Vascularized Organ Models for Drug Development via Sacrificial-Free Direct Ink Writing [Abstract]
Year 2024
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract 3D bioprinting enables the fabrication of human organ models that can be used for various fields of biomedical research, including oncology and infection biology. An important challenge, however, remains the generation of vascularized, perfusable 3D models that closely simulate natural physiology. Here, a novel direct ink writing (DIW) approach is described that can produce vascularized organ models without using sacrificial materials during fabrication. The high resolution of the method allows the one-step generation of various sophisticated hollow geometries. This sacrificial-free DIW (SF-DIW) approach is used to fabricate hepatic metastasis models of various cancer types and different formats for investigating the cytostatic activity of anti-cancer drugs. To this end, the models are incorporated into a newly developed perfusion system with integrated micropumps and an agar casting step that improves the physiological features of the bioprinted tissues. It is shown that the hepatic environment of the tumor models is capable of activating a prodrug, which inhibits breast cancer growth. This versatile SF-DIW approach is able to fabricate complicated perfusable constructs or microfluidic chips in a straightforward and cost-efficient manner. It can also be easily adapted to other cell types for generating vascularized organ tissues or cancer models that may support the development of new therapeutics.
AUTHOR Huang, Boyang and Wang, Yaxin and Vyas, Cian and Bartolo, Paulo
Title Crystal Growth of 3D Poly(ε-caprolactone) Based Bone Scaffolds and Its Effects on the Physical Properties and Cellular Interactions [Abstract]
Year 2022
Journal/Proceedings Advanced Science
Reftype
DOI/URL URL DOI
Abstract
Abstract Extrusion additive manufacturing is widely used to fabricate polymer-based 3D bone scaffolds. However, the insight views of crystal growths, scaffold features and eventually cell-scaffold interactions are still unknown. In this work, melt and solvent extrusion additive manufacturing techniques are used to produce scaffolds considering highly analogous printing conditions. Results show that the scaffolds produced by these two techniques present distinct physiochemical properties, with melt-printed scaffolds showing stronger mechanical properties and solvent-printed scaffolds showing rougher surface, higher degradation rate, and faster stress relaxation. These differences are attributed to the two different crystal growth kinetics, temperature-induced crystallization (TIC) and strain-induced crystallization (SIC), forming large/integrated spherulite-like and a small/fragmented lamella-like crystal regions respectively. The stiffer substrate of melt-printed scaffolds contributes to higher ratio of nuclear Yes-associated protein (YAP) allocation, favoring cell proliferation and differentiation. Faster relaxation and degradation of solvent-printed scaffolds result in dynamic surface, contributing to an early-stage faster osteogenesis differentiation.
AUTHOR Kajtez, Janko and Wesseler, Milan Finn and Birtele, Marcella and Khorasgani, Farinaz Riyahi and Rylander Ottosson, Daniella and Heiskanen, Arto and Kamperman, Tom and Leijten, Jeroen and Martínez-Serrano, Alberto and Larsen, Niels B. and Angelini, Thomas E. and Parmar, Malin and Lind, Johan U. and Emnéus, Jenny
Title Embedded 3D Printing in Self-Healing Annealable Composites for Precise Patterning of Functionally Mature Human Neural Constructs [Abstract]
Year 2022
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Human in vitro models of neural tissue with tunable microenvironment and defined spatial arrangement are needed to facilitate studies of brain development and disease. Towards this end, embedded printing inside granular gels holds great promise as it allows precise patterning of extremely soft tissue constructs. However, granular printing support formulations are restricted to only a handful of materials. Therefore, there has been a need for novel materials that take advantage of versatile biomimicry of bulk hydrogels while providing high-fidelity support for embedded printing akin to granular gels. To address this need, Authors present a modular platform for bioengineering of neuronal networks via direct embedded 3D printing of human stem cells inside Self-Healing Annealable Particle-Extracellular matrix (SHAPE) composites. SHAPE composites consist of soft microgels immersed in viscous extracellular-matrix solution to enable precise and programmable patterning of human stem cells and consequent generation mature subtype-specific neurons that extend projections into the volume of the annealed support. The developed approach further allows multi-ink deposition, live spatial and temporal monitoring of oxygen levels, as well as creation of vascular-like channels. Due to its modularity and versatility, SHAPE biomanufacturing toolbox has potential to be used in applications beyond functional modeling of mechanically sensitive neural constructs.
AUTHOR Kessel, Benjamin and Lee, Mihyun and Bonato, Angela and Tinguely, Yann and Tosoratti, Enrico and Zenobi-Wong, Marcy
Title 3D Bioprinting of Macroporous Materials Based on Entangled Hydrogel Microstrands [Abstract]
Year 2020
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Hydrogels are excellent mimetics of mammalian extracellular matrices and have found widespread use in tissue engineering. Nanoporosity of monolithic bulk hydrogels, however, limits mass transport of key biomolecules. Microgels used in 3D bioprinting achieve both custom shape and vastly improved permissivity to an array of cell functions, however spherical-microbead-based bioinks are challenging to upscale, are inherently isotropic, and require secondary crosslinking. Here, bioinks based on high-aspect-ratio hydrogel microstrands are introduced to overcome these limitations. Pre-crosslinked, bulk hydrogels are deconstructed into microstrands by sizing through a grid with apertures of 40–100 µm. The microstrands are moldable and form a porous, entangled structure, stable in aqueous medium without further crosslinking. Entangled microstrands have rheological properties characteristic of excellent bioinks for extrusion bioprinting. Furthermore, individual microstrands align during extrusion and facilitate the alignment of myotubes. Cells can be placed either inside or outside the hydrogel phase with >90% viability. Chondrocytes co-printed with the microstrands deposit abundant extracellular matrix, resulting in a modulus increase from 2.7 to 780.2 kPa after 6 weeks of culture. This powerful approach to deconstruct bulk hydrogels into advanced bioinks is both scalable and versatile, representing an important toolbox for 3D bioprinting of architected hydrogels.
AUTHOR Zhang, Danwei and Peng, Erwin and Borayek, Ramadan and Ding, Jun
Title Controllable Ceramic Green-Body Configuration for Complex Ceramic Architectures with Fine Features [Abstract]
Year 2019
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract Fabrication of dense ceramic articles with intricate fine features and geometrically complex morphology by using a relatively simple and the cost-effective process still remains a challenge. Ceramics, either in its green- or sintered-form, are known for being hard yet brittle which limits further shape reconfiguration. In this work, a combinatorial process of ceramic robocasting and photopolymerization is demonstrated to produce either flexible and/or stretchable ceramic green-body (Flex-Body or Stretch-Body) that can undergo a postprinting reconfiguration process. Secondary shaping may proceed through: i) self-assembly-assisted shaping and ii) mold-assisted shaping process, which allows a well-controlled ceramic structure morphology. With a proposed well-controlled thermal heating process, the ceramic Sintered-Body can achieve >99.0% theoretical density with good mechanical rigidity. Complex and dense ceramic articles with fine features down to 65 μm can be fabricated. When combined with a multi-nozzle deposition process, i) self-shaping ceramic structures can be realized through anisotropic shrinkage induced by suspensions' composition variation and ii) technical and functional multiceramic structures can be fabricated. The simplicity of the proposed technique and its inexpensive processing cost make it an attractive approach for fabricating geometrically complex ceramic articles with unique macrostructures, which complements the existing state of-the-art ceramic additive manufacturing techniques.
AUTHOR Kokkinis, Dimitri and Bouville, Florian and Studart, André R.
Title 3D Printing of Materials with Tunable Failure via Bioinspired Mechanical Gradients [Abstract]
Year 2018
Journal/Proceedings Advanced Materials
Reftype
DOI/URL DOI
Abstract
Abstract Mechanical gradients are useful to reduce strain mismatches in heterogeneous materials and thus prevent premature failure of devices in a wide range of applications. While complex graded designs are a hallmark of biological materials, gradients in manmade materials are often limited to 1D profiles due to the lack of adequate fabrication tools. Here, a multimaterial 3D‐printing platform is developed to fabricate elastomer gradients spanning three orders of magnitude in elastic modulus and used to investigate the role of various bioinspired gradient designs on the local and global mechanical behavior of synthetic materials. The digital image correlation data and finite element modeling indicate that gradients can be effectively used to manipulate the stress state and thus circumvent the weakening effect of defect‐rich interfaces or program the failure behavior of heterogeneous materials. Implementing this concept in materials with bioinspired designs can potentially lead to defect‐tolerant structures and to materials whose tunable failure facilitates repair of biomedical implants, stretchable electronics, or soft robotics.
AUTHOR Schaffner, Manuel and R{"u}hs, Patrick A. and Coulter, Fergal and Kilcher, Samuel and Studart, Andr{'e} R.
Title 3D printing of bacteria into functional complex materials [Abstract]
Year 2017
Journal/Proceedings Science Advances
Reftype
DOI/URL URL DOI
Abstract
Despite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of {textquotedblleft}living materials{textquotedblright} capable of degrading pollutants and of producing medically relevant bacterial cellulose. With this versatile bacteria-printing platform, complex materials displaying spatially specific compositions, geometry, and properties not accessed by standard technologies can be assembled from bottom up for new biotechnological and biomedical applications.
AUTHOR Nthape P. Mphasha and Rodney M. Genga and Natasha Sacks and Claudia Polese and Jozef Vleugels and Shuigen Huang and Xola Madyibi
Title Characterisation and parametric optimisation of L-PBF and DIW of WC-12wt%Co/Mo cemented carbides using response surface methodology [Abstract]
Year 2025
Journal/Proceedings International Journal of Refractory Metals and Hard Materials
Reftype
DOI/URL URL DOI
Abstract
In this study, WC-8.4Co-3.6Mo (wt%) cemented carbides were fabricated by laser powder bed fusion (L-PBF) and direct-ink writing (DIW). The effects of various processing parameter combinations on the consolidation of the alloys were investigated. A multi-objective response surface methodology (RSM) was employed to determine the optimal L-PBF and DIW processing parameters, utilising a fractional factorial design of experiment (DoE) approach. The RSM analysis included parameters such as scanning speed, laser power, hatch spacing, extrusion pressure and solid loading. Samples prepared by L-PBF showed alternating layers of coarse and fine WC grains, with the fine grains embedded in a binder melt pool. Increasing the laser energy density resulted in a gradual decomposition of the WC phase, accompanied by the loss of Co and the formation of ƞ phases. For DIW, feedstock filaments with powder loading content between 89.4 and 92.4 wt% were prepared using a binder system composed of Pluronic F-127 and Dolapix CE-64. These filaments exhibited steady thermoplastic behaviour with controllable extrusion, yielding samples with a linear shrinkage of approximately 20 %. The results revealed that DIW-produced samples achieved a maximum hardness of 12.69 GPa and a relative density of 95 % under optimised conditions, specifically an extrusion pressure of 0.125 MPa and a solid loading of 92.4 wt%. For L-PBF, a maximum hardness of 12.60 GPa and a relative density of 99 % were obtained at an optimised scanning speed of 485 mm/s, laser power of 197 W and hatch spacing of 90 μm. These optimisation results derived from the regression models provided new parameter sets for further refinement and enhancement.
AUTHOR Menasce, Stefano and Libanori, Rafael and Coulter, Fergal and Studart, André R.
Title 3D Printed Architectured Silicones with Autonomic Self-Healing and Creep-Resistant Behavior [Abstract]
Year 2024
Journal/Proceedings Advanced Materials
Reftype
DOI/URL DOI
Abstract
Abstract Self-healing silicones that are able to restore the functionalities and extend the lifetime of soft devices hold great potential in many applications. However, currently available silicones need to be triggered to self-heal or suffer from creep-induced irreversible deformation during use. Here, we design and print silicone objects that are programmed at the molecular and architecture levels to achieve self-healing at room temperature while simultaneously resisting creep. At the molecular scale, dioxaborolanes moieties are incorporated into silicones to synthesize self-healing vitrimers, whereas conventional covalent bonds are exploited to make creep-resistant elastomers. When combined into architectured printed parts at a coarser length scale, layered materials exhibit fast healing at room temperature without compromising the elastic recovery obtained from covalent polymer networks. A patient-specific vascular phantom is printed to demonstrate the potential of architectured silicones in creating damage-resilient functional devices using molecularly designed elastomer materials. This article is protected by copyright. All rights reserved
AUTHOR Dutto, Alessandro and Bianda, Eleonora and Melo, Joshua G. and Saraw, Zoubeir and Tervoort, Elena and Studart, André R.
Title 3D Printing and Biocementation of Hierarchical Porous Ceramics [Abstract]
Year 2024
Journal/Proceedings Advanced Materials Technologies
Reftype
DOI/URL DOI
Abstract
Abstract Ceramics with controlled porosity are used as bio-scaffolds, insulators, electrodes and lightweight materials. While their high surface area and low weight are attractive functionalities, such porous ceramics often suffer from poor mechanical properties and need energy-intensive, high-temperature sintering for manufacturing. The present work reports a low-temperature approach for the manufacturing of mechanically efficient porous ceramics. The process relies on the 3D printing of inks loaded with ceramic hollow spheres, which are biocemented by the precipitation of calcium carbonate induced by ureolytic bacteria. Electron microscopy, thermogravimetric analysis and mechanical tests are performed to study the kinetics of the biocementation process and its effect on the calcification and mechanical properties of extruded and printed samples. Hierarchical porous ceramics with a grid-like architecture and filament sizes in the order of one millimeter are effectively biocemented at ambient temperature after 2 days of calcification. The calcified structures display higher mechanical efficiency than previously reported monoliths of comparable porosity, thus demonstrating the potential of 3D printing and bacteria-driven biocementation for the low-temperature fabrication of hierarchical porous ceramics.
AUTHOR Menasce, Stefano and Libanori, Rafael and Coulter, Fergal and Studart, André R.
Title 3D Printing of Strong and Room-Temperature Reprocessable Silicone Vitrimers [Abstract]
Year 2024
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
Abstract
Silicones find use in a myriad of applications from sealants and adhesives to cooking utensils and medical implants. However, state-of-the-art silicone parts fall short in terms of shape complexity and reprocessability. Advances in three-dimensional printing and the discovery of vitrimers have recently opened opportunities for shaping and recycling of silicone objects. Here, we report the 3D printing via direct ink writing of silicone vitrimers into complex-shaped parts with high strength and room-temperature reprocessability. The reprocessing properties of the printed objects result from the adaptive nature of the silicone vitrimer, which can deform under stress without losing its network connectivity. Rheological and mechanical experiments reveal that printable inks can be tuned to generate strong parts with high creep resistance and room-temperature reprocessability, two properties that are usually challenging to reconcile in vitrimers. By combining printability, high strength, and room-temperature reprocessability, the reported silicone vitrimers represent an attractive sustainable alternative to currently available elastomers in a broad range of established and prospective applications.
AUTHOR D. {Van der Heide} and L.P. Hatt and E. {Della Bella} and A. Hangartner and W.A. Lackington and H. Yuan and F. {De Groot-Barrère} and M.J. Stoddart and M. D'Este
Title Characterization and biological evaluation of 3D printed composite ink consisting of collagen, hyaluronic acid and calcium phosphate for bone regeneration [Abstract]
Year 2024
Journal/Proceedings Carbohydrate Polymer Technologies and Applications
Reftype
DOI/URL URL DOI
Abstract
In large bone defects the self-healing capacity is insufficient, and the current standard treatment, autologous bone grafting, has severe disadvantages such as limited availability and donor site morbidity. Alternatively, clinically available bone graft substitutes lack spatial control over scaffold architecture to anatomically match complicated bone defects. Therefore, the aim in this study was to develop a 3D printable composite biomaterial-ink to promote healing of large bone defects. The composite biomaterial-ink consisted of an organic biopolymer matrix with tyramine modified hyaluronic acid (THA) and collagen type I (Col) mixed with osteoinductive calcium phosphate particles (CaP). The biopolymer was combined with 0, 10, 20 and 30 % of either 45–63 µm or 45–106 µm CaP. µCT imaging showed a homogeneous distribution of CaP in the THA-Col hydrogel and all composites were 3D printable. In vitro cell activity assays revealed no indirect cytotoxicity using L929 cells and high cell cytocompatibility using human mesenchymal stromal cells (hMSCs). Additionally, all composites supported in vitro osteogenic differentiation of hMSCs. This study highlights the development of a 3D printable composite biomaterial-ink using CaP and THA-Col hydrogel that holds significant potential to be used as patient-specific bone graft substitute for the regeneration of large bone defects. Statement of significance This paper introduces a 3D printable composite biomaterial-ink made of osteoinductive calcium phosphate particles combined with matrix biopolymers collagen and hyaluronic acid, which was chemically modified to introduce shear thinning and shape fixation properties for 3D printing. The chemical modification only involves a small percentage of functional groups, preserving hyaluronan's biological properties. We demonstrated printability, the homogeneous distribution of the mineral phase, cytocompatibility and that the composites support osteogenesis of primary human mesenchymal stromal cells from multiple donors. The printability of the composite biomaterial-ink allows the creation of patient-specific implants with controlled geometry on porosity. This study contributes towards engineering personalized implants for replacing autologous bone grafting in all clinical situations where the bone self-healing capacity is insufficient.
AUTHOR Mehmet Cagirici and Yanran Xun and Danwei Zhang and Xi Xu and Jun Ding
Title Direct ink writing of Ni structures for electrocatalytic water splitting applications [Abstract]
Year 2024
Journal/Proceedings Materials Chemistry and Physics
Reftype
DOI/URL URL DOI
Abstract
Fabrication of functional metallic materials with complex shapes and fine features remains a challenge despite the advancement of various manufacturing techniques including conventional and advanced methods. Direct ink writing (DIW) is a promising 3-dimensional printing (3DP) technique that overcomes the major challenge of fabricating highly porous complex structures. Herein, we demonstrate the potential of synthesizing pure Ni structures with tailorable microstructure and geometries for functional applications, such as water-splitting and electrocatalysis, based on oxygen evolution reaction (OER) through DIW. A reduction of 3D printed NiO complex scaffolds during heat treatments yields porous or highly dense 3D Ni-meshes. The highest electrochemical surface area (ECSA) was achieved by the 3D Ni-mesh electrode with a heat treatment of 600°C-1h which leads to the best OER performance of 222 mV at a current density of 10 mA cm−2. With great stability at 1.58V for 60 h and tailorable structures, the porous 3D Ni-mesh electrode demonstrates promising water-splitting application on an industrial scale.
AUTHOR Dominguez-Alfaro, Antonio and Casado, Nerea and Fernandez, Maxence and Garcia-Esnaola, Andrea and Calvo, Javier and Mantione, Daniele and Calvo, Maria Reyes and Cortajarena, Aitziber L.
Title Engineering Proteins for PEDOT Dispersions: A New Horizon for Highly Mixed Ionic-Electronic Biocompatible Conducting Materials [Abstract]
Year 2024
Journal/Proceedings Small
Reftype
DOI/URL DOI
Abstract
Abstract Poly (3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonate (PSS) is the most used conducting polymer from energy to biomedical applications. Despite its exceptional properties, there is a need for developing new materials that can improve some of its inherent limitations, e.g., biocompatibility. In this context, doping PEDOT is propose with a robust recombinant protein with tunable properties, the consensus tetratricopeptide repeated protein (CTPR). The doping consists of an oxidative polymerization, where the PEDOT chains are stabilized by the negative charges of the CTPR protein. CTPR proteins are evaluated with three different lengths (3, 10, and 20 identical CTPR units) and optimized varied synthetic conditions. These findings revealed higher doping rate and oxidized state of the PEDOT chains when doped with the smallest scaffold (CTPR3). These PEDOT:CTPR hybrids possess ionic and electronic conductivity. Notably, PEDOT:CTPR3 displayed an electronic conductivity of 0.016 S cm−1, higher than any other reported protein-doped PEDOT. This result places PEDOT:CTPR3 at the level of PEDOT-biopolymer hybrids, and brings it closer in performance to PEDOT:PSS gold standard. Furthermore, PEDOT:CTPR3 dispersion is successfully optimized for inkjet printing, preserving its electroactivity properties after printing. This approach opens the door to the use of these novel hybrids for bioelectronics.
AUTHOR Seyyed Vahid Niknezhad and Mehdi Mehrali and Farinaz Riyahi Khorasgani and Reza Heidari and Firoz Babu Kadumudi and Nasim Golafshan and Miguel Castilho and Cristian Pablo Pennisi and Masoud Hasany and Mohammadjavad Jahanshahi and Mohammad Mehrali and Younes Ghasemi and Negar Azarpira and Thomas L. Andresen and Alireza Dolatshahi-Pirouz
Title Enhancing volumetric muscle loss (VML) recovery in a rat model using super durable hydrogels derived from bacteria [Abstract]
Year 2024
Journal/Proceedings Bioactive Materials
Reftype
DOI/URL URL DOI
Abstract
Bacteria can be programmed to deliver natural materials with defined biological and mechanical properties for controlling cell growth and differentiation. Here, we present an elastic, resilient and bioactive polysaccharide derived from the extracellular matrix of Pantoea sp. BCCS 001. Specifically, it was methacrylated to generate a new photo crosslinkable hydrogel that we coined Pantoan Methacrylate or put simply PAMA. We have used it for the first time as a tissue engineering hydrogel to treat VML injuries in rats. The crosslinked PAMA hydrogel was super elastic with a recovery nearing 100 %, while mimicking the mechanical stiffness of native muscle. After inclusion of thiolated gelatin via a Michaelis reaction with acrylate groups on PAMA we could also guide muscle progenitor cells into fused and aligned tubes – something reminiscent of mature muscle cells. These results were complemented by sarcomeric alpha-actinin immunostaining studies. Importantly, the implanted hydrogels exhibited almost 2-fold more muscle formation and 50 % less fibrous tissue formation compared to untreated rat groups. In vivo inflammation and toxicity assays likewise gave rise to positive results confirming the biocompatibility of this new biomaterial system. Overall, our results demonstrate that programmable polysaccharides derived from bacteria can be used to further advance the field of tissue engineering. In greater detail, they could in the foreseeable future be used in practical therapies against VML.
AUTHOR Stavarache, Cristina and Ghebaur, Adi and Serafim, Andrada and Vlăsceanu, George Mihail and Vasile, Eugeniu and Gârea, Sorina Alexandra and Iovu, Horia
Title Fabrication of k-Carrageenan/Alginate/Carboxymethyl Cellulose basedScaffolds via 3D Printing for Potential Biomedical Applications [Abstract]
Year 2024
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
Three-dimensional (3D) printing technology was able to generate great attention because of its unique methodology and for its major potential to manufacture detailed and customizable scaffolds in terms of size, shape and pore structure in fields like medicine, pharmaceutics and food. This study aims to fabricate an ink entirely composed of natural polymers, alginate, k-carrageenan and carboxymethyl cellulose (AkCMC). Extrusion-based 3D printing was used to obtain scaffolds based on a crosslinked interpenetrating polymer network from the alginate, k-carrageenan, carboxymethyl cellulose and glutaraldehide formulation using CaCl2, KCl and glutaraldehyde in various concentrations of acetic acid. The stabile bonding of the crosslinked scaffolds was assessed using infrared spectroscopy (FT-IR) as well as swelling, degradation and mechanical investigations. Moreover, morphology analysis (µCT and SEM) confirmed the 3D printed samples’ porous structure. In the AkCMC-GA objects crosslinked with the biggest acetic acid concentration, the values of pores and walls are the highest, at 3.9 × 10−2 µm−1. Additionally, this research proves the encapsulation of vitamin B1 via FT-IR and UV-Vis spectroscopy. The highest encapsulation efficiency of vitamin B1 was registered for the AkCMC-GA samples crosslinked with the maximum acetic acid concentration. The kinetic release of the vitamin was evaluated by UV-Vis spectroscopy. Based on the results of these experiments, 3D printed constructs using AkCMC-GA ink could be used for soft tissue engineering applications and also for vitamin B1 encapsulation.
AUTHOR Gaglio, Cesare Gabriele and Baruffaldi, Désireé and Pirri, Candido Fabrizio and Napione, Lucia and Frascella, Francesca
Title GelMA synthesis and sources comparison for 3D multimaterial bioprinting [Abstract]
Year 2024
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
Gelatin Methacryloyl (GelMA) is one of the most used biomaterials for a wide range of applications, such as drug delivery, disease modeling and tissue regeneration. GelMA is obtained from gelatin, which can be derived from different sources (e.g., bovine skin, and porcine skin), through substitution of reactive amine and hydroxyl groups with methacrylic anhydride (MAA). The degree of functionalization (DoF) can be tuned by varying the MAA amount used; thus, different protocols, with different reaction efficiency, have been developed, using various alkaline buffers (e.g., phosphate-buffered saline, DPBS, or carbonate-bicarbonate solution). Obviously, DoF modulation has an impact on the final GelMA properties, so a deep investigation on the features of the obtained hydrogel must be carried on. The purpose of this study is to investigate how different gelatin sources and synthesis methods affect GelMA properties, as literature lacks direct and systematic comparisons between these parameters, especially between synthesis methods. The final aim is to facilitate the choice of the source or synthesis method according to the needs of the desired application. Hence, chemical and physical properties of GelMA formulations were assessed, determining the DoFs, mechanical and viscoelastic properties by rheological analysis, water absorption by swelling capacity and enzymatic degradation rates. Biological tests with lung adenocarcinoma cells (A549) were performed. Moreover, since 3D bioprinting is a rapidly evolving technology thanks to the possibility of precise deposition of cell-laden biomaterials (bioinks) to mimic the 3D structures of several tissues, the potential of different GelMA formulations as bioinks have been tested with a multi-material approach, revealing its printability and versatility in various applications.
AUTHOR Vinnacombe-Willson, Gail A. and García-Astrain, Clara and Troncoso-Afonso, Lara and Wagner, Marita and Langer, Judith and González-Callejo, Patricia and Silvio, Desirè Di and Liz-Marzán, Luis M.
Title Growing Gold Nanostars on 3D Hydrogel Surfaces [Abstract]
Year 2024
Journal/Proceedings Chem. Mater.
Reftype
DOI/URL DOI
Abstract
Nanocomposites comprising hydrogels and plasmonic nanoparticles are attractive materials for tissue engineering, bioimaging, and biosensing. These materials are usually fabricated by adding colloidal nanoparticles to the uncured polymer mixture and thus require time-consuming presynthesis, purification, and ligand-exchange steps. Herein, we introduce approaches for rapid synthesis of gold nanostars (AuNSt) in situ on hydrogel substrates, including those with complex three-dimensional (3D) features. These methods enable selective AuNSt growth at the surface of the substrate, and the growth conditions can be tuned to tailor the nanoparticle size and density (coverage). We additionally demonstrate proof-of-concept applications of these nanocomposites for SERS sensing and imaging. High surface coverage with AuNSt enabled 1-2 orders of magnitude higher SERS signals compared to plasmonic hydrogels loaded with premade colloids. Importantly, AuNSt can be prepared without the addition of any potentially cytotoxic surfactants, thereby ensuring a high biocompatibility. Overall, in situ growth becomes a versatile and straightforward approach for the fabrication of plasmonic biomaterials.
AUTHOR Madadian, Elias and Ravanbakhsh, Hossein and Touani Kameni, Francesco and Rahimnejad, Maedeh and Lerouge, Sophie and Ahmadi, Ali
Title In-Foam Bioprinting: An Embedded Bioprinting Technique with Self-Removable Support Bath [Abstract]
Year 2024
Journal/Proceedings Small Science
Reftype
DOI/URL DOI
Abstract
The emergence of embedded three-dimensional (3D) bioprinting has revolutionized the biofabrication of free-form constructs out of low-viscosity and slow-crosslinking hydrogels. Using gel-based support baths has limitations including lack of proper oxygenation and nutrition and complications with bath removal. Herein, a novel-embedded 3D bioprinting technique is developed with an albumin foam support bath as a promising substitute. The proposed technique, in-foam bioprinting, offers excellent printability and convenience in bath removal while providing cells with easy access to oxygen and nutrients. The foam-based support bath is characterized through foam stability and rheological tests. The bubble size in the foam is measured to study the change in the structure of the bath due to the coalescence of the bubbles over time. Free-form structures are successfully 3D printed with thermoresponsive chitosan-based bioinks to demonstrate the capability of the in-foam bioprinting technique. The viability of bioprinted fibroblast L929 cells is studied over a seven-day period, showing high cell viability of over 97%, which is attributed to the abundance of oxygen and nutrition in the foam support bath. Importantly, in-foam bioprinting is beneficial for biofabricating large samples with a long printing time without jeopardizing cell viability.
AUTHOR Wu, D.; Pang, S.; Röhrs, V.; Berg, J., Ali, A.S.M.; Mei, Y.; Ziersch, M., Tolksdorf, B.; Kurreck, J.
Title Man vs. machine: Automated bioink mixing device improves reliability and reproducibility of bioprinting results compared to human operators
Year 2024
Journal/Proceedings IJB
Reftype
DOI/URL DOI
AUTHOR Cianciosi, Alessandro and Pfeiffle, Maximilian and Wohlfahrt, Philipp and Nürnberger, Severin and Jungst, Tomasz
Title Optical Fiber-Assisted Printing: A Platform Technology for Straightforward Photopolymer Resins Patterning and Freeform 3D Printing [Abstract]
Year 2024
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Light-based 3D printing techniques represent powerful tools, enabling the precise fabrication of intricate objects with high resolution and control. An innovative addition to this set of printing techniques is Optical Fiber-Assisted Printing (OFAP) introduced in this article. OFAP is a platform utilizing an LED-coupled optical fiber (LOF) that selectively crosslinks photopolymer resins. It allows change of parameters like light intensity and LOF velocity during fabrication, facilitating the creation of structures with progressive features and multi-material constructs layer-by-layer. An optimized formulation based on allyl-modified gelatin (gelAGE) with food dyes as photoabsorbers is introduced. Additionally, a novel gelatin-based biomaterial, alkyne-modified gelatin (gelGPE), featuring alkyne moieties, demonstrates near-visible light absorption thus fitting OFAP needs, paving the way for multifunctional hydrogels through thiol-yne click chemistry. Besides 2D patterning, OFAP is transferred to embedded 3D printing within a resin bath demonstrating the proof-of-concept as a novel printing technology with potential applications in tissue engineering and biomimetic scaffold fabrication, offering rapid and precise freeform printing capabilities.
AUTHOR Berfu Göksel and Erin Koos and Jozef Vleugels and Annabel Braem
Title Optimizing dispersants for direct ink writing of alumina toughened zirconia (ATZ) ceramics: Insights into suspension behavior and rheological properties [Abstract]
Year 2024
Journal/Proceedings Ceramics International
Reftype
DOI/URL URL DOI
Abstract
Alumina toughened zirconia (ATZ) ceramics combine high biocompatibility with remarkable mechanical properties, making them suitable for dental and orthopedic implant applications. Producing these ATZ ceramics using slurry-based additive manufacturing necessitates homogeneous, stable suspensions with controlled particle sizes. Stabilizing such systems with the appropriate type and amount of dispersant is challenging, particularly since multi-component systems are prone to hetero-coagulation. In this study, ATZ powders with different surface areas were investigated to determine the optimum concentration of three commercially available dispersants: Darvan CN, Darvan 821 A, and Dolapix CE64, which have been successfully used to stabilize Al2O3 and 3Y-TZP suspensions. Based on zeta potential (0.01 vol% suspensions), agglomerate size (0.01 vol% suspensions), sedimentation (10 vol% slurries), and rheological (40 vol% slurries) characterization, the optimum dispersant concentrations were found to be 0.50 mg/m2 for Dolapix CE64, 0.75 mg/m2 for Darvan 821 A, and 1.50 mg/m2 for Darvan CN. Among the studied dispersants, Dolapix CE64 was the most effective in terms of reduced sedimentation, smaller agglomerate size (0.70 μm), flow behavior, and low resistance to structure breakdown. The rheological assessment showed that slurries prepared with ATZ powder featuring a smaller specific surface area (7.3 m2/g) resulted in lower viscosity, critical stress, and equilibrium storage and loss moduli compared to those prepared with higher specific surface area (13.3 m2/g) starting powder. The sedimentation analysis however revealed that the larger specific surface area ATZ powder exhibited higher slurry stability. While 38 vol% ATZ pastes without dispersant showed inhomogeneous extrusion and the presence of aggregates, the filaments extruded from 45 vol% paste with 0.50 mg/m2 Dolapix CE64 had a homogeneous and smooth structure and were free of aggregates, highlighting the importance of the dispersant addition for DIW.
AUTHOR Habelt, Bettina and Afanasenkau, Dzmitry and Schwarz, Cindy and Domanegg, Kevin and Kuchar, Martin and Werner, Carsten and Minev, Ivan R. and Spanagel, Rainer and Meinhardt, Marcus W. and Bernhardt, Nadine
Title Prefrontal electrophysiological biomarkers and mechanism-based drug effects in a rat model of alcohol addiction [Abstract]
Year 2024
Journal/Proceedings Translational Psychiatry
Reftype Habelt2024
DOI/URL DOI
Abstract
Patients with alcohol use disorder (AUD) who seek treatment show highly variable outcomes. A precision medicine approach with biomarkers responsive to new treatments is warranted to overcome this limitation. Promising biomarkers relate to prefrontal control mechanisms that are severely disturbed in AUD. This results in reduced inhibitory control of compulsive behavior and, eventually, relapse. We reasoned here that prefrontal dysfunction, which underlies vulnerability to relapse, is evidenced by altered neuroelectric signatures and should be restored by pharmacological interventions that specifically target prefrontal dysfunction. To test this, we applied our recently developed biocompatible neuroprosthesis to measure prefrontal neural function in a well-established rat model of alcohol addiction and relapse. We monitored neural oscillations and event-related potentials in awake alcohol-dependent rats during abstinence and following treatment with psilocybin or LY379268, agonists of the serotonin 2A receptor (5-HT2AR), and the metabotropic glutamate receptor 2 (mGluR2), that are known to reduce prefrontal dysfunction and relapse. Electrophysiological impairments in alcohol-dependent rats are reduced amplitudes of P1N1 and N1P2 components and attenuated event-related oscillatory activity. Psilocybin and LY379268 were able to restore these impairments. Furthermore, alcohol-dependent animals displayed a dominance in higher beta frequencies indicative of a state of hyperarousal that is prone to relapse, which particularly psilocybin was able to counteract. In summary, we provide prefrontal markers indicative of relapse and treatment response, especially for psychedelic drugs.
AUTHOR Berfu Göksel and Nel Aaron Schulte and Mia Kovač and Erin Koos and Bart {Van Meerbeek} and Jozef Vleugels and Annabel Braem
Title Rheology and printability of alumina-toughened zirconia pastes for high-density strong parts via direct ink writing [Abstract]
Year 2024
Journal/Proceedings Journal of the European Ceramic Society
Reftype
DOI/URL URL DOI
Abstract
Direct ink writing (DIW) is a promising additive manufacturing technique for fabricating structural ceramics, including alumina-toughened zirconia (ATZ), heavily reliant on the rheological properties of the paste. The rheological properties of aqueous ATZ pastes with 25 wt% Pluronic® F127 hydrogel and solid loadings of 28–44 vol% were investigated, complemented by characterization of the parts, including relative density and shrinkage measurements, to assess the printability. The 42 vol% paste was identified as most suitable for producing high-density parts with minimal shrinkage. A controlled drying process gradually decreased humidity from 90% to 30% while raising temperature from 25 to 60°C over 4 days to prevent drying defects. Mechanical testing showed DIW-printed high-density (97.2±2.2%) parts with a mean flexural strength of 670±270 MPa, Vickers hardness of 13.6±2.8 GPa, and fracture resistance of 4.4±0.2 MPa, highlighting the potential for DIW to create high-density ATZ ceramic parts with favorable mechanical properties.
AUTHOR Villata, Simona and Frascella, Francesca and Gaglio, Cesare Gabriele and Nastasi, Giuliana and Petretta, Mauro and Pirri, Candido Fabrizio and Baruffaldi, Désirée
Title Self-standing gelatin- methacryloyl 3D structure using Carbopol-embedded printing [Abstract]
Year 2024
Journal/Proceedings Journal of Polymer Science
Reftype
DOI/URL DOI
Abstract
Abstract Gelatin-methacryloyl (GelMA) hydrogel has gained huge success in the last decades thanks to its versatilities in many applications. Notably, one of them is 3D bioprinting, as GelMA physical-mechanical properties and biocompatibility of uncured formulation perfectly suit the requirements of a bioink. Nevertheless, before the photopolymerization, the hydrogel shows weak mechanical properties and long recovery time after stress application, which results in the inability to obtain complex and self-standing forms due to structure collapse. In this work, Carbopol ETD 2020 NF, dissolved in cell culture medium, was used as supporting bath to optimize GelMA bioprinting and overcome its stability limitations. The achieved results demonstrated the possibility of printing shapes containing hollows with lumens or non-planar surfaces, also by using nozzles with larger inner diameter, which reduced cell death during printing process, but were usually avoid because of low resolution. Moreover, constructs' extraction was easier when Carbopol solution was prepared in culture medium rather than in water, reducing sample handling. In conclusion, thanks to this supporting bath, it was possible to print cellularized scaffold, with channels that were then seeded, obtaining inner structure. Further, this Carbopol formulation could be considered an eligible candidate as a supporting bath to obtain GelMA 3D self-standing-shaped and vascularized scaffold.
AUTHOR J. {Anupama Sekar} and Shiny Velayudhan and M. Senthilkumar and P.R. {Anil Kumar}
Title Silymarin enriched gelatin methacrylamide bioink imparts hepatoprotectivity to 3D bioprinted liver construct against carbon tetrachloride induced toxicity [Abstract]
Year 2024
Journal/Proceedings European Journal of Pharmaceutics and Biopharmaceutics
Reftype
DOI/URL URL DOI
Abstract
Three-dimensional liver bioprinting is an emerging technology in the field of regenerative medicine that aids in the creation of functional tissue constructs that can be used as transplantable organ substitutes. During transplantation, the bioprinted donor liver must be protected from the oxidative stress environment created by various factors during the transplantation procedure, as well as from drug-induced damage from medications taken as part of the post-surgery medication regimen following the procedure. In this study, Silymarin, a flavonoid with the hepatoprotective properties were introduced into the GelMA bioink formulation to protect the bioprinted liver against hepatotoxicity. The concentration of silymarin to be added in GelMA was optimised, bioink properties were evaluated, and HepG2 cells were used to bioprint liver tissue. Carbon tetrachloride (CCl4) was used to induce hepatotoxicity in bioprinted liver, and the effect of this chemical on the metabolic activities of HepG2 cells was studied. The results showed that Silymarin helps with albumin synthesis and shields liver tissue from the damaging effects of CCl4. According to gene expression analysis, CCl4 treatment increased TNF-α and the antioxidant enzyme SOD expression in HepG2 cells while the presence of silymarin protected the bioprinted construct from CCl4-induced damage. Thus, the outcomes demonstrate that the addition of silymarin in GelMA formulation protects liver function in toxic environments.
AUTHOR Stavarache, Cristina and Gȃrea, Sorina Alexandra and Serafim, Andrada and Olăreț, Elena and Vlăsceanu, George Mihail and Marin, Maria Minodora and Iovu, Horia
Title Three-Dimensional-Printed Sodium Alginate and k-Carrageenan-Based Scaffolds with Potential Biomedical Applications [Abstract]
Year 2024
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
This work reports the development of a marine-derived polysaccharide formulation based on k-Carrageenan and sodium alginate in order to produce a novel scaffold for engineering applications. The viscoelastic properties of the bicomponent inks were assessed via rheological tests prior to 3D printing. Compositions with different weight ratios between the two polymers, without any crosslinker, were subjected to 3D printing for the first time, to the best of our knowledge, and the fabrication parameters were optimized to ensure a controlled architecture. Crosslinking of the 3D-printed scaffolds was performed in the presence of a chloride mixture (CaCl2:KCl = 1:1; v/v) of different concentrations. The efficiency of the crosslinking protocol was evaluated in terms of swelling behavior and mechanical properties. The swelling behavior indicated a decrease in the swelling degree when the concentration of the crosslinking agent was increased. These results are consistent with the nanoindentation measurements and the results of the macro-scale tests. Moreover, morphology analysis was also used to determine the pore size of the samples upon freeze-drying and the uniformity and micro-architectural characteristics of the scaffolds. Overall, the registered results indicated that the bicomponent ink, Alg/kCG = 1:1 may exhibit potential for tissue-engineering applications.
AUTHOR Maryla Moczulska-Heljak and Marcin Heljak and Paweł Ł. Sajkiewicz and Dorota Kołbuk
Title Unraveling hierarchically ordered melt electro-written tissue engineering scaffolds: Morphological and mechanical insights [Abstract]
Year 2024
Journal/Proceedings Polymer
Reftype
DOI/URL URL DOI
Abstract
Addressing critical tissue defects treatment remains a pressing challenge in medicine and bioengineering. Tissue engineering (TE) scaffolds, characterized by porous architectures suitable to cell growth, is a pivotal solution. Recent advances in additive techniques have revolutionized scaffold fabrication, enabling precise control over complex porous structures. This study conducts a comprehensive analysis of hierarchically ordered melt electrospun written (MEW) TE scaffolds, elucidating the relationships between fabrication parameters and their morphological and mechanical properties. Leveraging the phenomenon of melt jet deposit buckling, characteristic hierarchically ordered porous architectures were attained. The study explores the fabrication potential of hierarchically ordered porous MEW architectures across varied voltages, feed rates, and needle sizes. Morphometric parameters, including percent porosity, density of fiber intersections, and fiber diameter, were identified. It was revealed that for feed rates exceeding 20 mm/s, resultant fiber diameters were unaffected by voltage. However, increasing voltage leads to noticeable reduction of mesh stiffness due to the coiled fibers presence. Exceptions occur at the feed rate of 20 mm/s and for needle G24, where stiffness surpasses those of regular primary pattern, which could be attributed to increased number of fiber interconnections.
AUTHOR Silvestri, Alessandro and Vázquez-Díaz, Silvia and Misia, Giuseppe and Poletti, Fabrizio and López-Domene, Rocío and Pavlov, Valeri and Zanardi, Chiara and Cortajarena, Aitziber L. and Prato, Maurizio
Title An Electroactive and Self-Assembling Bio-Ink, based on Protein-Stabilized Nanoclusters and Graphene, for the Manufacture of Fully Inkjet-Printed Paper-Based Analytical Devices [Abstract]
Year 2023
Journal/Proceedings Small
Reftype
DOI/URL DOI
Abstract
Abstract Hundreds of new electrochemical sensors are reported in literature every year. However, only a few of them makes it to the market. Manufacturability, or rather the lack of it, is the parameter that dictates if new sensing technologies will remain forever in the laboratory in which they are conceived. Inkjet printing is a low-cost and versatile technique that can facilitate the transfer of nanomaterial-based sensors to the market. Herein, an electroactive and self-assembling inkjet-printable ink based on protein-nanomaterial composites and exfoliated graphene is reported. The consensus tetratricopeptide proteins (CTPRs), used to formulate this ink, are engineered to template and coordinate electroactive metallic nanoclusters (NCs), and to self-assemble upon drying, forming stable films. The authors demonstrate that, by incorporating graphene in the ink formulation, it is possible to dramatically improve the electrocatalytic properties of the ink, obtaining an efficient hybrid material for hydrogen peroxide (H2O2) detection. Using this bio-ink, the authors manufactured disposable and environmentally sustainable electrochemical paper-based analytical devices (ePADs) to detect H2O2, outperforming commercial screen-printed platforms. Furthermore, it is demonstrated that oxidoreductase enzymes can be included in the formulation, to fully inkjet-print enzymatic amperometric biosensors ready to use.
AUTHOR Weichhold, Jan and Pfeiffle, Maximilian and Kade, Juliane C. and Hurle, Katrin and Gbureck, Uwe
Title Aqueous Calcium Phosphate Cement Inks for 3D Printing [Abstract]
Year 2023
Journal/Proceedings Advanced Engineering Materials
Reftype
DOI/URL DOI
Abstract
Mimicking the native properties and architecture of natural bone is a remaining challenge within the field of regenerative medicine. Due to the chemical similarity of calcium phosphate cements (CPCs) to bone mineral, these cements are well studied as potential bone replacement material. Nevertheless, the processing and handling of CPCs into prefabricated pastes with adequate properties for 3D printing has drawbacks due to slow reaction times, limited design freedom, as well as fabrication issues such as filter pressing during ejection through thin nozzles. Herein, an aqueous cement paste containing α-tricalcium phosphate powder is proposed, which is stabilized by sodium pyrophosphate (Na4P2O7·10H2O) as additive. Since high powder loadings within pastes can result in filter pressing during extrusion, various concentrations and molecular weights of hyaluronic acid (HyAc) are added to the cement paste, resulting in reduced filter pressing during 3D extrusion-based printing. These cement pastes are investigated regarding their setting reaction after activation with orthophosphate solution by isothermal calorimetry and X-ray diffraction, as well as their hardening performance using Imeter measurements, while the processability is assessed by extrusion through 1.2 and 0.8 mm cannulas. The 3D-printed structures with appropriate HyAc molecular weight and concentration demonstrate suitable mechanical properties and resolution for clinical application.
AUTHOR Anupama Sekar, J. and Velayudhan, Shiny and Anil Kumar, P. R.
Title Biocompatibility evaluation of antioxidant cocktail loaded gelatin methacrylamide as bioink for extrusion-based 3D bioprinting [Abstract]
Year 2023
Journal/Proceedings Biomedical Materials
Reftype
DOI/URL DOI
Abstract
Three-dimensional (3D) liver bioprinting is a promising technique for creating 3D liver models that can be used for in vitro drug testing, hepatotoxicity studies, and transplantation. The functional performance of 3D bioprinted liver constructs are limited by the lack of cell–cell interactions, which calls for the creation of bioprinted tissue constructs with high cell densities. This study reports the fabrication of 3D bioprinted liver constructs using a novel photocrosslinkable gelatin methacrylamide (GelMA)-based bioink formulation. However, the formation of excess free radicals during photoinitiation poses a challenge, particularly during photocrosslinking of large constructs with high cell densities. Hence, we designed a bioink formulation comprising the base polymer GelMA loaded with an antioxidant cocktail containing vitamin C (L-ascorbic acid (AA)) and vitamin E (α-tocopherol (α-Toc)). We confirmed that the combination of antioxidants loaded in GelMA enhanced the ability to scavenge intracellular reactive oxygen species formed during photocrosslinking. The GelMA formulation was evaluated for biocompatibility in vitro and in vivo. These results demonstrated that the bioink had adequate rheological characteristics and was biocompatible. Furthermore, when compared to bioprinted constructs with lower cell density, high-density primary rat hepatocyte constructs demonstrated improved cell-cell interactions and liver-specific functions like albumin and urea secretion, which increased 5-fold and 2.5-fold, respectively.
AUTHOR Xing, Ruirui and Yuan, Chengqian and Fan, Wei and Ren, Xiaokang and Yan, Xuehai
Title Biomolecular glass with amino acid and peptide nanoarchitectonics [Abstract]
Year 2023
Journal/Proceedings Science Advances
Reftype
DOI/URL DOI
Abstract
Glass is ubiquitous in life and widely used in various fields. However, there is an urgent need to develop biodegradable and biorecyclable glasses that have a minimal environmental footprint toward a sustainable society and a circular materials economy. Here, we report a family of eco-friendly glasses of biological origin fabricated using biologically derived amino acids or peptides through the classic heating-quenching procedure. Amino acids and peptides with chemical modification at their ends are found able to form a supercooled liquid before decomposition and eventually glass upon quenching. These developed glasses exhibit excellent glass-forming ability and optical characteristics and are amenable to three-dimensional–printed additive manufacturing and mold casting. Crucially, the glasses show biocompatibility, biodegradability, and biorecyclability beyond the currently used commercial glasses and plastic materials. Biodegradable and biorecyclable glasses developed from amino acids exhibit functionality and sustainability.
AUTHOR Jahangir, Shahrbanoo and Vecstaudza, Jana and Augurio, Adriana and Canciani, Elena and Stipniece, Liga and Locs, Janis and Alini, Mauro and Serra, Tiziano
Title Cell-Laden 3D Printed GelMA/HAp and THA Hydrogel Bioinks: Development of Osteochondral Tissue-like Bioinks [Abstract]
Year 2023
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
Osteochondral (OC) disorders such as osteoarthritis (OA) damage joint cartilage and subchondral bone tissue. To understand the disease, facilitate drug screening, and advance therapeutic development, in vitro models of OC tissue are essential. This study aims to create a bioprinted OC miniature construct that replicates the cartilage and bone compartments. For this purpose, two hydrogels were selected: one composed of gelatin methacrylate (GelMA) blended with nanosized hydroxyapatite (nHAp) and the other consisting of tyramine-modified hyaluronic acid (THA) to mimic bone and cartilage tissue, respectively. We characterized these hydrogels using rheological testing and assessed their cytotoxicity with live-dead assays. Subsequently, human osteoblasts (hOBs) were encapsulated in GelMA-nHAp, while micropellet chondrocytes were incorporated into THA hydrogels for bioprinting the osteochondral construct. After one week of culture, successful OC tissue generation was confirmed through RT-PCR and histology. Notably, GelMA/nHAp hydrogels exhibited a significantly higher storage modulus (G′) compared to GelMA alone. Rheological temperature sweeps and printing tests determined an optimal printing temperature of 20 °C, which remained unaffected by the addition of nHAp. Cell encapsulation did not alter the storage modulus, as demonstrated by amplitude sweep tests, in either GelMA/nHAp or THA hydrogels. Cell viability assays using Ca-AM and EthD-1 staining revealed high cell viability in both GelMA/nHAp and THA hydrogels. Furthermore, RT-PCR and histological analysis confirmed the maintenance of osteogenic and chondrogenic properties in GelMA/nHAp and THA hydrogels, respectively. In conclusion, we have developed GelMA-nHAp and THA hydrogels to simulate bone and cartilage components, optimized 3D printing parameters, and ensured cell viability for bioprinting OC constructs.
AUTHOR Sanz-Fraile, Héctor and Herranz-Diez, Carolina and Ulldemolins, Anna and Falcones, Bryan and Almendros, Isaac and Gavara, Núria and Sunyer, Raimon and Farré, Ramon and Otero, Jorge
Title Characterization of Bioinks Prepared via Gelifying Extracellular Matrix from Decellularized Porcine Myocardia [Abstract]
Year 2023
Journal/Proceedings Gels
Reftype
DOI/URL URL DOI
Abstract
Since the emergence of 3D bioprinting technology, both synthetic and natural materials have been used to develop bioinks for producing cell-laden cardiac grafts. To this end, extracellular-matrix (ECM)-derived hydrogels can be used to develop scaffolds that closely mimic the complex 3D environments for cell culture. This study presents a novel cardiac bioink based on hydrogels exclusively derived from decellularized porcine myocardium loaded with human-bone-marrow-derived mesenchymal stromal cells. Hence, the hydrogel can be used to develop cell-laden cardiac patches without the need to add other biomaterials or use additional crosslinkers. The scaffold ultrastructure and mechanical properties of the bioink were characterized to optimize its production, specifically focusing on the matrix enzymatic digestion time. The cells were cultured in 3D within the developed hydrogels to assess their response. The results indicate that the hydrogels fostered inter-cell and cell-matrix crosstalk after 1 week of culture. In conclusion, the bioink developed and presented in this study holds great potential for developing cell-laden customized patches for cardiac repair.
AUTHOR Tournier, Pierre and Saint-Pé, Garance and Lagneau, Nathan and Loll, François and Halgand, Boris and Tessier, Arnaud and Guicheux, Jérôme and Visage, Catherine Le and Delplace, Vianney
Title Clickable Dynamic Bioinks Enable Post-Printing Modifications of Construct Composition and Mechanical Properties Controlled over Time and Space [Abstract]
Year 2023
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Bioprinting is a booming technology, with numerous applications in tissue engineering and regenerative medicine. However, most biomaterials designed for bioprinting depend on the use of sacrificial baths and/or non-physiological stimuli. Printable biomaterials also often lack tunability in terms of their composition and mechanical properties. To address these challenges, the authors introduce a new biomaterial concept that they have termed “clickable dynamic bioinks”. These bioinks use dynamic hydrogels that can be printed, as well as chemically modified via click reactions to fine-tune the physical and biochemical properties of printed objects after printing. Specifically, using hyaluronic acid (HA) as a polymer of interest, the authors investigate the use of a boronate ester-based crosslinking reaction to produce dynamic hydrogels that are printable and cytocompatible, allowing for bioprinting. The resulting dynamic bioinks are chemically modified with bioorthogonal click moieties to allow for a variety of post-printing modifications with molecules carrying the complementary click function. As proofs of concept, the authors perform various post-printing modifications, including adjusting polymer composition (e.g., HA, chondroitin sulfate, and gelatin) and stiffness, and promoting cell adhesion via adhesive peptide immobilization (i.e., RGD peptide). The results also demonstrate that these modifications can be controlled over time and space, paving the way for 4D bioprinting applications.
AUTHOR D’Atanasio, Paolo and Fiaschini, Noemi and Rinaldi, Antonio and Zambotti, Alessandro and Cantini, Lorenzo and Mancuso, Mariateresa and Antonelli, Francesca
Title Design and Implementation of an Accessible 3D Bioprinter: Benchmarking the Performance of a Home-Made Bioprinter against a Professional Bioprinter [Abstract]
Year 2023
Journal/Proceedings Applied Sciences
Reftype
DOI/URL URL DOI
Abstract
The tremendous application potential of 3D bioprinting in the biomedical field is witnessed by the ever-increasing interest in this technology over the past few years. In particular, the possibility of obtaining 3D cellular models that mimic tissues with precision and reproducibility represents a definitive advance for in vitro studies dealing with the biological mechanisms of cell growth, death and proliferation and is at the basis of the responses of healthy and pathological tissues to drugs and therapies. However, the impact of 3D bioprinting on research is limited by the high costs of professional 3D bioprinters, which represent an obstacle to the widespread access and usability of this technology. In this work, we present a 3D bioprinter that was developed in-house by modifying a low-cost commercial 3D printer by replacing the default extruder used to print plastic filaments with a custom-made syringe extruder that is suitable for printing bioinks. The modifications made to the 3D printer include adjusting the size of the extruder to accommodate a 1 mL syringe and reducing the extruder’s size above the printer. To validate the performance of the home-made bioprinter, some main printing characteristics, the cell vitality and the possibility of bioprinting CAD-designed constructs were benchmarked against a renowned professional 3D bioprinter by RegenHu. According to our findings, our in-house 3D bioprinter was mostly successful in printing a complex glioblastoma tumor model with good performances, and it managed to maintain a cell viability that was comparable to that achieved by a professional bioprinter. This suggests that an accessible open-source 3D bioprinter could be a viable option for research and development (R&D) laboratories interested in pre-commercial 3D bioprinting advancements.
AUTHOR Lai, Jiahui and Wang, Min
Title Developments of additive manufacturing and 5D printing in tissue engineering [Abstract]
Year 2023
Journal/Proceedings Journal of Materials Research
Reftype Lai2023
DOI/URL DOI
Abstract
Additive manufacturing, popularly known as “3D printing”, enables us to fabricate advanced scaffolds and cell-scaffold constructs for tissue engineering. 4D printing makes dynamic scaffolds for human tissue regeneration, while bioprinting involves living cells for constructing cell-laden structures. However, 3D/4D printing and bioprinting have limitations. This article provides an up-to-date review of 3D/4D printing and bioprinting in tissue engineering. Based on 3D/4D printing, 5D printing is conceptualized and explained. In 5D printing, information as the fifth dimension in addition to 3D space and time is embedded in printed structures and can be subsequently delivered, causing change/changes of the environment of 5D printed objects. Unlike 3D/4D printing that makes passive/inactive products, 5D printing produces active or intelligent products that interact with the environments and cause their positive changes. Finally, the application of 5D printing in tissue engineering is illustrated by our recent work. 3D/4D/5D printing and bioprinting are powerful manufacturing platforms for tissue engineering.
AUTHOR Cianciosi, Alessandro and Simon, Jonas and Bartolf-Kopp, Michael and Grausgruber, Heinrich and Dargaville, Tim R. and Forget, Aurélien and Groll, Jürgen and Jungst, Tomasz and Beaumont, Marco
Title Direct ink writing of multifunctional nanocellulose and allyl-modified gelatin biomaterial inks for the fabrication of mechanically and functionally graded constructs [Abstract]
Year 2023
Journal/Proceedings Carbohydrate Polymers
Reftype
DOI/URL URL DOI
Abstract
Recreating the intricate mechanical and functional gradients found in natural tissues through additive manufacturing poses significant challenges, including the need for precise control over time and space and the availability of versatile biomaterial inks. In this proof-of-concept study, we developed a new biomaterial ink for direct ink writing, allowing the creation of 3D structures with tailorable functional and mechanical gradients. Our ink formulation combined multifunctional cellulose nanofibrils (CNFs), allyl-functionalized gelatin (0.8–2.0 wt%), and polyethylene glycol dithiol (3.0–7.5 wt%). The CNF served as a rheology modifier, whereas a concentration of 1.8 w/v % in the inks was chosen for optimal printability and shape fidelity. In addition, CNFs were functionalized with azido groups, enabling the spatial distribution of functional moieties within a 3D structure. These functional groups were further modified using a spontaneous click chemistry reaction. Through additive manufacturing and a readily available static mixer, we successfully demonstrated the fabrication of mechanical gradients – ranging from 3 to 6 kPa in indentation strength – and functional gradients. Additionally, we introduced dual gradients by combining gradient printing with an anisotropic photocrosslinking step. The developed biomaterial ink opens up possibilities for printing intricate multigradient structures, resembling the complex hierarchical organization seen in living tissues.
AUTHOR Yu, Hao-Cheng and Hsieh, Kun-Liang and Hirai, Tomoyasu and Li, Ming-Chia
Title Dynamics of Nanocomposite Hydrogel Alignment during 3D Printing to Develop Tissue Engineering Technology [Abstract]
Year 2023
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
Abstract
Taking inspiration from spider silk protein spinning, we developed a method to produce tough filaments using extrusion-based 3D bioprinting and salting-out of the protein. To enhance both stiffness and ductility, we have designed a blend of partially crystalline, thermally sensitive natural polymer gelatin and viscoelastic G-polymer networks, mimicking the components of spider silk. Additionally, we have incorporated inorganic nanoparticles as a rheological modifier to fine-tune the 3D printing properties. This self-healing nanocomposite hydrogel exhibits exceptional mechanical properties, biocompatibility, shear thinning behavior, and a well-controlled gelation mechanism for 3D printing.
AUTHOR Cojocaru, Elena and Ghitman, Jana and Pircalabioru, Gratiela Gradisteanu and Zaharia, Anamaria and Iovu, Horia and Sarbu, Andrei
Title Electrospun/3D-Printed Bicomponent Scaffold Co-Loaded with a Prodrug and a Drug with Antibacterial and Immunomodulatory Properties [Abstract]
Year 2023
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
This work reports the construction of a bicomponent scaffold co-loaded with both a prodrug and a drug (BiFp@Ht) as an efficient platform for wound dressing, by combining the electrospinning and 3D-printing technologies. The outer component consisted of a chitosan/polyethylene oxide-electrospun membrane loaded with the indomethacin–polyethylene glycol–indomethacin prodrug (Fp) and served as a support for printing the inner component, a gelatin methacryloyl/sodium alginate hydrogel loaded with tetracycline hydrochloride (Ht). The different architectural characteristics of the electrospun and 3D-printed layers were very well highlighted in a morphological analysis performed by Scanning Electron Microscopy (SEM). In vitro release profile studies demonstrated that both Fp and Ht layers were capable to release the loaded therapeutics in a controlled and sustained manner. According to a quantitative in vitro biological assessment, the bicomponent BiFp@Ht scaffold showed a good biocompatibility and no cytotoxic effect on HeLa cell cultures, while the highest proliferation level was noted in the case of HeLa cells seeded onto an Fp nanofibrous membrane. Furthermore, the BiFp@Ht scaffold presented an excellent antimicrobial activity against the E. coli and S. aureus bacterial strains, along with promising anti-inflammatory and proangiogenic activities, proving its potential to be used for wound dressing.
AUTHOR Na Chen
Title Embedded 3D printing and pressurized thermo-curing of PMMA for medical implants [Abstract]
Year 2023
Journal/Proceedings Journal of the Mechanical Behavior of Biomedical Materials
Reftype
DOI/URL URL DOI
Abstract
Poly (methyl methacrylate) (PMMA) is a synthetic polymer commonly used for medical implants in cranioplasty and orthopedic surgery owing to its excellent mechanical properties, optical transparency, and minimal inflammatory responses. Recently, the development of 3D printing opens new avenues in the fabrication of patient-specific PMMA implants for personalized medicine. However, challenges are confronted when adapting medical-grade PMMA to the 3D printing process due to its dynamic viscosity and nonself-supporting characteristics before cured. In addition, the intrinsically exothermic polymerization of MMA brings about bubble generation issues that reduce its mechanical performance harshly. Therefore, in this study, an embedded 3D printing methodology followed by pressurized thermo-curing is proposed and developed: a granular alginate microgel is designed for serving as a supporting matrix when jamming formed between the granules to structurally support the extruded precursor filaments of PMMA-MMA ink during both 3D printing and post-curing; moreover, the autoclave reactor enclosing the alginate matrix and as-sculpted PMMA structures is utilized to generate temperature-dependent pressure, which serves for suppressing the bubbles and solidifying the polymerized MMA during the post-curing process. The 3D printed PMMA is comparably matchable to traditional PMMA castings in terms of their microstructures, density, thermal properties, mechanical performance and biocompatibility. In the future, the proposed embedded 3D printing platform combined with the special post-curing method has great potential for a customized and cost-effective fabrication of patient-specific, complex and functional PMMA implants.
AUTHOR Gruhn, Thomas and Monsalve, Camilo Ortiz and Müller, Claudia and Heid, Susanne and Boccaccini, Aldo R. and Salehi, Sahar
Title Fabrication of Hydrogel-Based Composite Fibers and Computer Simulation of the Filler Dynamics in the Composite Flow [Abstract]
Year 2023
Journal/Proceedings Bioengineering
Reftype
DOI/URL URL DOI
Abstract
Fibrous structures with anisotropic fillers as composites have found increasing interest in the field of biofabrication since they can mimic the extracellular matrix of anisotropic tissues such as skeletal muscle or nerve tissue. In the present work, the inclusion of anisotropic fillers in hydrogel-based filaments with an interpenetrating polymeric network (IPN) was evaluated and the dynamics of such fillers in the composite flow were analyzed using computational simulations. In the experimental part, microfabricated rods (200 and 400 μm length, 50 μm width) were used as anisotropic fillers in extrusion of composite filaments using two techniques of wet spinning and 3D printing. Hydrogels such as oxidized alginate (ADA) and methacrylated gelatin (GelMA) were used as matrices. In the computational simulation, a combination of computational fluid dynamics and coarse-grained molecular dynamics was used to study the dynamics of rod-like fillers in the flow field of a syringe. It showed that, during the extrusion process, microrods are far from being well aligned. Instead, many of them tumble on their way through the needle leading to a random orientation in the fiber which was confirmed experimentally.
AUTHOR Comperat, Léo and Chagot, Lise and Massot, Sarah and Stachowicz, Marie-Laure and Dusserre, Nathalie and Médina, Chantal and Desigaux, Théo and Dupuy, Jean-William and Fricain, Jean-Christophe and Oliveira, Hugo
Title Harnessing Human Placental Membrane-Derived Bioinks: Characterization and Applications in Bioprinting and Vasculogenesis [Abstract]
Year 2023
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Bioprinting applications in the clinical field generate great interest, but developing suitable biomaterial inks for medical settings is a challenge. Placental tissues offer a promising solution due to their abundance, stability, and status as medical waste. They contain basement membrane components, have a clinical history, and support angiogenesis. This study formulates bioinks from two placental tissues, amnion (AM) and chorion (CHO), and compares their unique extracellular matrix (ECM) and growth factor compositions. Rheological properties of the bioinks are evaluated for bioprinting and maturation of human endothelial cells. Both AM and Cho-derived bioinks sustained human endothelial cell viability, proliferation, and maturation, promoting optimal vasculogenesis. These bioinks derived from human sources have significant potential for tissue engineering applications, particularly in supporting vasculogenesis. This research contributes to the advancement of tissue engineering and regenerative medicine, bringing everyone closer to clinically viable bioprinting solutions using placental tissues as valuable biomaterials.
AUTHOR Moo, Eng Kuan and Ebrahimi, Mohammadhossein and Hrynevich, Andrei and de Ruijter, Mylène and Castilho, Miguel and Malda, Jos and Korhonen, Rami K.
Title Load-induced fluid pressurisation in hydrogel systems before and after reinforcement by melt-electrowritten fibrous meshes [Abstract]
Year 2023
Journal/Proceedings Journal of the Mechanical Behavior of Biomedical Materials
Reftype
DOI/URL URL DOI
Abstract
Fluid pressure develops transiently within mechanically-loaded, cell-embedding hydrogels, but its magnitude depends on the intrinsic material properties of the hydrogel and cannot be easily altered. The recently developed melt-electrowriting (MEW) technique enables three-dimensional printing of structured fibrous mesh with small fibre diameter (20 μm). The MEW mesh with 20 μm fibre diameter can synergistically increase the instantaneous mechanical stiffness of soft hydrogels. However, the reinforcing mechanism of the MEW meshes is not well understood, and may involve load-induced fluid pressurisation. Here, we examined the reinforcing effect of MEW meshes in three hydrogels: gelatin methcryloyl (GelMA), agarose and alginate, and the role of load-induced fluid pressurisation in the MEW reinforcement. We tested the hydrogels with and without MEW mesh (i.e., hydrogel alone, and MEW-hydrogel composite) using micro-indentation and unconfined compression, and analysed the mechanical data using biphasic Hertz and mixture models. We found that the MEW mesh altered the tension-to-compression modulus ratio differently for hydrogels that are cross-linked differently, which led to a variable change to their load-induced fluid pressurisation. MEW meshes only enhanced the fluid pressurisation for GelMA, but not for agarose or alginate. We speculate that only covalently cross-linked hydrogels (GelMA) can effectively tense the MEW meshes, thereby enhancing the fluid pressure developed during compressive loading. In conclusion, load-induced fluid pressurisation in selected hydrogels was enhanced by MEW fibrous mesh, and may be controlled by MEW mesh of different designs in the future, thereby making fluid pressure a tunable cell growth stimulus for tissue engineering involving mechanical stimulation.
AUTHOR Marin, Maria Minodora and Gifu, Ioana Catalina and Pircalabioru, Gratiela Gradisteanu and Albu Kaya, Madalina and Constantinescu, Rodica Roxana and Alexa, Rebeca Leu and Trica, Bogdan and Alexandrescu, Elvira and Nistor, Cristina Lavinia and Petcu, Cristian and Ianchis, Raluca
Title Microbial Polysaccharide-Based Formulation with Silica Nanoparticles; A New Hydrogel Nanocomposite for 3D Printing [Abstract]
Year 2023
Journal/Proceedings Gels
Reftype
DOI/URL URL DOI
Abstract
Natural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials are widely used in 3D hydrogel printing of tissue substitutes. In this context, our goal was to obtain printable hydrogel nanocomposites by adding silica nanoparticles to a microbial polysaccharide’s polymer network. Several amounts of silica nanoparticles were added to the biopolymer, and their effects on the morpho-structural characteristics of the resulting nanocomposite hydrogel inks and subsequent 3D printed constructs were studied. FTIR, TGA, and microscopy analysis were used to investigate the resulting crosslinked structures. Assessment of the swelling characteristics and mechanical stability of the nanocomposite materials in a wet state was also conducted. The salecan-based hydrogels displayed excellent biocompatibility and could be employed for biomedical purposes, according to the results of the MTT, LDH, and Live/Dead tests. The innovative, crosslinked, nanocomposite materials are recommended for use in regenerative medicine.
AUTHOR Ianchis, Raluca and Marin, Maria Minodora and Alexa, Rebeca Leu and Gifu, Ioana Catalina and Alexandrescu, Elvira and Pircalabioru, Gratiela Gradisteanu and Vlasceanu, George Mihail and Teodorescu, George Mihail and Serafim, Andrada and Preda, Silviu and Nistor, Cristina Lavinia and Petcu, Cristian
Title Nanoclay-reinforced alginate/salecan composite inks for 3D printing applications
Year 2023
Journal/Proceedings IJB
Reftype
DOI/URL DOI
AUTHOR Read, Sophia A. and Go, Chee Shuen and Ferreira, Miguel J. S. and Ligorio, Cosimo and Kimber, Susan J. and Dumanli, Ahu G. and Domingos, Marco A. N.
Title Nanocrystalline Cellulose as a Versatile Engineering Material for Extrusion-Based Bioprinting [Abstract]
Year 2023
Journal/Proceedings Pharmaceutics
Reftype
DOI/URL URL DOI
Abstract
Naturally derived polysaccharide-based hydrogels, such as alginate, are frequently used in the design of bioinks for 3D bioprinting. Traditionally, the formulation of such bioinks requires the use of pre-reticulated materials with low viscosities, which favour cell viability but can negatively influence the resolution and shape fidelity of the printed constructs. In this work, we propose the use of cellulose nanocrystals (CNCs) as a rheological modifier to improve the printability of alginate-based bioinks whilst ensuring a high viability of encapsulated cells. Through rheological analysis, we demonstrate that the addition of CNCs (1% and 2% (w/v)) to alginate hydrogels (1% (w/v)) improves shear-thinning behaviour and mechanical stability, resulting in the high-fidelity printing of constructs with superior resolution. Importantly, LIVE/DEAD results confirm that the presence of CNCs does not seem to affect the health of immortalised chondrocytes (TC28a2) that remain viable over a period of seven days post-encapsulation. Taken together, our results indicate a favourable effect of the CNCs on the rheological and biocompatibility properties of alginate hydrogels, opening up new perspectives for the application of CNCs in the formulation of bioinks for extrusion-based bioprinting.
AUTHOR Bontempi, Marco and Marchiori, Gregorio and Petretta, Mauro and Capozza, Rosario and Grigolo, Brunella and Giavaresi, Gianluca and Gambardella, Alessandro
Title Nanomechanical Mapping of Three Dimensionally Printed Poly-ε-Caprolactone Single Microfibers at the Cell Scale for Bone Tissue Engineering Applications [Abstract]
Year 2023
Journal/Proceedings Biomimetics
Reftype
DOI/URL URL DOI
Abstract
Poly-ε-caprolactone (PCL) has been widely used in additive manufacturing for the construction of scaffolds for bone tissue engineering. However, its use is limited by its lack of bioactivity and inability to induce cell adhesion, hence limiting bone tissue regeneration. Biomimicry is strongly influenced by the dynamics of cell–substrate interaction. Thus, characterizing scaffolds at the cell scale could help to better understand the relationship between surface mechanics and biological response. We conducted atomic force microscopy-based nanoindentation on 3D-printed PCL fibers of ~300 µm thickness and mapped the near-surface Young’s modulus at loading forces below 50 nN. In this non-disruptive regime, force mapping did not show clear patterns in the spatial distribution of moduli or a relationship with the topographic asperities within a given region. Remarkably, we found that the average modulus increased linearly with the logarithm of the strain rate. Finally, a dependence of the moduli on the history of nanoindentation was demonstrated on locations of repeated nanoindentations, likely due to creep phenomena capable of hindering viscoelasticity. Our findings can contribute to the rational design of scaffolds for bone regeneration that are capable of inducing cell adhesion and proliferation. The methodologies described are potentially applicable to various tissue-engineered biopolymers.
AUTHOR Ianchis, Raluca and Alexa, Rebeca Leu and Gifu, Ioana Catalina and Marin, Maria Minodora and Alexandrescu, Elvira and Constantinescu, Roxana and Serafim, Andrada and Nistor, Cristina Lavinia and Petcu, Cristian
Title Novel Green Crosslinked Salecan Hydrogels and Preliminary Investigation of Their Use in 3D Printing [Abstract]
Year 2023
Journal/Proceedings Pharmaceutics
Reftype
DOI/URL URL DOI
Abstract
Salecan, a kind of polysaccharide, is produced by the Agrobacterium ZX09 salt tolerant strain. In this study, green crosslinked citric acid-salecan hydrogels are explored as novel materials with a high potential for use in regenerative medicine. The impact of salecan and citric acid on the final crosslinked hydrogels was intensively studied and estimated in terms of the whole physicochemical properties and antimicrobial activity. FTIR spectra demonstrated the successful green crosslinking of salecan through its esterification with citric acid where the formation of strong covalent bonds collaboratively helped to stabilize the entire hydrogel systems in a wet state. Hydrogels presented a microporous morphology, good swelling capacity, pH responsiveness, great mechanical stability under stress conditions and good antibacterial activity, all related to the concentration of the biopolymers used in the synthesis step. Additionally, salecan hydrogels were preliminary investigated as printing inks. Thanks to their excellent rheological behavior, we optimized the citrate-salecan hydrogel inks and printing parameters to render 3D constructs with great printing fidelity and integrity. The novel synthesized salecan green crosslinked hydrogels enriches the family of salecan-derived hydrogels. Moreover, this work not only expands the application of salecan hydrogels in various fields, but also provides a new potential option of designing salecan-based 3D printed scaffolds for customized regenerative medicine.
AUTHOR Grijalva Garces, David and Strauß, Svenja and Gretzinger, Sarah and Schmieg, Barbara and Juengst, Tomasz and Groll, Juergen and Meinel, Lorenz and Schmidt, Isabelle and Hartmann, Hanna and Schenke-Layland, Katja and Brandt, Nico and Selzer, Michael and Zimmermann, Stefan and Koltay, Peter and Southan, Alexander and Tovar, Günter E M and Schmidt, Sarah and Weber, Achim and Ahlfeld, Tilman and Gelinsky, Michael and Scheibel, Thomas and Detsch, Rainer and Boccaccini, Aldo R and Naolou, Toufik and Lee-Thedieck, Cornelia and Willems, Christian and Groth, Thomas and Allgeier, Stephan and Köhler, Bernd and Friedrich, Tiaan and Briesen, Heiko and Buchholz, Janine and Paulus, Dietrich and von Gladiss, Anselm and Hubbuch, Juergen
Title On the reproducibility of extrusion-based bioprinting: round robin study on standardization in the field [Abstract]
Year 2023
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
The outcome of 3D bioprinting heavily depends, amongst others, on the interaction between the developed bioink, the printing process, and the printing equipment. However, if this interplay is ensured, bioprinting promises unmatched possibilities in the health care area. To pave the way for comparing newly developed biomaterials, clinical studies, and medical applications (i.e. printed organs, patient-specific tissues), there is a great need for standardization of manufacturing methods in order to enable technology transfers. Despite the importance of such standardization, there is currently a tremendous lack of empirical data that examines the reproducibility and robustness of production in more than one location at a time. In this work, we present data derived from a round robin test for extrusion-based 3D printing performance comprising 12 different academic laboratories throughout Germany and analyze the respective prints using automated image analysis in three independent academic groups. The fabrication of objects from polymer solutions was standardized as much as currently possible to allow studying the comparability of results from different laboratories. This study has led to the conclusion that current standardization conditions still leave room for the intervention of operators due to missing automation of the equipment. This affects significantly the reproducibility and comparability of bioprinting experiments in multiple laboratories. Nevertheless, automated image analysis proved to be a suitable methodology for quality assurance as three independently developed workflows achieved similar results. Moreover, the extracted data describing geometric features showed how the function of printers affects the quality of the printed object. A significant step toward standardization of the process was made as an infrastructure for distribution of material and methods, as well as for data transfer and storage was successfully established.
AUTHOR Malgorzata A. Zboinska and Sanna Sämfors and Paul Gatenholm
Title Robotically 3D printed architectural membranes from ambient dried cellulose nanofibril-alginate hydrogel [Abstract]
Year 2023
Journal/Proceedings Materials & Design
Reftype
DOI/URL URL DOI
Abstract
Cellulose nanofibril hydrogel mixed with an aqueous solution of sodium alginate is a novel bio-based material suitable for 3D printing of lightweight membranes with exquisite properties and sustainable traits. However, fundamental knowledge enabling its applications in architectural design is still missing. Hence, this study examines the macro-scale features of lightweight membranes from cellulose nanofibril-alginate hydrogel, relevant for the design of various interior architectural products, such as wall claddings, ceiling tiles, room partitions, tapestries, and window screens. Through iterative prototyping experiments involving robotic 3D printing of lightweight membranes, their upscaling potential is demonstrated. Correlations between toolpath designs and shrinkages are also characterized, alongside an in-depth analysis of coloration changes upon ambient drying. Further, the tunability potential of various architectural features, enabled by bespoke 3D printing toolpath design, is discussed and exemplified. The aim is to expose the wide palette of design possibilities for cellulose nanofibril-alginate membranes, encompassing variations in curvature, porosity, translucency, texture, patterning, pliability, and feature sizes. The results comprise an important knowledge foundation for the design and manufacturing of custom lightweight architectural products from cellulose nanofibril-alginate hydrogel. These products could be applied in a variety of new bio-based, sustainable interior building systems, replacing environmentally harmful, fossil-based solutions.
AUTHOR Chen, Shangsi and Wang, Yue and Lai, Jiahui and Tan, Shenglong and Wang, Min
Title Structure and Properties of Gelatin Methacryloyl (GelMA) Synthesized in Different Reaction Systems [Abstract]
Year 2023
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
Abstract
Gelatin methacryloyl (GelMA) hydrogels have been extensively used for drug delivery and tissue engineering applications due to their good biocompatibility, biodegradability, and controllable photocurable efficiency. Phosphate buffer solution (PBS) is the most widely used reaction system for GelMA synthesis. However, carbonate-bicarbonate buffer solution (CBS) has been tried recently for synthesizing GelMA due to its high reaction efficiency. However, there is a lack of systematic investigation into possible differences in the structure and properties of GelMA synthesized in PBS and CBS, respectively. Therefore, in the current study, GelMA molecules with two degrees of methacryloylation (∼20 and ∼80%) were synthesized under PBS and CBS reaction systems, respectively, in comparable conditions. The results showed that because of the functionalization of methacrylate groups in gelatin chains, which could interfere with the intrachain and interchain interactions, such as hydrogen bonding, the GelMA molecules synthesized in PBS had distinct physical structures and exhibited different properties in comparison with those produced in CBS. GelMA hydrogels synthesized in PBS exhibited higher gel-sol transition temperatures and better photocurable efficiencies, mechanical strength, and biological properties. In contrast, GelMA hydrogels produced in CBS showed advantages in swelling performance and microstructures, such as pore sizes and porosities. In addition, GelMA synthesized in PBS and possessing a high degree of methacryloylation (the “GelMA-PH” polymer) showed great potential for three-dimensional (3D) bioprinting. This focused study has gained helpful new insights into GelMA and can provide guidance on the application of GelMA in 3D printing and tissue engineering.
AUTHOR Kopecká, Kateřina and Vítková, Lenka and Kroneková, Zuzana and Musilová, Lenka and Smolka, Petr and Mikulka, Filip and Melánová, Klára and Knotek, Petr and Humeník, Martin and Minařík, Antonín and Mráček, Aleš
Title Synthesis and Exfoliation of Calcium Organophosphonates for Tailoring Rheological Properties of Sodium Alginate Solutions: A Path toward Polysaccharide-Based Bioink [Abstract]
Year 2023
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
Abstract
Layered nanoparticles with surface charge are explored as rheological modifiers for extrudable materials, utilizing their ability to induce electrostatic repulsion and create a house-of-cards structure. These nanoparticles provide mechanical support to the polymer matrix, resulting in increased viscosity and storage modulus. Moreover, their advantageous aspect ratio allows for shear-induced orientation and decreased viscosity during flow. In this work, we present a synthesis and liquid-based exfoliation procedure of phenylphosphonate-phosphate particles with enhanced ability to be intercalated by hydrophilic polymers. These layered nanoparticles are then tested as rheological modifiers of sodium alginate. The effective rheological modification is proved as the viscosity increases from 101 up to 103 Pa·s in steady state. Also, shear-thinning behavior is observed. The resulting nanocomposite hydrogels show potential as an extrudable bioink for 3D printing in tissue engineering and other biomedical applications, with good shape fidelity, nontoxicity, and satisfactory cell viability confirmed through encapsulation and printing of mouse fibroblasts.
AUTHOR Züger, Fabian and Berner, Natascha and Gullo, Maurizio R.
Title Towards a Novel Cost-Effective and Versatile Bioink for 3D-Bioprinting in Tissue Engineering [Abstract]
Year 2023
Journal/Proceedings Biomimetics
Reftype
DOI/URL URL DOI
Abstract
3D-bioprinting for tissue regeneration relies on, among other things, hydrogels with favorable rheological properties. These include shear thinning for cell-friendly extrusion, post-printing structural stability as well as physiologically relevant elastic moduli needed for optimal cell attachment, proliferation, differentiation and tissue maturation. This work introduces a cost-efficient gelatin-methylcellulose based hydrogel whose rheological properties can be independently optimized for optimal printability and tissue engineering. Hydrogel viscosities were designed to present three different temperature regimes: low viscosity for eased cell suspension and printing with minimal shear stress, form fidelity directly after printing and long term structural stability during incubation. Enzymatically crosslinked hydrogel scaffolds with stiffnesses ranging from 5 to 50 kPa were produced, enabling the hydrogel to biomimic cell environments for different types of tissues. The bioink showed high intrinsic cytocompatibility and tissues fabricated by embedding and bioprinting NIH 3T3 fibroblasts showed satisfactory viability. This novel hydrogel uses robust and inexpensive technology, which can be adjusted for implementation in tissue regeneration, e.g., in myocardial or neural tissue engineering.
AUTHOR Radeke, Carmen and Pons, Raphaël and Mihajlovic, Marko and Knudsen, Jonas R. and Butdayev, Sarkhan and Kempen, Paul J. and Segeritz, Charis-Patricia and Andresen, Thomas L. and Pehmøller, Christian K. and Jensen, Thomas E. and Lind, Johan U.
Title Transparent and Cell-Guiding Cellulose Nanofiber 3D Printing Bioinks [Abstract]
Year 2023
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
Abstract
For three-dimensional (3D) bioprinting to fulfill its promise and enable the automated fabrication of complex tissue-mimicking constructs, there is a need for developing bioinks that are not only printable and biocompatible but also have integrated cell-instructive properties. Toward this goal, we here present a scalable technique for generating nanofiber 3D printing inks with unique tissue-guiding capabilities. Our core methodology relies on tailoring the size and dispersibility of cellulose fibrils through a solvent-controlled partial carboxymethylation. This way, we generate partially negatively charged cellulose nanofibers with diameters of ∼250 nm and lengths spanning tens to hundreds of microns. In this range, the fibers structurally match the size and dimensions of natural collagen fibers making them sufficiently large to orient cells. Yet, they are simultaneously sufficiently thin to be optically transparent. By adjusting fiber concentration, 3D printing inks with excellent shear-thinning properties can be established. In addition, as the fibers are readily dispersible, composite inks with both carbohydrates and extracellular matrix (ECM)-derived proteins can easily be generated. We apply such composite inks for 3D printing cell-laden and cross-linkable structures, as well as tissue-guiding gel substrates. Interestingly, we find that the spatial organization of engineered tissues can be defined by the shear-induced alignment of fibers during the printing procedure. Specifically, we show how myotubes derived from human and murine skeletal myoblasts can be programmed into linear and complex nonlinear architectures on soft printed substrates with intermediate fiber contents. Our nanofibrillated cellulose inks can thus serve as a simple and scalable tool for engineering anisotropic human muscle tissues that mimic native structure and function.
AUTHOR Li, Maoyin and Huang, Shuigen and Willems, Evita and Soete, Jeroen and Inokoshi, Masanao and Van Meerbeek, Bart and Vleugels, Jef and Zhang, Fei
Title UV-curing Assisted Direct Ink Writing of Dense, Crack-Free And High-Performance Zirconia-Based Composites with Aligned Alumina Platelets [Abstract]
Year 2023
Journal/Proceedings Advanced Materials
Reftype
DOI/URL DOI
Abstract
Abstract Additive manufacturing (AM) of high-performance structural ceramic components with comparative strength and toughness as conventionally manufactured ceramics remains challenging. Here, an UV-curing approach is integrated in direct ink writing (DIW), taking advantage from DIW to enable an easy use of high solid-loading pastes and multi-layered materials with compositional changes, while avoiding drying problems. UV-curable opaque zirconia-based slurries with a solid loading of 51 vol% were developed to fabricate dense and crack-free alumina-toughened zirconia (ATZ) containing 3 wt% alumina platelets. Importantly, a non-reactive diluent was added to relieve polymerization-induced internal stresses, avoid subsequent warping and cracking, and facilitate the de-binding. For the first time, UV-curing assisted DIW-printed ceramic after sintering revealed even better mechanical properties than that processed by a conventional pressing. This was attributed to the aligned alumina platelets, enhancing crack deflection and improving the fracture toughness from 6.8 ± 0.3 MPa m0.5 (compacted) to 7.4 ± 0.3 MPa m0.5 (DIW). The 4-point bending strength of the DIW ATZ (1009 ± 93 MPa) was also higher than that of the conventionally manufactured equivalent (861 ± 68 MPa). Beside homogeneous ceramic, laminate structures were demonstrated. This work has provided a valuable hybrid approach to additively manufacture tough and strong ceramic components. This article is protected by copyright. All rights reserved
AUTHOR Kuthe, Sudhanshu and Schlothauer, Arthur and Bodkhe, Sampada and Hulme, Christopher and Ermanni, Paolo
Title 3D printed mechanically representative aortic model made of gelatin fiber reinforced silicone composite [Abstract]
Year 2022
Journal/Proceedings Materials Letters
Reftype
DOI/URL URL DOI
Abstract
Additive manufacturing (AM) is a useful technology to produce artificial aortic models for the training of transcatheter aortic valve replacement (TAVR) surgery. With AM, the models can be tailored towards the individualized aortic anatomy of patients. Most of these reported models so far are manufactured using single rubber-like materials. However, such materials do not replicate the mechanical properties of natural aortic tissue, especially the stress–strain response in higher strain (>0.1) regions. This could be problematic for surgeons training for surgeries using a model which does not exhibit properties of the real aorta. To overcome this limitation, we developed a 3D-printed, mechanically representative aortic model comprising gelatin fibers and silicone. The model is promising as a realistic analog of aortic sinus for mock TAVR surgery. Computerized tomography data was analyzed beforehand using medical imaging to identify the anatomy of a specific patient’s aortic sinus and the surrounding blood vessels. A novel silicone matrix composite reinforced with gelatin fibers designed in this work was tested and compared with the stress–strain response of aortic tissue. Such a model comprising both patient-specific geometries as well as realistic material properties of aortic tissue can be helpful for the development of next-generation medical phantoms.
AUTHOR Kamdem Tamo, Arnaud and Tran, Tuan Anh and Doench, Ingo and Jahangir, Shaghayegh and Lall, Aastha and David, Laurent and Peniche-Covas, Carlos and Walther, Andreas and Osorio-Madrazo, Anayancy
Title 3D Printing of Cellulase-Laden Cellulose Nanofiber/Chitosan Hydrogel Composites: Towards Tissue Engineering Functional Biomaterials with Enzyme-Mediated Biodegradation [Abstract]
Year 2022
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
The 3D printing of a multifunctional hydrogel biomaterial with bioactivity for tissue engineering, good mechanical properties and a biodegradability mediated by free and encapsulated cellulase was proposed. Bioinks of cellulase-laden and cellulose nanofiber filled chitosan viscous suspensions were used to 3D print enzymatic biodegradable and biocompatible cellulose nanofiber (CNF) reinforced chitosan (CHI) hydrogels. The study of the kinetics of CNF enzymatic degradation was studied in situ in fibroblast cell culture. To preserve enzyme stability as well as to guarantee its sustained release, the cellulase was preliminarily encapsulated in chitosan–caseinate nanoparticles, which were further incorporated in the CNF/CHI viscous suspension before the 3D printing of the ink. The incorporation of the enzyme within the CHI/CNF hydrogel contributed to control the decrease of the CNF mechanical reinforcement in the long term while keeping the cell growth-promoting property of chitosan. The hydrolysis kinetics of cellulose in the 3D printed scaffolds showed a slow but sustained degradation of the CNFs with enzyme, with approximately 65% and 55% relative activities still obtained after 14 days of incubation for the encapsulated and free enzyme, respectively. The 3D printed composite hydrogels showed excellent cytocompatibility supporting fibroblast cell attachment, proliferation and growth. Ultimately, the concomitant cell growth and biodegradation of CNFs within the 3D printed CHI/CNF scaffolds highlights the remarkable potential of CHI/CNF composites in the design of tissue models for the development of 3D constructs with tailored in vitro/in vivo degradability for biomedical applications.
AUTHOR Kitana, Waseem and Apsite, Indra and Hazur, Jonas and Boccaccini, Aldo R. and Ionov, Leonid
Title 4D Biofabrication of T-Shaped Vascular Bifurcation [Abstract]
Year 2022
Journal/Proceedings Advanced Materials Technologies
Reftype
DOI/URL DOI
Abstract
Abstract 4D Biofabrication – a pioneering biofabrication technique – involves the automated fabrication of 3D constructs that are dynamic and show shape-transformation capability. Although current 4D biofabrication methods are highly promising for the fabrication of vascular elements such as tubes, the fabrication of tubular junctions is still highly challenging. Here, for the first time, a 4D biofabrication-based concept for the fabrication of a T-shaped vascular bifurcation using 3D printed shape-changing layers based on a mathematical model is reported. The formation of tubular structures with various diameters is achieved by precisely controlling the parameters (e.g. crosslinking time). Consequently, the 3D printed films show self-transformation into a T-junction upon immersion in water with a diameter of a few millimeters. Perfusion of the tubular T-junction with an aqueous medium simulating blood flow through vessels shows minimal leakages with a maximum flow velocity of 0.11 m s–1. Furthermore, human umbilical vein endothelial cells seeded on the inner surface of the plain T-junction show outstanding growth properties and excellent cell viability. The achieved diameters are comparable to the native blood vessels, which is still a challenge in 3D biofabrication. This approach paves the way for the fabrication of fully automatic self-actuated vascular bifurcations as vascular grafts.
AUTHOR Govindharaj, Mano and Al Hashemi, Noura Sayed and Soman, Soja Saghar and Vijayavenkataraman, Sanjairaj
Title Bioprinting of bioactive tissue scaffolds from ecologically-destructive fouling tunicates [Abstract]
Year 2022
Journal/Proceedings Journal of Cleaner Production
Reftype
DOI/URL URL DOI
Abstract
Urochordates are the closest invertebrate relative to humans and commonly referred to as tunicates, a name ascribed to their leathery outer “tunic”. The tunic is the outer covering of the organism which functions as the exoskeleton and is rich in carbohydrates and proteins. Invasive or fouling tunicates pose a great threat to the indigenous marine ecosystem and governments spend several hundred thousand dollars for tunicate management, considering the huge adverse economic impact it has on the shipping and fishing industries. In this work, the environmentally destructive colonizing tunicate species of Polyclinum constellatum was successfully identified in the coast of Abu Dhabi and methods of sustainably using it as wound-dressing materials, decellularized extra-cellular matrix (dECM) scaffolds for tissue engineering applications and bioinks for bioprinting of tissue constructs for regenerative medicine are proposed. The intricate three-dimensional nanofibrous cellulosic networks in the tunic remain intact even after the multi-step process of decellularization and lyophilization. The lyophilized dECM tunics possess excellent biocompatibility and remarkable tensile modulus of 3.85 ± 0.93 MPa compared to ∼0.1–1 MPa of other hydrogel systems. This work demonstrates the use of lyophilized tunics as wound-dressing materials, having outperformed the commercial dressing materials with a capacity of absorbing 20 times its weight in the dry state. This work also demonstrates the biocompatibility of dECM scaffold and dECM-derived bioink (3D bioprinting with Mouse Embryonic Fibroblasts (MEFs)). Both dECM scaffolds and bioprinted dECM-based tissue constructs show enhanced metabolic activity and cell proliferation over time. Sustainable utilization of dECM-based biomaterials from ecologically-destructive fouling tunicates proposed in this work helps preserve the marine ecosystem, shipping and fishing industries worldwide, and mitigate the huge cost spent for tunicate management.
AUTHOR Strauß, Svenja and Schroth, Bianca and Hubbuch, Jürgen
Title Evaluation of the Reproducibility and Robustness of Extrusion-Based Bioprinting Processes Applying a Flow Sensor [Abstract]
Year 2022
Journal/Proceedings Frontiers in bioengineering and biotechnology
Reftype
DOI/URL URL DOI
Abstract
Bioprinting is increasingly regarded as a suitable additive manufacturing method in biopharmaceutical process development and formulation. In order to manage the leap from research to industrial application, higher levels of reproducibility and a standardized bioprinting process are prerequisites. This said, the concept of process analytical technologies, standard in the biopharmaceutical industry, is still at its very early steps. To date most extrusion-based printing processes are controlled over penumatic pressure and thus not adaptive to environmental or system related changes over several experimental runs. A constant set pressure applied over a number of runs, might lead to variations in flow rate and thus to unreliable printed constructs. With this in mind, the simple question arises whether a printing process based on a set flow rate could improve reproduciblity and transfer to different printing systems. The control and monitoring of flow rate aim to introduce the concept of PAT in the field of bioprinting. This study investigates the effect of different processing modes (set pressure vs. set flow rate) on printing reproducibility occurring during an extrusion-based printing process consisting of 6 experimental runs consisting of 3 printed samples each. Additionally, the influence of different filling levels of the ink containing cartridge during a printing process was determined. Different solutions based on a varying amount of alginate polymer and Kolliphor hydrogels in varying concentrations showed the need for individual setting of printing parameter. To investigate parameter transferability among different devices two different printers were used and the flow was monitored using a flow sensor attached to the printing unit. It could be demonstrated that a set flow rate controlled printing process improved accuracy and the filling level also affects the accuracy of printing, the magnitude of this effects varies as the cartridge level declined. The transferability between printed devices was eased by setting the printing parameters according to a set flow rate of each bioink disregarding the value of the set pressure. Finally, by a bioprinting porcess control based on a set flow rate, the coefficient of variance for printed objects could be reduced from 0.2 to 0.02 for 10% (w/v) alginate polymer solutions.
AUTHOR Neubauer, Vanessa J. and Hüter, Florian and Wittmann, Johannes and Trossmann, Vanessa T. and Kleinschrodt, Claudia and Alber-Laukant, Bettina and Rieg, Frank and Scheibel, Thomas
Title Flow Simulation and Gradient Printing of Fluorapatite- and Cell-Loaded Recombinant Spider Silk Hydrogels [Abstract]
Year 2022
Journal/Proceedings Biomolecules
Reftype
DOI/URL URL DOI
Abstract
Hierarchical structures are abundant in almost all tissues of the human body. Therefore, it is highly important for tissue engineering approaches to mimic such structures if a gain of function of the new tissue is intended. Here, the hierarchical structures of the so-called enthesis, a gradient tissue located between tendon and bone, were in focus. Bridging the mechanical properties from soft to hard secures a perfect force transmission from the muscle to the skeleton upon locomotion. This study aimed at a novel method of bioprinting to generate gradient biomaterial constructs with a focus on the evaluation of the gradient printing process. First, a numerical approach was used to simulate gradient formation by computational flow as a prerequisite for experimental bioprinting of gradients. Then, hydrogels were printed in a single cartridge printing set-up to transfer the findings to biomedically relevant materials. First, composites of recombinant spider silk hydrogels with fluorapatite rods were used to generate mineralized gradients. Then, fibroblasts were encapsulated in the recombinant spider silk-fluorapatite hydrogels and gradually printed using unloaded spider silk hydrogels as the second component. Thereby, adjustable gradient features were achieved, and multimaterial constructs were generated. The process is suitable for the generation of gradient materials, e.g., for tissue engineering applications such as at the tendon/bone interface.
AUTHOR Rahimnejad, Maedeh and Adoungotchodo, Atma and Demarquette, Nicole R. and Lerouge, Sophie
Title FRESH bioprinting of biodegradable chitosan thermosensitive hydrogels [Abstract]
Year 2022
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Thermosensitive chitosan (CH)-based hydrogels prepared with a mix of sodium bicarbonate and β-glycerophosphate as gelling agents rapidly pass from a liquid at room temperature to a mechanically strong solid at body temperature without any crosslinker. They show excellent potential for tissue engineering applications and could be interesting candidates for bioprinting. Unfortunately, since gelation is not instantaneous, formulations compatible with cell encapsulation (chitosan concentrations around 2% or lower) lead to very poor resolution and fidelity due to filament spreading. Here, we investigate the FRESH bioprinting approach with a warm sacrificial support bath, to overcome these limitations and enhance their bioprintability. First, a support bath, made of Pluronic including sodium chloride salt as a rheology modifier agent, was designed to meet the specific physical state requirements (solid at 37 °C and liquid at room temperature) and rheological properties appropriate for bioprinting. This support bath presented yield stress of over 100 Pa, a shear thinning behavior, and fast self-healing during cyclic recovery tests. Three different chitosan hydrogels (CH2%w/v, CH3%w/v, and a mixture of CH and gelatin) were tested for their ability to form filament and 3D structures, with and without a support bath. Both the resolution and mechanical properties of the printed structure were drastically enhanced using the FRESH method, with an approximate four fold decrease of the filament diameter which is close to the needle diameter. The printed structures were easily harvested without altering their shape by cooling down the support bath, and do not swell when immersed in PBS. Live/dead assays confirmed that the viability of encapsulated mesenchymal stem cells was highest in CH2% and that the support bath-assisted bioprinting process did not adversely impact cell viability. This study demonstrates that using a warm FRESH-like approach drastically enhances the potential for bioprinting of the thermosensitive biodegradable chitosan hydrogels and opens up a wide range of applications for 3D models and tissue engineering.
AUTHOR Yan Li and Lijing Huang and Guangpin Tai and Feifei Yan and Lin Cai and Chenxing Xin and Shamoon {Al Islam}
Title Graphene Oxide-loaded magnetic nanoparticles within 3D hydrogel form High-performance scaffolds for bone regeneration and tumour treatment [Abstract]
Year 2022
Journal/Proceedings Composites Part A: Applied Science and Manufacturing
Reftype
DOI/URL URL DOI
Abstract
The treatment of tumour-related bone defects should ideally combine bone regeneration with tumour treatment. Additive manufacturing (AM) could feasibly place functional bone-repair materials within composite materials with functional-grade structures, giving them bone repair and anti-tumour effects. Magnetothermal therapy is a promising non-invasive method of tumour treatment that has attracted increasing attention. In this study, we prepared novel hydrogel composite scaffolds of polyvinyl alcohol/sodium alginate/hydroxyapatite (PVA/SA/HA) at low temperature via AM. The scaffolds were loaded with various concentrations of magnetic graphene oxide (MGO) @Fe3O4 nanoparticles. The scaffolds were characterised by fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and thermal gravimetric analysis (TGA), which showed that the scaffolds have good moulding qualities and strong hydrogen bonding between the MGO/PVA/SA/HA components. TGA analysis demonstrated the expected thermal stability of the MGO and scaffolds. Thermal effects can be adjusted by varying the contents of MGO and the strength of an external alternating magnetic field. The prepared MGO hydrogel composite scaffolds enhance biological functions and support bone mesenchymal stem cell differentiation in vitro. The scaffolds also show favourable anti-tumour characteristics with effective magnetothermal conversion in vivo.
AUTHOR Liu, Chuan and Campbell, Scott B. and Li, Jianzhao and Bannerman, Dawn and Pascual-Gil, Simon and Kieda, Jennifer and Wu, Qinghua and Herman, Peter R. and Radisic, Milica
Title High Throughput Omnidirectional Printing of Tubular Microstructures from Elastomeric Polymers [Abstract]
Year 2022
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Bioelastomers have been extensively used in biomedical applications due to their desirable mechanical strength, tunable properties, and chemical versatility; however, 3D printing bioelastomers into microscale structures has proven elusive. Herein, a high throughput omnidirectional printing approach via coaxial extrusion is described that fabricated perfusable elastomeric microtubes of unprecedently small inner diameter (350-550 μm) and wall thickness (40-60 μm). The versatility of this approach was shown through the printing of two different polymeric elastomers, followed by photocrosslinking and removal of the fugitive inner phase. Designed experiments were used to tune the dimensions and stiffness of the microtubes to match that of native ex vivo rat vasculature. This approach afforded the fabrication of multiple biomimetic shapes resembling cochlea and kidney glomerulus and afforded facile, high-throughput generation of perfusable structures that can be seeded with endothelial cells for biomedical applications. Post-printing laser micromachining was performed to generate numerous micro-sized holes (5-20 μm) in the tube wall to tune microstructure permeability. Importantly, for organ-on-a-chip applications, the described approach took only 3.6 minutes to print microtubes (without microholes) over an entire 96-well plate device, in contrast to comparable hole-free structures that take between 1.5 to 6.5 days to fabricate using a manual 3D stamping approach. This article is protected by copyright. All rights reserved
AUTHOR Bedell, Matthew L. and Torres, Angelica L. and Hogan, Katie J. and Wang, Ziwen and Wang, Bonnie and Melchiorri, Anthony J. and Grande-Allen, K. Jane and Mikos, Antonios G.
Title Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting [Abstract]
Year 2022
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
The investigation of novel hydrogel systems allows for the study of relationships between biomaterials, cells, and other factors within osteochondral tissue engineering. Three-dimensional (3D) printing is a popular research method that can allow for further interrogation of these questions via the fabrication of 3D hydrogel environments that mimic tissue-specific, complex architectures. However, the adaptation of promising hydrogel biomaterial systems into 3D-printable bioinks remains a challenge. Here, we delineated an approach to that process. First, we characterized a novel methacryloylated gelatin composite hydrogel system and assessed how calcium phosphate and glycosaminoglycan additives upregulated bone- and cartilage-like matrix deposition and certain genetic markers of differentiation within human mesenchymal stem cells (hMSCs), such as RUNX2 and SOX9. Then, new assays were developed and utilized to study the effects of xanthan gum and nanofibrillated cellulose, which allowed for cohesive fiber deposition, reliable droplet formation, and non-fracturing digital light processing (DLP)-printed constructs within extrusion, inkjet, and DLP techniques, respectively. Finally, these bioinks were used to 3D print constructs containing viable encapsulated hMSCs over a 7 d period, where DLP printed constructs facilitated the highest observed increase in cell number over 7 d (∼2.4×). The results presented here describe the promotion of osteochondral phenotypes via these novel composite hydrogel formulations, establish their ability to bioprint viable, cell-encapsulating constructs using three different 3D printing methods on multiple bioprinters, and document how a library of modular bioink additives affected those physicochemical properties important to printability.
AUTHOR Wang, Chenmin and Honiball, John Robert and Lin, Junyu and Xia, Xingyu and Lau, Dzi Shing Aaron and Chen, Bo and Deng, Lianfu and Lu, William Weijia
Title Infiltration from Suspension Systems Enables Effective Modulation of 3D Scaffold Properties in Suspension Bioprinting [Abstract]
Year 2022
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
Abstract
Bioprinting is a biofabrication technology which allows efficient and large-scale manufacture of 3D cell culture systems. However, the available biomaterials for bioinks used in bioprinting are limited by their printability and biological functionality. Fabricated constructs are often homogeneous and have limited complexity in terms of current 3D cell culture systems comprising multiple cell types. Inspired by the phenomenon that hydrogels can exchange liquids under the infiltration action, infiltration-induced suspension bioprinting (IISBP), a novel printing technique based on a hyaluronic acid (HA) suspension system to modulate the properties of the printed scaffolds by infiltration action, was described in this study. HA served as a suspension system due to its shear-thinning and self-healing rheological properties, simplicity of preparation, reusability, and ease of adjustment to osmotic pressure. Changes in osmotic pressure were able to direct the swelling or shrinkage of 3D printed gelatin methacryloyl (GelMA)-based bioinks, enabling the regulation of physical properties such as fiber diameter, micromorphology, mechanical strength, and water absorption of 3D printed scaffolds. Human umbilical vein endothelial cells (HUVEC) were applied as a cell culture model and printed within cell-laden scaffolds at high resolution and cell viability with the IISBP technique. Herein, the IISBP technique had been realized as a reliable hydrogel-based bioprinting technique, which enabled facile modulation of 3D printed hydrogel scaffolds properties, being expected to meet the scaffolds requirements of a wide range of cell culture conditions to be utilized in bioprinting applications.
AUTHOR Hou, Yanhao and Wang, Weiguang and Bartolo, Paulo
Title Investigation of polycaprolactone for bone tissue engineering scaffolds: in vitro degradation and biological studies [Abstract]
Year 2022
Journal/Proceedings Materials & Design
Reftype
DOI/URL URL DOI
Abstract
Polycaprolactone (PCL) is one of the most recognized polymeric materials used for bone tissue engineering scaffold fabrication. This study aims to evaluate the effects of the molecular weight (Mn) of PCL on the degradation kinematics, surface, microstructural, thermal, mechanical, and biological properties of 3D printed bone scaffolds. Surface properties were investigated considering water-in-air contact angle and nanoindentation tests, while morphological characteristics and degradation kinematics (accelerated degradation tests) were examined using scanning electron microscopy (SEM), pairing with thermal and mechanical properties monitored at each considered time point. A set of mathematical equations describing the variation of fiber diameter, porosity, mechanical properties, and weight, as a function of molecular weight and degradation time, were obtained based on the experimental results. Human adipose-derived stem cells (hADSCs) proliferation and differentiation tests were also conducted using in vitro colorimetric assay. All results indicated that molecular weight had impacts on the surface, mechanical and biological properties of PCL scaffolds, while no significant effects were observed on the degradation rate. Scaffolds with lower molecular weight presented better bio-mechanical properties. These findings provide useful information for the design of polymeric bone tissue engineering scaffolds.
AUTHOR Kim, Jieun and Lee, Joohyung
Title Liquid-Suspended and Liquid-Bridged Liquid Metal Microdroplets [Abstract]
Year 2022
Journal/Proceedings Small
Reftype
DOI/URL DOI
Abstract
Abstract Liquid metals (LMs) and alloys are attracting increasing attention owing to their combined advantages of high conductivity and fluidity, and have shown promising results in various emerging applications. Patterning technologies using LMs are being actively researched; among them, direct ink writing is considered a potentially viable approach for efficient LM additive manufacturing. However, true LM additive manufacturing with arbitrary printing geometries remains challenging because of the intrinsically low rheological strength of LMs. Herein, colloidal suspensions of LM droplets amenable to additive manufacturing (or “3D printing”) are realized using formulations containing minute amounts of liquid capillary bridges. The resulting LM suspensions exhibit exceptionally high rheological strength with yield stress values well above 103 Pa, attributed to inter-droplet capillary attraction mediated by the liquid bridges adsorbed on the oxide skin of the LM droplets. Such liquid-bridged LM suspensions, as extrudable ink-type filaments, are based on uncurable continuous-phase liquid media, have a long pot-life and outstanding shear-thinning properties, and shape retention, demonstrating excellent rheological processability suitable for 3D printing. These findings will enable the emergence of a variety of new advanced applications that necessitate LM patterning into highly complicated multidimensional structures.
AUTHOR Nadernezhad, Ali and Groll, Jürgen
Title Machine Learning Reveals a General Understanding of Printability in Formulations Based on Rheology Additives [Abstract]
Year 2022
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Hydrogel ink formulations based on rheology additives are becoming increasingly popular as they enable 3-dimensional (3D) printing of non-printable but biologically relevant materials. Despite the widespread use, a generalized understanding of how these hydrogel formulations become printable is still missing, mainly due to their variety and diversity. Employing an interpretable machine learning approach allows the authors to explain the process of rendering printability through bulk rheological indices, with no bias toward the composition of formulations and the type of rheology additives. Based on an extensive library of rheological data and printability scores for 180 different formulations, 13 critical rheological measures that describe the printability of hydrogel formulations, are identified. Using advanced statistical methods, it is demonstrated that even though unique criteria to predict printability on a global scale are highly unlikely, the accretive and collaborative nature of rheological measures provides a qualitative and physically interpretable guideline for designing new printable materials.
AUTHOR Schmieg, Barbara and Gretzinger, Sarah and Schuhmann, Sebastian and Guthausen, Gisela and Hubbuch, Jürgen
Title Magnetic resonance imaging as a tool for quality control in extrusion-based bioprinting [Abstract]
Year 2022
Journal/Proceedings Biotechnology Journal
Reftype
DOI/URL DOI
Abstract
Abstract Bioprinting is gaining importance for the manufacturing of tailor-made hydrogel scaffolds in tissue engineering, pharmaceutical research and cell therapy. However, structure fidelity and geometric deviations of printed objects heavily influence mass transport and process reproducibility. Fast, three-dimensional and nondestructive quality control methods will be decisive for the approval in larger studies or industry. Magnetic resonance imaging (MRI) meets these requirements for characterizing heterogeneous soft materials with different properties. Complementary to the idea of decentralized 3D printing, magnetic resonance tomography is common in medicine, and image data processing tools can be transferred system-independently. In this study, a MRI measurement and image analysis protocol was evaluated to jointly assess the reproducibility of three different hydrogels and a reference material. Critical parameters for object quality, namely porosity, hole areas and deviations along the height of the scaffolds are discussed. Geometric deviations could be correlated to specific process parameters, anomalies of the ink or changes of ambient conditions. This strategy allows the systematic investigation of complex 3D objects as well as an implementation as a process control tool. Combined with the monitoring of metadata this approach might pave the way for future industrial applications of 3D printing in the field of biopharmaceutics.
AUTHOR Pai, Roopesh R. and Ajit, Shilpa and Sekar J, Anupama and Nair, Sarath S. and Anil Kumar, P. R. and Velayudhan, Shiny
Title Radical scavenging gelatin methacrylamide based bioink formulation for three dimensional bioprinting of parenchymal liver construct [Abstract]
Year 2022
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Methacrylated gelatin (GelMA) in the form of methacryloyl, methacrylate, and methacrylamide is an established and widely accepted photocrosslinkable bioink, for three dimensional bioprinting of various tissues. One of the limitations of photocrosslinkable bioinks is the inability to control the free radicals generated by photoinitiators and ultraviolet (UV) rays. The presence of excess free radicals compromises the viability and functionality of cells during crosslinking. In this study, ascorbic acid, a known free radical scavenger (FRS) molecule, was introduced into the GelMA bioink formulation to protect the cell viability, proliferation, and tissue functions of 3D bioprinted parenchymal liver constructs. The concentration of FRS in the bioink was optimized and used for 3D bioprinting of HepG2 cells. The results confirmed that the inclusion of 3.4 mM FRS in the GelMA bioink formulation nullified the excess ROS formed inside the cells. Furthermore, the optimized GelMA formulation containing FRS preserved and improved the cell activity, albumin, and urea synthesis in the 3D construct over 7 days in culture. In the future, this concept could be implemented in the biofabrication of large liver constructs that require multiple or longer durations of UV irradiation.
AUTHOR Trossmann, Vanessa T. and Heltmann-Meyer, Stefanie and Amouei, Hanna and Wajant, Harald and Horch, Raymund E. and Steiner, Dominik and Scheibel, Thomas
Title Recombinant Spider Silk Bioinks for Continuous Protein Release by Encapsulated Producer Cells [Abstract]
Year 2022
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
Abstract
Targeted therapies using biopharmaceuticals are of growing clinical importance in disease treatment. Currently, there are several limitations of protein-based therapeutics (biologicals), including suboptimal biodistribution, lack of stability, and systemic side effects. A promising approach to overcoming these limitations could be a therapeutic cell-loaded 3D construct consisting of a suitable matrix component that harbors producer cells continuously secreting the biological of interest. Here, the recombinant spider silk proteins eADF4(C16), eADF4(C16)-RGD, and eADF4(C16)-RGE have been processed together with HEK293 producer cells stably secreting the highly traceable reporter biological TNFR2-Fc-GpL, a fusion protein consisting of the extracellular domain of TNFR2, the Fc domain of human IgG1, and the luciferase of Gaussia princeps as a reporter domain. eADF4(C16) and eADF4(C16)-RGD hydrogels provide structural and mechanical support, promote HEK293 cell growth, and allow fusion protein production by the latter. Bioink-captured HEK293 producer cells continuously release functional TNFR2-Fc-GpL over 14 days. Thus, the combination of biocompatible, printable spider silk bioinks with drug-producing cells is promising for generating implantable 3D constructs for continuous targeted therapy.
AUTHOR Constante, Gissela and Apsite, Indra and Auerbach, Paul and Aland, Sebastian and Schönfeld, Dennis and Pretsch, Thorsten and Milkin, Pavel and Ionov, Leonid
Title Smart Mechanically Tunable Surfaces with Shape Memory Behavior and Wetting-Programmable Topography [Abstract]
Year 2022
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
Abstract
This paper reports for the first time the fabrication and investigation of wetting properties of structured surfaces formed by lamellae with an exceptionally high aspect ratio of up to 57:1 and more. The lamellar surfaces were fabricated using a polymer with tunable mechanical properties and shape-memory behavior. It was found that wetting properties of such structured surfaces depend on temperature, and thermal treatment history-structured surfaces are wetted easier at elevated temperature or after cooling to room temperature when the polymer is soft because of the easier deformability of lamellae. The shape of lamellae deformed by droplets can be temporarily fixed at low temperature and remains fixed upon heating to room temperature. Heating above the transition temperature of the shape-memory polymer restores the original shape. The high aspect ratio allows tuning of geometry not only manually, as it is done in most works reported previously but can also be made by a liquid droplet and is controlled by temperature. This behavior opens new opportunities for the design of novel smart elements for microfluidic devices such as smart valves, whose state and behavior can be switched by thermal stimuli: valves that can or cannot be opened that are able to close or can be fixed in an open or closed states.
AUTHOR Demirörs, Ahmet F. and Poloni, Erik and Chiesa, Maddalena and Bargardi, Fabio L. and Binelli, Marco R. and Woigk, Wilhelm and de Castro, Lucas D. C. and Kleger, Nicole and Coulter, Fergal B. and Sicher, Alba and Galinski, Henning and Scheffold, Frank and Studart, André R.
Title Three-dimensional printing of photonic colloidal glasses into objects with isotropic structural color [Abstract]
Year 2022
Journal/Proceedings Nature Communications
Reftype Demirörs2022
DOI/URL DOI
Abstract
Structural color is frequently exploited by living organisms for biological functions and has also been translated into synthetic materials as a more durable and less hazardous alternative to conventional pigments. Additive manufacturing approaches were recently exploited for the fabrication of exquisite photonic objects, but the angle-dependence observed limits a broader application of structural color in synthetic systems. Here, we propose a manufacturing platform for the 3D printing of complex-shaped objects that display isotropic structural color generated from photonic colloidal glasses. Structurally colored objects are printed from aqueous colloidal inks containing monodisperse silica particles, carbon black, and a gel-forming copolymer. Rheology and Small-Angle-X-Ray-Scattering measurements are performed to identify the processing conditions leading to printed objects with tunable structural colors. Multimaterial printing is eventually used to create complex-shaped objects with multiple structural colors using silica and carbon as abundant and sustainable building blocks.
AUTHOR Barceló, Xavier and Eichholz, Kian F. and Garcia, Orquidea and Kelly, Daniel J.
Title Tuning the Degradation Rate of Alginate-Based Bioinks for Bioprinting Functional Cartilage Tissue [Abstract]
Year 2022
Journal/Proceedings Biomedicines
Reftype
DOI/URL URL DOI
Abstract
Negative foreign body responses following the in vivo implantation of bioprinted implants motivate the development of novel bioinks which can rapidly degrade with the formation of functional tissue, whilst still maintaining desired shapes post-printing. Here, we investigated the oxidation of alginate as a means to modify the degradation rate of alginate-based bioinks for cartilage tissue engineering applications. Raw and partially oxidized alginate (OA) were combined at different ratios (Alginate:OA at 100:0; 75:25; 50:50; 25:75; 0:100) to provide finer control over the rate of bioink degradation. These alginate blends were then combined with a temporary viscosity modifier (gelatin) to produce a range of degradable bioinks with rheological properties suitable for extrusion bioprinting. The rate of degradation was found to be highly dependent on the OA content of the bioink. Despite this high mass loss, the initially printed geometry was maintained throughout a 4 week in vitro culture period for all bioink blends except the 0:100 group. All bioink blends also supported robust chondrogenic differentiation of mesenchymal stem/stromal cells (MSCs), resulting in the development of a hyaline-like tissue that was rich in type II collagen and negative for calcific deposits. Such tuneable inks offer numerous benefits to the field of 3D bioprinting, from providing space in a controllable manner for new extracellular matrix deposition, to alleviating concerns associated with a foreign body response to printed material inks in vivo.
AUTHOR Gretzinger, Sarah and Schmieg, Barbara and Guthausen, Gisela and Hubbuch, Jürgen
Title Virtual Reality as Tool for Bioprinting Quality Inspection: A Proof of Principle [Abstract]
Year 2022
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
As virtual reality (VR) has drastically evolved over the past few years, the field of applications of VR flourished way beyond the gaming industry. While commercial VR solutions might be available, there is a need to develop a workflow for specific applications. Bioprinting represents such an example. Here, complex 3D data is generated and needs to be visualized in the context of quality control. We demonstrate that the transfer to a commercially available VR software is possible by introducing an optimized workflow. In the present work, we developed a workflow for the visualization of the critical quality attribute (cQA) cell distribution in bioprinted (extrusion-based) samples in VR. The cQA cell distribution is directly influenced by the pre-processing step mixing of cell material in the bioink. Magnetic Resonance Imaging (MRI) was used as an analytical tool to generate spatially resolved 2.5 and 3D data of the bioprinted objects. A sample with poor quality in respect of the cQA cell distribution was identified as its inhomogeneous cell distribution could be displayed spatially resolved in VR. The described workflow facilitates the usage of VR as a tool for quality inspection in the field of bioprinting and represents a powerful tool for visualization of complex 3D MRI data.
AUTHOR Cernencu, Alexandra I. and Lungu, Adriana and Dragusin, Diana M. and Stancu, Izabela C. and Dinescu, Sorina and Balahura, Liliana R. and Mereuta, Paul and Costache, Marieta and Iovu, Horia
Title 3D Bioprinting of Biosynthetic Nanocellulose-Filled GelMA Inks Highly Reliable for Soft Tissue-Oriented Constructs [Abstract]
Year 2021
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
Bioink-formulations based on gelatin methacrylate combined with oxidized cellulose nanofibrils are employed in the present study. The parallel investigation of the printing performance, morphological, swelling, and biological properties of the newly developed hydrogels was performed, with inks prepared using methacrylamide-modified gelatins of fish or bovine origin. Scaffolds with versatile and well-defined internal structure and high shape fidelity were successfully printed due to the high viscosity and shear-thinning behavior of formulated inks and then photo-crosslinked. The biocompatibility of 3D-scaffolds was surveyed using human adipose stem cells (hASCs) and high viability and proliferation rates were obtained when in contact with the biomaterial. Furthermore, bioprinting tests were performed with hASCs embedded in the developed formulations. The results demonstrated that the designed inks are a versatile toolkit for 3D bioprinting and further show the benefits of using fish-derived gelatin for biofabrication.
AUTHOR Rößler, Sina and Brückner, Andreas and Kruppke, Iris and Wiesmann, Hans-Peter and Hanke, Thomas and Kruppke, Benjamin
Title 3D Plotting of Silica/Collagen Xerogel Granules in an Alginate Matrix for Tissue-Engineered Bone Implants [Abstract]
Year 2021
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
Today, materials designed for bone regeneration are requested to be degradable and resorbable, bioactive, porous, and osteoconductive, as well as to be an active player in the bone-remodeling process. Multiphasic silica/collagen Xerogels were shown, earlier, to meet these requirements. The aim of the present study was to use these excellent material properties of silica/collagen Xerogels and to process them by additive manufacturing, in this case 3D plotting, to generate implants matching patient specific shapes of fractures or lesions. The concept is to have Xerogel granules as active major components embedded, to a large proportion, in a matrix that binds the granules in the scaffold. By using viscoelastic alginate as matrix, pastes of Xerogel granules were processed via 3D plotting. Moreover, alginate concentration was shown to be the key to a high content of irregularly shaped Xerogel granules embedded in a minimum of matrix phase. Both the alginate matrix and Xerogel granules were also shown to influence viscoelastic behavior of the paste, as well as the dimensionally stability of the scaffolds. In conclusion, 3D plotting of Xerogel granules was successfully established by using viscoelastic properties of alginate as matrix phase.
AUTHOR Leu Alexa, Rebeca and Ianchis, Raluca and Savu, Diana and Temelie, Mihaela and Trica, Bogdan and Serafim, Andrada and Vlasceanu, George Mihail and Alexandrescu, Elvira and Preda, Silviu and Iovu, Horia
Title 3D Printing of Alginate-Natural Clay Hydrogel-Based Nanocomposites [Abstract]
Year 2021
Journal/Proceedings Gels
Reftype
DOI/URL URL DOI
Abstract
Biocompatibility, biodegradability, shear tinning behavior, quick gelation and an easy crosslinking process makes alginate one of the most studied polysaccharides in the field of regenerative medicine. The main purpose of this study was to obtain tissue-like materials suitable for use in bone regeneration. In this respect, alginate and several types of clay were investigated as components of 3D-printing, nanocomposite inks. Using the extrusion-based nozzle, the nanocomposites inks were printed to obtain 3D multilayered scaffolds. To observe the behavior induced by each type of clay on alginate-based inks, rheology studies were performed on composite inks. The structure of the nanocomposites samples was examined using Fourier Transform Infrared Spectrometry and X-ray Diffraction (XRD), while the morphology of the 3D-printed scaffolds was evaluated using Electron Microscopy (SEM, TEM) and Micro-Computed Tomography (Micro-CT). The swelling and dissolvability of each composite scaffold in phosfate buffer solution were followed as function of time. Biological studies indicated that the cells grew in the presence of the alginate sample containing unmodified clay, and were able to proliferate and generate calcium deposits in MG-63 cells in the absence of specific signaling molecules. This study provides novel information on potential manufacturing methods for obtaining nanocomposite hydrogels suitable for 3D printing processes, as well as valuable information on the clay type selection for enabling accurate 3D-printed constructs. Moreover, this study constitutes the first comprehensive report related to the screening of several natural clays for the additive manufacturing of 3D constructs designed for bone reconstruction therapy.
AUTHOR Leu Alexa, Rebeca and Iovu, Horia and Ghitman, Jana and Serafim, Andrada and Stavarache, Cristina and Marin, Maria-Minodora and Ianchis, Raluca
Title 3D-Printed Gelatin Methacryloyl-Based Scaffolds with Potential Application in Tissue Engineering [Abstract]
Year 2021
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
The development of materials for 3D printing adapted for tissue engineering represents one of the main concerns nowadays. Our aim was to obtain suitable 3D-printed scaffolds based on methacrylated gelatin (GelMA). In this respect, three degrees of GelMA methacrylation, three different concentrations of GelMA (10%, 20%, and 30%), and also two concentrations of photoinitiator (I-2959) (0.5% and 1%) were explored to develop proper GelMA hydrogel ink formulations to be used in the 3D printing process. Afterward, all these GelMA hydrogel-based inks/3D-printed scaffolds were characterized structurally, mechanically, and morphologically. The presence of methacryloyl groups bounded to the surface of GelMA was confirmed by FTIR and 1H-NMR analyses. The methacrylation degree influenced the value of the isoelectric point that decreased with the GelMA methacrylation degree. A greater concentration of photoinitiator influenced the hydrophilicity of the polymer as proved using contact angle and swelling studies because of the new bonds resulting after the photocrosslinking stage. According to the mechanical tests, better mechanical properties were obtained in the presence of the 1% initiator. Circular dichroism analyses demonstrated that the secondary structure of gelatin remained unaffected during the methacrylation process, thus being suitable for biological applications.
AUTHOR Jiahui Lai and Xinliang Ye and Jia Liu and Chong Wang and Junzhi Li and Xiang Wang and Mingze Ma and Min Wang
Title 4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose [Abstract]
Year 2021
Journal/Proceedings Materials & Design
Reftype
DOI/URL URL DOI
Abstract
4D printing of swellable/shrinkable hydrogels has been viewed as an appealing approach for fabricating dynamic structures for various biomedical applications. However, 4D printing of precise hydrogel structures is still highly challenging due to the relatively poor printability of hydrogels and high surface roughness of printed patterns, when micro extrusion-based 3D printers are used. In this study, a highly printable and shape morphing hydrogel was investigated for 4D printing by blending alginate (Alg) and methylcellulose (MC). The optimized Alg/MC hydrogel exhibited excellent rheological properties, extrudability and shape fidelity of printed structures. The printable Alg/MC hydrogel was 4D printed into a series of patterned 2D architectures which were encoded with anisotropic stiffness and swelling behaviors by strategically controlling the network density gradients vertical to the orientation of the patterned strips. By controlling the strip interspacing and angle, these 2D architectures could transform into various prescribed simple 3D morphologies (e.g., tube-curling and helix) and complex 3D morphologies (e.g., double helix and flowers) after immersion in a calcium chloride solution. This shape morphing Alg/MC hydrogel with excellent printability has high potential for 4D printing of delicate hydrogel patterns, which are increasingly needed in the tissue engineering, biomedical device and soft robotics fields.
AUTHOR Kwak, Chaesu and Young Ryu, Seoung and Park, Hyunsu and Lim, Sehyeong and Yang, Jeewon and Kim, Jieun and Hyung Kim, Jin and Lee, Joohyung
Title A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions [Abstract]
Year 2021
Journal/Proceedings Journal of Colloid and Interface Science
Reftype
DOI/URL URL DOI
Abstract
Three-dimensional (3D) printing technology is actively utilized in various industrial fields because it facilitates effective and customizable fabrication of complex structures. An important processing route for 3D printing is the extrusion of inks in the form of colloidal suspensions or emulsions, which has recently attracted considerable attention because it allows for selection of a wide range of printing materials and is operable under ambient processing conditions. Herein, we investigate the 3D printability of complex fluids containing chlorella microalgae as an eco-friendly material for 3D printing. Two possible ink types are considered: aqueous chlorella suspensions and emulsions of oil and water mixtures. While the aqueous chlorella suspensions at high particle loading display the 3D-printable rheological properties such as high yield stress and good shape retention, the final structures after extruding and drying the suspensions under ambient conditions show a significant number of macroscopic defects, limiting their practical application. In contrast, the 3D structures produced from the oil-in-water Pickering emulsions stabilized by chlorella microalgae, which are amphiphilic and active at the oil–water interface, show significantly reduced defect formation. Addition of a fast-evaporable oil phase, hexane, is crucial in the mechanisms of enhanced cementation between the individual microalgae via increased inter-particle packing, capillary attraction, and hydrophobic interaction. Furthermore, addition of solid paraffin wax, which is crystalline but well-soluble in the hydrocarbon oil phase under ambient conditions, completely eliminates the undesirable defect formation via enhanced inter-particle binding, while maintaining the overall rheological properties of the emulsion. The optimal formulation of the Pickering emulsion is finally employed to produce a 3D scaffold of satisfactory structural integrity, suggesting that the chlorella-based ink, in the form of an emulsion, has potential as an eco-friendly 3D printing ink processable under ambient conditions.
AUTHOR Zuoxin Zhou and Mario Samperi and Lea Santu and Glenieliz Dizon and Shereen Aboarkaba and David Limón and David Limón and Christopher Tuck and Lluïsa Pérez-García and Derek J. Irvine and David B. Amabilino and Ricky Wildman
Title An Imidazolium-Based Supramolecular Gelator Enhancing Interlayer Adhesion in 3D Printed Dual Network Hydrogels [Abstract]
Year 2021
Journal/Proceedings Materials & Design
Reftype
DOI/URL URL DOI
Abstract
The variety of UV-curable monomers for 3D printing is limited by a requirement for rapid curing after each sweep depositing a layer. This study proposes to trigger supramolecular self-assembly during the process by a gemini imidazolium-based low-molecular-weight gelator, allowing printing of certain monomers. The as-printed hydrogel structures were supported by a gelator network immobilising monomer:water solutions. A thixotropic hydrogel was formed with a recovery time of < 50 seconds, storage modulus = 8.1 kPa and yield stress = 18 Pa, processable using material-extrusion 3D printing. Material-extrusion 3D printed objects are usually highly anisotropic, but in this case the gelator network improved the isotropy by subverting the usual layer-by-layer curing strategy. The monomer in all printed layers was cured simultaneously during post-processing to form a continuous polymeric network. The two networks then physically interpenetrate to enhance mechanical performance. The double-network hydrogels fabricated with layers cured simultaneously showed 62-147 % increases in tensile properties compared to layer-by-layer cured hydrogels. The results demonstrated excellent inter- and intra-layered coalescence. Consequently, the tensile properties of 3D printed hydrogels were close to mould cast objects. This study has demonstrated the benefits of using gelators to expand the variety of 3D printable monomers and shown improved isotropy to offer excellent mechanical performances.
AUTHOR Yuanhao Wu and Gabriele Maria Fortunato and Babatunde O Okesola and Francesco Luigi Pellerej di Brocchetti and Ratima Suntornnond and John Connelly and Carmelo De Maria and Jose Carlos Rodriguez-Cabello and Giovanni Vozzi and Wen Wang and Alvaro Mata
Title An interfacial self-assembling bioink for the manufacturing of capillary-like structures with tuneable and anisotropic permeability [Abstract]
Year 2021
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Self-assembling bioinks offer the possibility to biofabricate with molecular precision, hierarchical control, and biofunctionality. For this to become a reality with widespread impact, it is essential to engineer these ink systems ensuring reproducibility and providing suitable standardization. We have reported a self-assembling bioink based on disorder-to-order transitions of an elastin-like recombinamer (ELR) to co-assemble with graphene oxide (GO). Here, we establish reproducible processes, optimize printing parameters for its use as a bioink, describe new advantages that the self-assembling bioink can provide, and demonstrate how to fabricate novel structures with physiological relevance. We fabricate capillary-like structures with resolutions down to ∼10 µm in diameter and ∼2 µm thick tube walls and use both experimental and finite element analysis to characterize the printing conditions, underlying interfacial diffusion-reaction mechanism of assembly, printing fidelity, and material porosity and permeability. We demonstrate the capacity to modulate the pore size and tune the permeability of the resulting structures with and without human umbilical vascular endothelial cells. Finally, the potential of the ELR-GO bioink to enable supramolecular fabrication of biomimetic structures was demonstrated by printing tubes exhibiting walls with progressively different structure and permeability.
AUTHOR Neubauer, Vanessa J. and Trossmann, Vanessa T. and Jacobi, Sofia and Döbl, Annika and Scheibel, Thomas
Title Aqueous-Organic Solvent Derived Recombinant Spider Silk Gels as Depots for Drugs [Abstract]
Year 2021
Journal/Proceedings Angewandte Chemie International Edition
Reftype
DOI/URL DOI
Abstract
Hydrogels are widely used in various biomedical applications, as they cannot only serve as materials for biofabrication but also as depots for the administration of drugs. However, the possibilities of formulation of water-insoluble drugs in hydrogels are rather limited. In this study, we assembled recombinant spider silk gels using a new processing route with aqueous-organic co-solvents, and the properties of these gels could be controlled by the choice of the co-solvent. The presence of the organic co-solvent further enabled the incorporation of hydrophobic drugs as exemplary shown for 6-mercaptopurine. The developed gels showed shear-thinning behaviour and could be easily injected to serve e.g. as drug depots and could even be 3D printed to serve as scaffolds for biofabrication. With this new processing route, the formulation of water-insoluble drugs in spider silk-based depots is possible, circumventing common pharmaceutical solubility issues.
AUTHOR Leu Alexa, Rebeca and Iovu, Horia and Trica, Bogdan and Zaharia, Catalin and Serafim, Andrada and Alexandrescu, Elvira and Radu, Ionut-Cristian and Vlasceanu, George and Preda, Silviu and Ninciuleanu, Claudia Mihaela and Ianchis, Raluca
Title Assessment of Naturally Sourced Mineral Clays for the 3D Printing of Biopolymer-Based Nanocomposite Inks [Abstract]
Year 2021
Journal/Proceedings Nanomaterials
Reftype
DOI/URL URL DOI
Abstract
The present study investigated the possibility of obtaining 3D printed composite constructs using biomaterial-based nanocomposite inks. The biopolymeric matrix consisted of methacrylated gelatin (GelMA). Several types of nanoclay were added as the inorganic component. Our aim was to investigate the influence of clay type on the rheological behavior of ink formulations and to determine the morphological and structural properties of the resulting crosslinked hydrogel-based nanomaterials. Moreover, through the inclusion of nanoclays, our goal was to improve the printability and shape fidelity of nanocomposite scaffolds. The viscosity of all ink formulations was greater in the presence of inorganic nanoparticles as shear thinning occurred with increased shear rate. Hydrogel nanocomposites presented predominantly elastic rather than viscous behavior as the materials were crosslinked which led to improved mechanical properties. The inclusion of nanoclays in the biopolymeric matrix limited hydrogel swelling due the physical barrier effect but also because of the supplementary crosslinks induced by the clay layers. The distribution of inorganic filler within the GelMA-based hydrogels led to higher porosities as a consequence of their interaction with the biopolymeric ink. The present study could be useful for the development of soft nanomaterials foreseen for the additive manufacturing of customized implants for tissue engineering.
AUTHOR Silvestri, Alessandro and Criado, Alejandro and Poletti, Fabrizio and Wang, Faxing and Fanjul-Bolado, Pablo and González-García, María B. and García-Astrain, Clara and Liz-Marzán, Luis M. and Feng, Xinliang and Zanardi, Chiara and Prato, Maurizio
Title Bioresponsive, Electroactive, and Inkjet-Printable Graphene-Based Inks [Abstract]
Year 2021
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract With the advent of flexible electronics, the old fashioned and conventional solid-state technology will be replaced by conductive inks combined with low-cost printing techniques. Graphene is an ideal candidate to produce conductive inks, due to its excellent conductivity and zero bandgap. The possibility to chemically modify graphene with active molecules opens up the field of responsive conductive inks. Herein, a bioresponsive, electroactive, and inkjet-printable graphene ink is presented. The ink is based on graphene chemically modified with selected enzymes and an electrochemical mediator, to transduce the products of the enzymatic reaction into an electron flow, proportional to the analyte concentration. A water-based formulation is engineered to be respectful with the enzymatic activity while matching the stringent requirements of inkjet printing. The efficient electrochemical performance of the ink, as well as a proof-of-concept application in biosensing, is demonstrated. The versatility of the system is demonstrated by modifying graphene with various oxidoreductases, obtaining inks with selectivity toward glucose, lactate, methanol, and ethanol.
AUTHOR Kamdem Tamo, Arnaud and Doench, Ingo and Walter, Lukas and Montembault, Alexandra and Sudre, Guillaume and David, Laurent and Morales-Helguera, Aliuska and Selig, Mischa and Rolauffs, Bernd and Bernstein, Anke and Hoenders, Daniel and Walther, Andreas and Osorio-Madrazo, Anayancy
Title Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues [Abstract]
Year 2021
Journal/Proceedings Polymers
Reftype
DOI/URL DOI
Abstract
Soft tissues are commonly fiber-reinforced hydrogel composite structures, distinguishable from hard tissues by their low mineral and high water content. In this work, we proposed the development of 3D printed hydrogel constructs of the biopolymers chitosan (CHI) and cellulose nanofibers (CNFs), both without any chemical modification, which processing did not incorporate any chemical crosslinking. The unique mechanical properties of native cellulose nanofibers offer new strategies for the design of environmentally friendly high mechanical performance composites. In the here proposed 3D printed bioinspired CNF-filled CHI hydrogel biomaterials, the chitosan serves as a biocompatible matrix promoting cell growth with balanced hydrophilic properties, while the CNFs provide mechanical reinforcement to the CHI-based hydrogel. By means of extrusion-based printing (EBB), the design and development of 3D functional hydrogel scaffolds was achieved by using low concentrations of chitosan (2.0–3.0% (w/v)) and cellulose nanofibers (0.2–0.4% (w/v)). CHI/CNF printed hydrogels with good mechanical performance (Young’s modulus 3.0 MPa, stress at break 1.5 MPa, and strain at break 75%), anisotropic microstructure and suitable biological response, were achieved. The CHI/CNF composition and processing parameters were optimized in terms of 3D printability, resolution, and quality of the constructs (microstructure and mechanical properties), resulting in good cell viability. This work allows expanding the library of the so far used biopolymer compositions for 3D printing of mechanically performant hydrogel constructs, purely based in the natural polymers chitosan and cellulose, offering new perspectives in the engineering of mechanically demanding hydrogel tissues like intervertebral disc (IVD), cartilage, meniscus, among others.
AUTHOR Curti, Filis and Drăgușin, Diana-Maria and Serafim, Andrada and Iovu, Horia and Stancu, Izabela-Cristina
Title Development of thick paste-like inks based on superconcentrated gelatin/alginate for 3D printing of scaffolds with shape fidelity and stability [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Shape fidelity and integrity are serious challenges in the 3D printing of hydrogel precursors, as they can influence the overall performance of 3D scaffolds. This work reports the development of superconcentrated inks based on sodium alginate and fish gelatin as an appealing strategy to satisfy such challenges and dictate the quality of the printed scaffolds, without using crosslinking strategies during 3D printing. SEM micrographs and micro-CT images indicate the homogeneous distribution of the polysaccharide in the gelatin-based matrix, suggesting its potential to act as a reinforcing additive. The high concentration of gelatin aqueous solution (50 wt%) and substantial incorporation of alginate have facilitated the highly accurate printability and influence the in vitro stability and mechanical properties of the printed scaffolds. An improvement of the stiffness is dictated by the increase of alginate concentration from 20 wt% to 25 wt%, and an increase of Young modulus with about 46% is reached, confirming the reinforcing effect of polysaccharide. This study highlights the potential of paste-type inks to provide high resolution 3D printed structures with appealing structural and dimensional stability, in vitro degradability and mechanical properties for biomedical applications.
AUTHOR Dai, Michèle and Belaïdi, Jean-Philippe and Fleury, Guillaume and Garanger, Elisabeth and Rielland, Maïté and Schultze, Xavier and Lecommandoux, Sébastien
Title Elastin-like Polypeptide-Based Bioink: A Promising Alternative for 3D Bioprinting
Year 2021
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
AUTHOR Shiwarski,Daniel J. and Hudson,Andrew R. and Tashman,Joshua W. and Feinberg,Adam W.
Title Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication
Year 2021
Journal/Proceedings APL Bioengineering
Reftype
DOI/URL DOI
AUTHOR Chen, Shengyang and Shi, Qian and Jang, Taesik and Ibrahim, Mohammed Shahrudin Bin and Deng, Jingyu and Ferracci, Gaia and Tan, Wen See and Cho, Nam-Joon and Song, Juha
Title Engineering Natural Pollen Grains as Multifunctional 3D Printing Materials [Abstract]
Year 2021
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract The development of multifunctional 3D printing materials from sustainable natural resources is a high priority in additive manufacturing. Using an eco-friendly method to transform hard pollen grains into stimulus-responsive microgel particles, we engineered a pollen-derived microgel suspension that can serve as a functional reinforcement for composite hydrogel inks and as a supporting matrix for versatile freeform 3D printing systems. The pollen microgel particles enabled the printing of composite inks and improved the mechanical and physiological stabilities of alginate and hyaluronic acid hydrogel scaffolds for 3D cell culture applications. Moreover, the particles endowed the inks with stimulus-responsive controlled release properties. The suitability of the pollen microgel suspension as a supporting matrix for freeform 3D printing of alginate and silicone rubber inks was demonstrated and optimized by tuning the rheological properties of the microgel. Compared with other classes of natural materials, pollen grains have several compelling features, including natural abundance, renewability, affordability, processing ease, monodispersity, and tunable rheological features, which make them attractive candidates to engineer advanced materials for 3D printing applications.
AUTHOR Götz, Lisa-Marie and Holeczek, Katharina and Groll, Jürgen and Jüngst, Tomasz and Gbureck, Uwe
Title Extrusion-Based 3D Printing of Calcium Magnesium Phosphate Cement Pastes for Degradable Bone Implants [Abstract]
Year 2021
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
This study aimed to develop printable calcium magnesium phosphate pastes that harden by immersion in ammonium phosphate solution post-printing. Besides the main mineral compound, biocompatible ceramic, magnesium oxide and hydroxypropylmethylcellulose (HPMC) were the crucial components. Two pastes with different powder to liquid ratios of 1.35 g/mL and 1.93 g/mL were characterized regarding their rheological properties. Here, ageing over the course of 24 h showed an increase in viscosity and extrusion force, which was attributed to structural changes in HPMC as well as the formation of magnesium hydroxide by hydration of MgO. The pastes enabled printing of porous scaffolds with good dimensional stability and enabled a setting reaction to struvite when immersed in ammonium phosphate solution. Mechanical performance under compression was approx. 8–20 MPa as a monolithic structure and 1.6–3.0 MPa for printed macroporous scaffolds, depending on parameters such as powder to liquid ratio, ageing time, strand thickness and distance.
AUTHOR Wibowo, Arie and Tajalla, Gusti U. N. and Marsudi, Maradhana A. and Cooper, Glen and Asri, Lia A.T.W. and Liu, Fengyuan and Ardy, Husaini and Bartolo, Paulo J.D.S.
Title Green Synthesis of Silver Nanoparticles Using Extract of Cilembu Sweet Potatoes (Ipomoea batatas L var. Rancing) as Potential Filler for 3D Printed Electroactive and Anti-Infection Scaffolds [Abstract]
Year 2021
Journal/Proceedings Molecules
Reftype
DOI/URL URL DOI
Abstract
Electroactive biomaterials are fascinating for tissue engineering applications because of their ability to deliver electrical stimulation directly to cells, tissue, and organs. One particularly attractive conductive filler for electroactive biomaterials is silver nanoparticles (AgNPs) because of their high conductivity, antibacterial activity, and ability to promote bone healing. However, production of AgNPs involves a toxic reducing agent which would inhibit biological scaffold performance. This work explores facile and green synthesis of AgNPs using extract of Cilembu sweet potato and studies the effect of baking and precursor concentrations (1, 10 and 100 mM) on AgNPs’ properties. Transmission electron microscope (TEM) results revealed that the smallest particle size of AgNPs (9.95 ± 3.69 nm) with nodular morphology was obtained by utilization of baked extract and ten mM AgNO3. Polycaprolactone (PCL)/AgNPs scaffolds exhibited several enhancements compared to PCL scaffolds. Compressive strength was six times greater (3.88 ± 0.42 MPa), more hydrophilic (contact angle of 76.8 ± 1.7°), conductive (2.3 ± 0.5 × 10−3 S/cm) and exhibited anti-bacterial properties against Staphylococcus aureus ATCC3658 (99.5% reduction of surviving bacteria). Despite the promising results, further investigation on biological assessment is required to obtain comprehensive study of this scaffold. This green synthesis approach together with the use of 3D printing opens a new route to manufacture AgNPs-based electroactive with improved anti-bacterial properties without utilization of any toxic organic solvents.
AUTHOR Tan, Edgar Y. S. and Suntornnond, Ratima and Yeong, Wai Yee
Title High-Resolution Novel Indirect Bioprinting of Low-Viscosity Cell-Laden Hydrogels via Model-Support Bioink Interaction [Abstract]
Year 2021
Journal/Proceedings 3D Printing and Additive Manufacturing
Reftype
DOI/URL DOI
Abstract
Abstract Bioprinting of unmodified soft extracellular matrix into complex 3D structures has remained challenging to fabricate. Herein, we established a novel process for the printing of low-viscosity hydrogel by using a unique support technique to retain the structural integrity of the support structure. We demonstrated that this process of printing could be used for different types of hydrogel, ranging from fast crosslinking gelatin methacrylate to slow crosslinking collagen type I. In addition, we evaluated the biocompatibility of the process by observing the effects of the cytotoxicity of L929 and the functionality of the human umbilical vein endothelium primary cells after printing. The results show that the bioprinted construct provided excellent biocompatibility as well as supported cell growth and differentiation. Thus, this is a novel technique that can be potentially used to enhance the resolution of the extrusion-based bioprinter.
AUTHOR Lechner, Annika and Trossmann, Vanessa T. and Scheibel, Thomas
Title Impact of Cell Loading of Recombinant Spider Silk Based Bioinks on Gelation and Printability [Abstract]
Year 2021
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI
Abstract
Abstract Printability of bioinks encompasses considerations concerning rheology and extrudability, characterization of filament formation, shape fidelity, cell viability and post-printing cellular development. Recombinant spider silk based hydrogels might be a suitable material to be used in bioinks, i.e. a formulation of cells and materials to be used for bioprinting. Here, the high shape fidelity of spider silk ink is shown by bioprinting the shape and size of a human aortic valve. Further the influence of the encapsulation of cells has been evaluated on spider silk hydrogel formation, hydrogel mechanics, and shape fidelity upon extrusion based bioprinting. It is shown that the presence of cells impacts gelation of spider silk proteins differently depending on the used silk variant. RGD-modified spider silk hydrogels are physically crosslinked by the cells, while there is no active interaction between cells and un-tagged spider silk proteins. Strikingly, even at cell densities up to ten million cells/ml, cell viability is high after extrusion based printing which is a significant prerequisite for future applications. Shape fidelity of the printed constructs is demonstrated using a filament collapse test in absence and presence of human cells. This article is protected by copyright. All rights reserved
AUTHOR Trucco, Diego and Sharma, Aarushi and Manferdini, Cristina and Gabusi, Elena and Petretta, Mauro and Desando, Giovanna and Ricotti, Leonardo and Chakraborty, Juhi and Ghosh, Sourabh and Lisignoli, Gina
Title Modeling and Fabrication of Silk Fibroin-Gelatin-Based Constructs Using Extrusion-Based Three-Dimensional Bioprinting [Abstract]
Year 2021
Journal/Proceedings ACS Biomater. Sci. Eng.
Reftype
DOI/URL DOI
Abstract
Robotic dispensing-based 3D bioprinting represents one of the most powerful technologies to develop hydrogel-based 3D constructs with enormous potential in the field of regenerative medicine. The optimization of hydrogel printing parameters, proper geometry and internal architecture of the constructs, and good cell viability during the bioprinting process are the essential requirements. In this paper, an analytical model based on the hydrogel rheological properties was developed to predict the extruded filament width in order to maximize the printed structure’s fidelity to the design. Viscosity data of two natural hydrogels were imputed to a power-law model to extrapolate the filament width. Further, the model data were validated by monitoring the obtained filament width as the output. Shear stress values occurring during the bioprinting process were also estimated. Human mesenchymal stromal cells (hMSCs) were encapsulated in the silk fibroin-gelatin (G)-based hydrogel, and a 3D bioprinting process was performed to produce cell-laden constructs. Live and dead assay allowed estimating the impact of needle shear stress on cell viability after the bioprinting process. Finally, we tested the potential of hMSCs to undergo chondrogenic differentiation by evaluating the cartilaginous extracellular matrix production through immunohistochemical analyses. Overall, the use of the proposed analytical model enables defining the optimal printing parameters to maximize the fabricated constructs’ fidelity to design parameters before the process execution, enabling to achieve more controlled and standardized products than classical trial-and-error approaches in the biofabrication of engineered constructs. Employing modeling systems exploiting the rheological properties of the hydrogels might be a valid tool in the future for guaranteeing high cell viability and for optimizing tissue engineering approaches in regenerative medicine applications. Robotic dispensing-based 3D bioprinting represents one of the most powerful technologies to develop hydrogel-based 3D constructs with enormous potential in the field of regenerative medicine. The optimization of hydrogel printing parameters, proper geometry and internal architecture of the constructs, and good cell viability during the bioprinting process are the essential requirements. In this paper, an analytical model based on the hydrogel rheological properties was developed to predict the extruded filament width in order to maximize the printed structure’s fidelity to the design. Viscosity data of two natural hydrogels were imputed to a power-law model to extrapolate the filament width. Further, the model data were validated by monitoring the obtained filament width as the output. Shear stress values occurring during the bioprinting process were also estimated. Human mesenchymal stromal cells (hMSCs) were encapsulated in the silk fibroin-gelatin (G)-based hydrogel, and a 3D bioprinting process was performed to produce cell-laden constructs. Live and dead assay allowed estimating the impact of needle shear stress on cell viability after the bioprinting process. Finally, we tested the potential of hMSCs to undergo chondrogenic differentiation by evaluating the cartilaginous extracellular matrix production through immunohistochemical analyses. Overall, the use of the proposed analytical model enables defining the optimal printing parameters to maximize the fabricated constructs’ fidelity to design parameters before the process execution, enabling to achieve more controlled and standardized products than classical trial-and-error approaches in the biofabrication of engineered constructs. Employing modeling systems exploiting the rheological properties of the hydrogels might be a valid tool in the future for guaranteeing high cell viability and for optimizing tissue engineering approaches in regenerative medicine applications.
AUTHOR Iria Seoane-Viaño and Patricija Januskaite and Carmen Alvarez-Lorenzo and Abdul W. Basit and Alvaro Goyanes
Title Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges [Abstract]
Year 2021
Journal/Proceedings Journal of Controlled Release
Reftype
DOI/URL URL DOI
Abstract
Three-dimensional (3D) printing is an innovative additive manufacturing technology, capable of fabricating unique structures in a layer-by-layer manner. Semi-solid extrusion (SSE) is a subset of material extrusion 3D printing, and through the sequential deposition of layers of gel or paste creates objects of any desired size and shape. In comparison to other extrusion-based technologies, SSE 3D printing employs low printing temperatures which makes it suitable for drug delivery and biomedical applications, and the use of disposable syringes provides benefits in meeting critical quality requirements for pharmaceutical use. Besides pharmaceutical manufacturing, SSE 3D printing has attracted increasing attention in the field of bioelectronics, particularly in the manufacture of biosensors capable of measuring physiological parameters or as a means to trigger drug release from medical devices. This review begins by highlighting the major printing process parameters and material properties that influence the feasibility of transforming a 3D design into a 3D object, and follows with a discussion on the current SSE 3D printing developments and their applications in the fields of pharmaceutics, bioprinting and bioelectronics. Finally, the advantages and limitations of this technology are explored, before focusing on its potential clinical applications and suitability for preparing personalised medicines.
AUTHOR Göckler, Tobias and Haase, Sonja and Kempter, Xenia and Pfister, Rebecca and Maciel, Bruna R. and Grimm, Alisa and Molitor, Tamara and Willenbacher, Norbert and Schepers, Ute
Title Tuning Superfast Curing Thiol-Norbornene-Functionalized Gelatin Hydrogels for 3D Bioprinting [Abstract]
Year 2021
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Photocurable gelatin-based hydrogels have established themselves as powerful bioinks in tissue engineering due to their excellent biocompatibility, biodegradability, light responsiveness, thermosensitivity and bioprinting properties. While gelatin methacryloyl (GelMA) has been the gold standard for many years, thiol-ene hydrogel systems based on norbornene-functionalized gelatin (GelNB) and a thiolated crosslinker have recently gained increasing importance. In this paper, a highly reproducible water-based synthesis of GelNB is presented, avoiding the use of dimethyl sulfoxide (DMSO) as organic solvent and covering a broad range of degrees of functionalization (DoF: 20% to 97%). Mixing with thiolated gelatin (GelS) results in the superfast curing photoclick hydrogel GelNB/GelS. Its superior properties over GelMA, such as substantially reduced amounts of photoinitiator (0.03% (w/v)), superfast curing (1–2 s), higher network homogeneity, post-polymerization functionalization ability, minimal cross-reactivity with cellular components, and improved biocompatibility of hydrogel precursors and degradation products lead to increased survival of primary cells in 3D bioprinting. Post-printing viability analysis revealed excellent survival rates of > 84% for GelNB/GelS bioinks of varying crosslinking density, while cell survival for GelMA bioinks is strongly dependent on the DoF. Hence, the semisynthetic and easily accessible GelNB/GelS hydrogel is a highly promising bioink for future medical applications and other light-based biofabrication techniques.
AUTHOR Chen, Shengyang and Jang, Tae-Sik and Pan, Houwen Matthew and Jung, Hyun-Do and Sia, Ming Wei and Xie, Shuying and Hang, Yao and Chong, Seow and Wong, Dongan
Title 3D Freeform Printing of Nanocomposite Hydrogels through in situ Precipitation in Reactive Viscous Fluid
Year 2020
Journal/Proceedings International Journal of Bioprinting
Reftype
DOI/URL DOI
AUTHOR Rupp, Harald and Binder, Wolfgang H.
Title 3D Printing of Core–Shell Capsule Composites for Post-Reactive and Damage Sensing Applications [Abstract]
Year 2020
Journal/Proceedings Advanced Materials Technologies
Reftype
DOI/URL DOI
Abstract
Abstract 3D printing of multicomponent materials as an advantageous method over traditional mold casting methods is demonstrated, developing small core–shell capsule composites fabricated by a two-step 3D printing process. Using a two-print-head system (fused deposition modeling extruder and a liquid inkjet print head), micro-sized capsules are manufactured in sizes ranging from 100 to 800 µm. The thermoplastic polymer poly(ε-caprolactone) (PCL) is chosen as matrix/shell material due to its optimal interaction with the embedded hydrophobic liquids. First, the core–shell capsules are printed with model liquids and pure PCL to optimize the printing parameters and to ensure fully enclosed capsules inside the polymer. As a proof of concept, novel “click” reaction systems, used in self-healing and stress-detection applications, are manufactured in which PCL composites with nano- and micro-fillers are combined with reactive, encapsulated liquids. The so generated 3D printed core–shell capsule composite can be used for post-printing reactions and damage sensing when combined with a fluorogenic dye.
AUTHOR Jung, Harry and Lee, Ji Seung and Lee, Jun Ho and Park, Ki Joon and Lee, Jae Jun and Park, Hae Sang
Title A Feasibility Study for 3D-printed Poly(methyl methacrylate)-resin Tracheostomy Tube Using a Hamster Cheek Pouch Model
Year 2020
Journal/Proceedings In Vivo
Reftype
DOI/URL URL
AUTHOR Lee, J. M. and Sing, S. L. and Yeong, W. Y.
Title Bioprinting of Multimaterials with Computer-aided Design/Computer -aided Manufacturing [Abstract]
Year 2020
Journal/Proceedings International Journal of Bioprinting; Vol 6, No 1 (2020)
Reftype
DOI/URL URL
Abstract
Multimaterials deposition, a distinct advantage in bioprinting, overcomes material’s limitation in hydrogel-based bioprinting. Multimaterials are deposited in a build/support configuration to improve the structural integrity of three-dimensional bioprinted construct. A combination of rapid cross-linking hydrogel has been chosen for the build/support setup. The bioprinted construct was further chemically cross-linked to ensure a stable construct after print. This paper also proposes a file segmentation and preparation technique to be used in bioprinting for printing freeform structures.
AUTHOR Müller, Michael and Fisch, Philipp and Molnar, Marc and Eggert, Sebastian and Binelli, Marco and Maniura-Weber, Katharina and Zenobi-Wong, Marcy
Title Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering [Abstract]
Year 2020
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Achieving reproducibility in the 3D printing of biomaterials requires a robust polymer synthesis method to reduce batch-to-batch variation as well as methods to assure a thorough characterization throughout the manufacturing process. Particularly biomaterial inks containing large solid fractions such as ceramic particles, often required for bone tissue engineering applications, are prone to inhomogeneity originating from inadequate mixing or particle aggregation which can lead to inconsistent printing results. The production of such an ink for bone tissue engineering consisting of gellan gum methacrylate (GG-MA), hyaluronic acid methacrylate and hydroxyapatite (HAp) particles was therefore optimized in terms of GG-MA synthesis and ink preparation process, and the ink's printability was thoroughly characterized to assure homogeneous and reproducible printing results. A new buffer mediated synthesis method for GG-MA resulted in consistent degrees of substitution which allowed the creation of large 5 g batches. We found that both the new synthesis as well as cryomilling of the polymer components of the ink resulted in a decrease in viscosity from 113 kPa·s to 11.3 kPa·s at a shear rate of 0.1 s−1 but increased ink homogeneity. The ink homogeneity was assessed through thermogravimetric analysis and a newly developed extrusion force measurement setup. The ink displayed strong inter-layer adhesion between two printed ink layers as well as between a layer of ink with and a layer without HAp. The large polymer batch production along with the characterization of the ink during the manufacturing process allows ink production in the gram scale and could be used in applications such as the printing of osteochondral grafts.
AUTHOR Tan, Wen See and Juhari, Muhammad Aidil Bin and Shi, Qian and Chen, Shengyang and Campolo, Domenico and Song, Juha
Title Development of a new additive manufacturing platform for direct freeform 3D printing of intrinsically curved flexible membranes [Abstract]
Year 2020
Journal/Proceedings Additive Manufacturing
Reftype
DOI/URL URL DOI
Abstract
The wearable technology market has been expanding from wearable medical devices for non-invasive continuous monitoring of patient vital signs to wearable devices for tracking fitness activities that any person can access. Regardless of their form or function, desirable characteristics of wearable devices are the ability to be flexible, conformal, and easily attachable to the human body. However, as the human body is intrinsically curved and irregular, flat devices often have poor interfacial adhesion with the human body. This often leads to interfacial delamination and eventual detachment of the device. Therefore, a new additive manufacturing (AM) platform, a direct freeform 3D printing process (DF3DP), is proposed to allow direct construction of intrinsically curved 3D surfaces during the material deposition phase without the need for any pre-shaped supporting molds or templates. This 3D freeform printing process involves a supporting matrix made up of calcium alginate microgels, printing material made from silicone ink, and freeform printing paths derived from customized G-codes that conform exactly to the scanned human surface profile. Curved meshes mimicking the human elbow were used as a demonstration. A static contact stability test showed that the printed 3D silicone mesh was highly conformal to the model elbow surface as compared to a 2D flat mesh. A dynamic contact stability test was also conducted by subjecting both meshes to 100 cycles of mechanical flexion and extension, proving that intrinsically curved surfaces can provide better contact stability for complex human body surfaces undergoing motion than can flat surfaces. These results have proven that intrinsically curved membranes or structures fabricated by DF3DP can reduce the interfacial shear stress and occurrence of cracks and delamination while maintaining structural integrity and stability during use without compromising the comfort of the users. Our approach can resolve interfacial issues in flexible substrates and has great potential for epidermal devices or soft robotics via its long-term sustainable performance.
AUTHOR Zhang, Hua and Cong, Yang and Osi, Amarachi Rosemary and Zhou, Yang and Huang, Fangcheng and Zaccaria, Remo P. and Chen, Jing and Wang, Rong and Fu, Jun
Title Direct 3D Printed Biomimetic Scaffolds Based on Hydrogel Microparticles for Cell Spheroid Growth [Abstract]
Year 2020
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract Biocompatible hydrogel inks with shear-thinning, appropriate yield strength, and fast self-healing are desired for 3D bioprinting. However, the lack of ideal 3D bioprinting inks with outstanding printability and high structural fidelity, as well as cell-compatibility, has hindered the progress of extrusion-based 3D bioprinting for tissue engineering. In this study, novel self-healable pre-cross-linked hydrogel microparticles (pcHμPs) of chitosan methacrylate (CHMA) and polyvinyl alcohol (PVA) hybrid hydrogels are developed and used as bioinks for extrusion-based 3D printing of scaffolds with high fidelity and biocompatibility. The pcHμPs display excellent shear thinning when injected through a syringe and subsequently self-heal into gels as shear forces are removed. Numerical simulations indicate that the pcHμPs experience a plug flow in the nozzle with minimal disturbance, which favors a steady and continuous printing. Moreover, the pcHμPs show a self-supportive yield strength (540 Pa), which is critical for the fidelity of printed constructs. A series of biomimetic constructs with very high aspect ratio and delicate fine structures are directly printed by using the pcHμP ink. The 3D printed scaffolds support the growth of bone-marrow-derived mesenchymal stem cells and formation of cell spheroids, which are most important for tissue engineering.
AUTHOR Lee, Jia Min and Yeong, Wai Yee
Title Engineering macroscale cell alignment through coordinated toolpath design using support-assisted 3D bioprinting [Abstract]
Year 2020
Journal/Proceedings Journal of The Royal Society Interface
Reftype
DOI/URL DOI
Abstract
Aligned cells provide direction-dependent mechanical properties that influence biological and mechanical function in native tissues. Alignment techniques such as casting and uniaxial stretching cannot fully replicate the complex fibre orientation of native tissue such as the heart. In this study, bioprinting is used to direct the orientation of cell alignment. A 0°–90° grid structure was printed to assess the robustness of the support-assisted bioprinting technique. The variation in the angles of the grid pattern is designed to mimic the differences in fibril orientation of native tissues, where angles of cell alignment vary across the different layers. Through bioprinting of a cell–hydrogel mixture, C2C12 cells displayed directed alignment along the longitudinal axis of printed struts. Cell alignment is induced through firstly establishing structurally stable constructs (i.e. distinct 0°–90° structures) and secondly, allowing cells to dynamically remodel the bioprinted construct. Herein reports a method of inducing a macroscale level of controlled cell alignment with angle variation. This was not achievable both in terms of methods (i.e. conventional alignment techniques such as stretching and electrical stimulation) and magnitude (i.e. hydrogel features with less than 100 µm features).
AUTHOR Somasekharan, Lakshmi and Kasoju, Naresh and Raju, Riya and Bhatt, Anugya
Title Formulation and Characterization of Alginate Dialdehyde, Gelatin, and Platelet-Rich Plasma-Based Bioink for Bioprinting Applications [Abstract]
Year 2020
Journal/Proceedings Bioengineering
Reftype
DOI/URL URL DOI
Abstract
Layer-by-layer additive manufacturing process has evolved into three-dimensional (3D) “bio-printing” as a means of constructing cell-laden functional tissue equivalents. The process typically involves the mixing of cells of interest with an appropriate hydrogel, termed as “bioink”, followed by printing and tissue maturation. An ideal bioink should have adequate mechanical, rheological, and biological features of the target tissues. However, native extracellular matrix (ECM) is made of an intricate milieu of soluble and non-soluble extracellular factors, and mimicking such a composition is challenging. To this end, here we report the formulation of a multi-component bioink composed of gelatin and alginate -based scaffolding material, as well as a platelet-rich plasma (PRP) suspension, which mimics the insoluble and soluble factors of native ECM respectively. Briefly, sodium alginate was subjected to controlled oxidation to yield alginate dialdehyde (ADA), and was mixed with gelatin and PRP in various volume ratios in the presence of borax. The formulation was systematically characterized for its gelation time, swelling, and water uptake, as well as its morphological, chemical, and rheological properties; furthermore, blood- and cytocompatibility were assessed as per ISO 10993 (International Organization for Standardization). Printability, shape fidelity, and cell-laden printing was evaluated using the RegenHU 3D Discovery bioprinter. The results indicated the successful development of ADA–gelatin–PRP based bioink for 3D bioprinting and biofabrication applications.
AUTHOR Eltaher, Hoda M. and Abukunna, Fatima E. and Ruiz-Cantu, Laura and Stone, Zack and Yang, Jing and Dixon, James E.
Title Human-scale tissues with patterned vascular networks by additive manufacturing of sacrificial sugar-protein composites [Abstract]
Year 2020
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
Combating necrosis, by supplying nutrients and removing waste, presents the major challenge for engineering large three-dimensional (3D) tissues. Previous elegant work used 3D printing with carbohydrate glass as a cytocompatible sacrificial template to create complex engineered tissues with vascular networks (Miller et al. 2012, Nature Materials). The fragile nature of this material compounded with the technical complexity needed to create high-resolution structures led us to create a flexible sugar-protein composite, termed Gelatin-sucrose matrix (GSM), to achieve a more robust and applicable material. Here we developed a low-range (25–37˚C) temperature sensitive formulation that can be moulded with micron-resolution features or cast during 3D printing to produce complex flexible filament networks forming sacrificial vessels. Using the temperature-sensitivity, we could control filament degeneration meaning GSM can be used with a variety of matrices and crosslinking strategies. Furthermore by incorporation of biocompatible crosslinkers into GSM directly, we could create thin endothelialized vessel walls and generate patterned tissues containing multiple matrices and cell-types. We also demonstrated that perfused vascular channels sustain metabolic function of a variety of cell-types including primary human cells. Importantly, we were able to construct vascularized human noses which otherwise would have been necrotic. Our material can now be exploited to create human-scale tissues for regenerative medicine applications. Statement of Significance Authentic and engineered tissues have demands for mass transport, exchanging nutrients and oxygen, and therefore require vascularization to retain viability and inhibit necrosis. Basic vascular networks must be included within engineered tissues intrinsically. Yet, this has been unachievable in physiologically-sized constructs with tissue-like cell densities until recently. Sacrificial moulding is an alternative in which networks of rigid lattices of filaments are created to prevent subsequent matrix ingress. Our study describes a biocompatible sacrificial sugar-protein formulation; GSM, made from mixtures of inexpensive and readily available bio-grade materials. GSM can be cast/moulded or bioprinted as sacrificial filaments that can rapidly dissolve in an aqueous environment temperature-sensitively. GSM material can be used to engineer viable and vascularized human-scale tissues for regenerative medicine applications.
AUTHOR Strauß, Svenja and Meutelet, Rafaela and Radosevic, Luka and Gretzinger, Sarah and Hubbuch, Jürgen
Title Image analysis as PAT-Tool for use in extrusion-based bioprinting [Abstract]
Year 2020
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
The technology of bioprinting is arousing a growing interest in biopharmaceutical research and industry. In order to accelerate process development in the field of bioprinting, image-based analysis methods are non-invasive, time- and cost-saving tools which are usable for printer characterization, bioink printability evaluation, and process optimization. Image processing can also be used for the study of reproducibility, since reliable production is important in the transition from research to industrial application, and more precisely to clinical studies. This study revolves around the establishment of an automated and image-based line analysis method for bioprinting applications which enables an easy comparison of 3D-printed lines. Diverse rheological properties of bioinks and the printing process affect the geometry of the resulting object. The line represents a simple geometry, where the influence of the rheological properties and printing parameters is directly apparent. Therefore, a method for line analysis was developed on the basis of image recognition. At first, the method is tested for several substances such as Nivea®, pure and colored Kolliphor solutions, and two commercially available hydrogel formulations which can be used as bioinks. These are Biogelx™-ink-RGD by Biogelx and Cellink® Bioink by Cellink. The examination of limitations showed that transparent materials such as Kolliphor-based solutions cannot be analyzed with the developed method whereas opaque materials such as Nivea® and both bioinks can be analyzed. In the course of process characterization, the method was used to investigate the shrinkage behavior for both bionks. With the help of the line analysis tool, a shrinkage behavior of both bioinks was demonstrated and thus, process time could be identified as a critical process parameter.
AUTHOR Fisch, Philipp and Holub, Martin and Zenobi-Wong, Marcy
Title Improved accuracy and precision of bioprinting through progressive cavity pump-controlled extrusion [Abstract]
Year 2020
Journal/Proceedings bioRxiv
Reftype
DOI/URL URL DOI
Abstract
3D bioprinting has seen a tremendous growth in recent years in a variety of fields such as tissue and organ models, drug testing and regenerative medicine. This growth has led researchers and manufacturers to continuously advance and develop novel bioprinting techniques and materials. Although new bioprinting methods are emerging (e.g. contactless and volumetric bioprinting), micro-extrusion bioprinting remains the most widely used method. Micro-extrusion bioprinting, however, is still largely dependent on the conventional pneumatic extrusion process, which relies heavily on homogenous biomaterial inks and bioinks to maintain a constant material flowrate. Augmenting the functionality of the bioink with the addition of nanoparticles, cells or biopolymers can induce inhomogeneities resulting in uneven material flow during printing and/or clogging of the nozzle, leading to defects in the printed construct. In this work, we evaluated a novel extrusion technique based on a miniaturized progressive cavity pump. We compared the accuracy and precision of this system to the pneumatic extrusion system and tested both for their effect on cell viability after extrusion. The progressive cavity pump achieved a significantly higher accuracy and precision compared to the pneumatic system while maintaining good viability and was able to maintain its reliability independently of the bioink composition, printing speed or nozzle size. Progressive cavity pumps are a promising tool for bioprinting and could help provide standardized and validated bioprinted constructs while leaving the researcher more freedom in the design of the bioinks with increased functionality.
AUTHOR Rupp, Harald and Binder, Wolfgang H.
Title Multicomponent Stress-Sensing Composites Fabricated by 3D-Printing Methodologies [Abstract]
Year 2020
Journal/Proceedings Macromolecular Rapid Communications
Reftype
DOI/URL DOI
Abstract
Abstract The preparation and characterization of mechanoresponsive, 3D-printed composites are reported using a dual-printing setup for both, liquid dispensing and fused-deposition-modeling. The here reported stress-sensing materials are based on high- and low molecular weight mechanophores, including poly(ε-caprolactone)-, polyurethane-, and alkyl(C11)-based latent copper(I)bis(N-heterocyclic carbenes), which can be activated by compression to trigger a fluorogenic, copper(I)-catalyzed azide/alkyne “click”-reaction of an azide-functionalized fluorescent dye inside a bulk polymeric material. Focus is placed on the printability and postprinting activity of the latent mechanophores and the fluorogenic “click”-components. The multicomponent specimen containing both, azide and alkyne, are manufactured via a 3D-printer to place the components separately inside the specimen into void spaces generated during the FDM-process, which subsequently are filled with liquids using a separate liquid dispenser, located within the same 3D-printing system. The low-molecular weight mechanophores bearing the alkyl-C11 chains display the best printability, yielding a mechanochemical response after the 3D-printing process.
AUTHOR Lee, Mihyun and Bae, Kraun and Levinson, Clara and Zenobi-Wong, Marcy
Title Nanocomposite bioink exploits dynamic covalent bonds between nanoparticles and polysaccharides for precision bioprinting [Abstract]
Year 2020
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
The field of bioprinting has made significant recent progress towards engineering tissues with increasing complexity and functionality. It remains challenging, however, to develop bioinks with optimal biocompatibility and good printing fidelity. Here, we demonstrate enhanced printability of a polymer-based bioink based on dynamic covalent linkages between nanoparticles (NPs) and polymers, which retains good biocompatibility. Amine-presenting silica NPs (ca. 45 nm) were added to a polymeric ink containing oxidized alginate (OxA). The formation of reversible imine bonds between amines on the NPs and aldehydes of OxA lead to significantly improved rheological properties and high printing fidelity. In particular, the yield stress increased with increasing amounts of NPs (14.5 Pa without NPs, 79 Pa with 2 wt% NPs). In addition, the presence of dynamic covalent linkages in the gel provided improved mechanical stability over 7 d compared to ionically crosslinked gels. The nanocomposite ink retained high printability and mechanical strength, resulting in generation of centimeter-scale porous constructs and an ear structure with overhangs and high structural fidelity. Furthermore, the nanocomposite ink supported both in vitro and in vivo maturation of bioprinted gels containing chondrocytes. This approach based on simple oxidation can be applied to any polysaccharide, thus the widely applicability of the method is expected to advance the field towards the goal of precision bioprinting.
AUTHOR Cernecu, Alexandra and Lungu, Adriana and Stancu, Izabela Cristina and Vasile, Eugeniu and Iovu, Horia
Title Polysaccharide-Based 3D Printing Inks Supplemented with Additives
Year 2020
Journal/Proceedings University Politechnica of Bucharest Scientific Bulletin
Reftype
DOI/URL URL
AUTHOR Tan, Wen See and Shi, Qian and Chen, Shengyang and Bin Juhari, Muhammad Aidil and Song, Juha
Title Recyclable and biocompatible microgel-based supporting system for positive 3D freeform printing of silicone rubber [Abstract]
Year 2020
Journal/Proceedings Biomedical Engineering Letters
Reftype Tan2020
DOI/URL DOI
Abstract
Additive manufacturing (AM) of biomaterials has evolved from a rapid prototyping tool into a viable approach for the manufacturing of patient-specific implants over the past decade. It can tailor to the unique physiological and anatomical criteria of the patient’s organs or bones through precise controlling of the structure during the 3D printing. Silicone elastomers, which is a major group of materials in many biomedical implants, have low viscosities and can be printed with a special AM platform, known as freeform 3D printing systems. The freeform 3D printing systems are composed of a supporting bath and a printing material. Current supporting matrices that are either commercially purchased or synthesized were usually disposed of after retrieval of the printed part. In this work, we proposed a new and improved supporting matrix comprises of synthesized calcium alginate microgels produced via encapsulation which can be recycled, reused, and recovered for multiple prints, hence minimizing wastage and cost of materials. The dehydration tolerance of the calcium alginate microgels was improved through physical means by the addition of glycerol and chemical means by developing new calcium alginate microgels encapsulated with glycerol. The recyclability of the heated calcium alginate microgels was also enhanced by a rehydration step with sodium chloride solution and a recovery step with calcium chloride solution via the ion exchange process. We envisaged that our reusable and recyclable biocompatible calcium alginate microgels can save material costs, time, and can be applied in various freeform 3D printing systems.
AUTHOR Sanz-Fraile, Hector and Amorós, Susana and Mendizabal, Irene Isabel and Gálvez-Montón, Carolina and Prat-Vidal, Cristina and Bayés-Genís, Antoni and Navajas, Daniel and Farre, Ramon and Otero, Jorge
Title Silk-reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture [Abstract]
Year 2020
Journal/Proceedings Tissue Engineering Part A
Reftype
DOI/URL DOI
Abstract
Type I collagen hydrogels are of high interest in tissue engineering. With the evolution of 3D bioprinting technologies, a high number of collagen-based scaffolds have been reported for the development of 3D cell cultures. A recent proposal was to mix collagen with silk fibroin derived from Bombyx Mori silkworm. Nevertheless, due to the difficulties in the preparation and the characteristics of the protein, several problems like phase separation and collagen denaturation appears during the procedure. Therefore, the common solution is to diminish the concentration of collagen although in that way the most biologically relevant component is reduced. In the present work, we present a new, simple and effective method to develop a collagen-silk hybrid hydrogel with high collagen concentration and with increased stiffness approaching that of natural tissues, which could be of high interest for the development of cardiac patches for myocardial regeneration and for preconditioning of mesenchymal stem cells to improve their therapeutic potential. Sericin in the silk was preserved by using a physical solubilizing procedure which results in a preserved fibrous structure of type I collagen, as shown by ultrastructural imaging. The macro- and micromechanical properties of the hybrid hydrogels measured by tensile stretch and Atomic Force Microscopy respectively, showed a more than two-fold stiffening as compared with collagen-only hydrogels. Rheological measurements showed improved printability properties for the developed biomaterial. The suitability of the hydrogels for 3D cell culture was assessed by 3D bioprinting bone marrow-derived mesenchymal stem cells cultured within the scaffolds. The result was a biomaterial with improved printability characteristics that better resembled the mechanical properties of natural soft tissues while preserving biocompatibility owing to the high concentration of collagen.
AUTHOR Li, Huijun and Tan, Yu Jun and Kiran, Raj and Tor, Shu Beng and Zhou, Kun
Title Submerged and non-submerged 3D bioprinting approaches for the fabrication of complex structures with the hydrogel pair GelMA and alginate/methylcellulose [Abstract]
Year 2020
Journal/Proceedings Additive Manufacturing
Reftype
DOI/URL URL DOI
Abstract
The extrusion-based bioprinting of hydrogels such as gelatin methacrylate (GelMA) into structures with complex shape suffers from poor printability due to their low viscosity. The present study deals with hydrogel materials by using the mixture of cell-laden photopolymerizable GelMA as a main printing material and the mixture of alginate and methylcellulose (Alg/MC) as a support material because of its high viscosity and good thixotropic property. One extrusion-based approach is developed by printing the two mixtures into structures in an alternating layer-by-layer manner, with the electrostatic interactions between polycationic GelMA and polyanionic Alg/MC contributing to the integrity of the structures. The final printed structures are exposed to ultraviolet (UV) light to form crosslinks in GelMA through photopolymerization for further structural strengthening. The one-time UV exposure minimizes cell damage in cell-GelMA, demonstrating an advantage over those in previously reported studies that required repeated UV exposures upon the printing of each layer of a structure. The other approach is developed by submerging the extrusion nozzle into a bath of Alg/MC to print cell-laden GelMA structures, which, upon printing completion, are also subject to one-time UV exposure before the removal of the support material Alg/MC. A flower with living cells is printed to demonstrate the capability of the second approach of fabricating structures with geometric complexity. The structures printed using both approaches demonstrate a well-maintained shape fidelity, structural integrity and cell viability of over 93% up to five culturing days. The proposed two printing approaches based on the cell-GelMA and Alg/MC pair will be beneficial for exploring new opportunities in bioprinting.
AUTHOR Schwab, Andrea and Helary, Christophe and Richards, Geoff and Alini, Mauro and Eglin, David and D{textquoteright}Este, Matteo
Title Tissue mimetic hyaluronan bio-ink containing oriented collagen fibers to modulate hMSC spreading and differentiation [Abstract]
Year 2020
Journal/Proceedings bioRxiv
Reftype
DOI/URL URL DOI
Abstract
Biofabrication is providing scientists and clinicians the ability to produce engineered tissues with desired shapes, chemical and biological gradients. Typical resolutions achieved with extrusion-based bioprinting are at the macroscopic level. However, for capturing the fibrillar nature of the extracellular matrix (ECM), it is necessary to arrange ECM components at smaller scales, down to the sub-micron and the molecular level.In this study, we introduce a (bio)ink containing hyaluronan (HA) as tyramine derivative (THA) and collagen (Col). Similarly to other connective tissues, in this (bio)ink Col is present in fibrillar form and HA as viscoelastic space filler. THA was enzymatically crosslinked under mild conditions allowing simultaneous Col fibrillogenesis, thus achieving a homogeneous distribution of Col fibrils within the viscoelastic HA-based matrix. THA-Col composite displayed synergistic properties in terms of storage modulus and shear-thinning, translating into good printability.Shear-induced alignment of the Col fibrils along the printing direction was achieved and quantified via immunofluorescence and second harmonic generation.Cell-free and cell-laden constructs were printed and characterized, analyzing the influence of the controlled microscopic anisotropy on cell behavior and chondrogenic differentiation.THA-Col showed cell instructive properties modulating hMSC adhesion, morphology and sprouting from spheroids stimulated by the presence and the orientation of Col fibers. Actin filament staining showed that hMSCs embedded into aligned constructs displayed increased cytoskeleton alignment along the fibril direction. Based on gene expression of cartilage/bone markers and matrix production, hMSCs embedded into the bioink displayed chondrogenic differentiation comparable or superior to standard pellet culture by means of proteoglycan production (Safranin O staining and proteoglycan quantification) as well as increase in cartilage related genes.The possibility of printing matrix components with control over microscopic alignment brings biofabrication one step closer to capturing the complexity of native tissues.
AUTHOR Shapira, Assaf and Noor, Nadav and Oved, Hadas and Dvir, Tal
Title Transparent support media for high resolution 3D printing of volumetric cell-containing ECM structures [Abstract]
Year 2020
Journal/Proceedings Biomedical Materials
Reftype
DOI/URL DOI
Abstract
3D bioprinting may revolutionize the field of tissue engineering by allowing fabrication of bio-structures with high degree of complexity, fine architecture and heterogeneous composition. The printing substances in these processes are mostly based on biomaterials and living cells. As such, they generally possess weak mechanical properties and thus must be supported during fabrication in order to prevent the collapse of large, volumetric multi-layered printouts. In this work, we characterize a uniquely formulated media used to support printing of extracellular matrix-based biomaterials. We show that a hybrid material, comprised of calcium-alginate nanoparticles and xanthan gum, presents superb qualities that enable printing at high resolution of down to 10 microns, allowing fabrication of complex constructs and cellular structures. This hybrid also presents an exclusive combination of desirable properties such as biocompatibility, high transparency, stability at a wide range of temperatures and amenability to delicate extraction procedures. Moreover, as fabrication of large, volumetric biological structures may require hours and even days to accomplish, we have demonstrated that the hybrid medium can support prolonged, precise printing for at least 18 hours. All these qualities make it a promising support medium for 3D printing of tissues and organs.
AUTHOR Döhler, Diana and Kang, Jiheong and Cooper, Chris Brittain and Tok, Jeffrey B.-H. and Rupp, Harald and Binder, Wolfgang H. and Bao, Zhenan
Title Tuning the Self-Healing Response of Poly(dimethylsiloxane)-Based Elastomers [Abstract]
Year 2020
Journal/Proceedings ACS Appl. Polym. Mater.
Reftype
DOI/URL DOI
Abstract
We present a comprehensive investigation of mechanical properties of supramolecular polymer networks with rationally developed multistrength hydrogen-bonding interactions. Self-healing poly(dimethylsiloxane) (PDMS)-based elastomers with varying elasticity, fracture toughness, and the ability to dissipate strain energy through the reversible breakage and re-formation of the supramolecular interactions were obtained. By changing the ratio between isophorone diisocyanate (IU), 4,4′-methylenebis(cyclohexyl isocyanate) (MCU), and 4,4′-methylenebis(phenyl isocyanate) (MPU) and by varying the molecular weight of the PDMS precursor, we obtained a library of poly(urea)s to study the interplay of mechanical performance and self-healability. The Young’s moduli of the presented materials ranged between 0.4 and 13 MPa and increased with decreasing molecular weight of the PDMS precursor and increasing content of MCU or MPU units related to the formation of stronger hydrogen-bonding interactions. By exchanging MPU against MCU units, we achieved an optimum balance between mechanical properties and self-healing performance, and by the additional reduction of the molecular weight of the precursor polymer, a minimum recovery of 80% in stress within 12 h at room temperature was observed. Selected poly(urea)s could be processed via 3D printing by the conventional extrusion method, obtaining dimensionally stable and freestanding objects. We present a comprehensive investigation of mechanical properties of supramolecular polymer networks with rationally developed multistrength hydrogen-bonding interactions. Self-healing poly(dimethylsiloxane) (PDMS)-based elastomers with varying elasticity, fracture toughness, and the ability to dissipate strain energy through the reversible breakage and re-formation of the supramolecular interactions were obtained. By changing the ratio between isophorone diisocyanate (IU), 4,4′-methylenebis(cyclohexyl isocyanate) (MCU), and 4,4′-methylenebis(phenyl isocyanate) (MPU) and by varying the molecular weight of the PDMS precursor, we obtained a library of poly(urea)s to study the interplay of mechanical performance and self-healability. The Young’s moduli of the presented materials ranged between 0.4 and 13 MPa and increased with decreasing molecular weight of the PDMS precursor and increasing content of MCU or MPU units related to the formation of stronger hydrogen-bonding interactions. By exchanging MPU against MCU units, we achieved an optimum balance between mechanical properties and self-healing performance, and by the additional reduction of the molecular weight of the precursor polymer, a minimum recovery of 80% in stress within 12 h at room temperature was observed. Selected poly(urea)s could be processed via 3D printing by the conventional extrusion method, obtaining dimensionally stable and freestanding objects.
AUTHOR Alison, Lauriane and Menasce, Stefano and Bouville, Florian and Tervoort, Elena and Mattich, Iacopo and Ofner, Alessandro and Studart, André R.
Title 3D printing of sacrificial templates into hierarchical porous materials [Abstract]
Year 2019
Journal/Proceedings Scientific Reports
Reftype Alison2019
DOI/URL DOI
Abstract
Hierarchical porous materials are widespread in nature and find an increasing number of applications as catalytic supports, biological scaffolds and lightweight structures. Recent advances in additive manufacturing and 3D printing technologies have enabled the digital fabrication of porous materials in the form of lattices, cellular structures and foams across multiple length scales. However, current approaches do not allow for the fast manufacturing of bulk porous materials featuring pore sizes that span broadly from macroscopic dimensions down to the nanoscale. Here, ink formulations are designed and investigated to enable 3D printing of hierarchical materials displaying porosity at the nano-, micro- and macroscales. Pores are generated upon removal of nanodroplets and microscale templates present in the initial ink. Using particles to stabilize the droplet templates is key to obtain Pickering nanoemulsions that can be 3D printed through direct ink writing. The combination of such self-assembled templates with the spatial control offered by the printing process allows for the digital manufacturing of hierarchical materials exhibiting thus far inaccessible multiscale porosity and complex geometries.
AUTHOR Rupp, Harald and Döhler, Diana and Hilgeroth, Philipp and Mahmood, Nasir and Beiner, Mario and Binder, Wolfgang H.
Title 3D Printing of Supramolecular Polymers: Impact of Nanoparticles and Phase Separation on Printability [Abstract]
Year 2019
Journal/Proceedings Macromolecular Rapid Communications
Reftype
DOI/URL DOI
Abstract
Abstract 3D printing of linear and three-arm star supramolecular polymers with attached hydrogen bonds and their nanocomposites is reported. The concept is based on hydrogen-bonded supramolecular polymers, known to form nano-sized micellar clusters. Printability is based on reversible thermal- and shear-induced dissociation of a supramolecular polymer network, which generates stable and self-supported structures after printing, as checked via melt-rheology and X-ray scattering. The linear and three-arm star poly(isobutylene)s PIB-B2 (Mn = 8500 g mol −1), PIB-B3 (Mn = 16 000 g mol −1), and linear poly(ethylene glycol)s PEG-B2 (Mn = 900 g mol−1, 8500 g mol −1) are prepared and then probed by melt-rheology to adjust the viscosity to address the proper printing window. The supramolecular PIB polymers show a rubber-like behavior and are able to form self-supported 3D printed objects at room temperature and below, reaching polymer strand diameters down to 200–300 µm. Nanocomposites of PIB-B2 with silica nanoparticles (12 nm, 5–15 wt%) are generated, in turn leading to an improvement of their shape persistence. A blend of the linear polymer PIB-B2 and the three-arm star polymer PIB-B3 (ratio ≈ 3/1 mol) reaches an even higher structural stability, able to build free-standing structures.
AUTHOR Augurio, Adriana and Cortelletti, Paolo and Tognato, Riccardo and Rios, Anne and Levato, Riccardo and Malda, Jos and Alini, Mauro and Eglin, David and Giancane, Gabriele and Speghini, Adolfo and Serra, Tiziano
Title A Multifunctional Nanocomposite Hydrogel for Endoscopic Tracking and Manipulation [Abstract]
Year 2019
Journal/Proceedings Advanced Intelligent Systems
Reftype
DOI/URL DOI
Abstract
In this work, the fabrication of multi-responsive and hierarchically organized nanomaterial by using core-shell SrF2 upconverting nanoparticles, doped with Yb3+, Tm3+, Nd3+ incorporated into gelatin methacryloyl matrix, is reported. Upon 800 nm excitation, deep monitoring of 3D printed constructs is demonstrated. Addition of magnetic self-assembly of iron oxide nanoparticles within the hydrogel provides anisotropic structuration from the nano- to the macro-scale and magnetic responsiveness permitting remote manipulation. The present study provides a new strategy for the fabrication of a novel highly organized multi-responsive material using additive manufacturing, which could have important implications in biomedicine. This article is protected by copyright. All rights reserved.
AUTHOR Cernencu, Alexandra I. and Lungu, Adriana and Stancu, Izabela-Cristina and Serafim, Andrada and Heggset, Ellinor and Syverud, Kristin and Iovu, Horia
Title Bioinspired 3D printable pectin-nanocellulose ink formulations [Abstract]
Year 2019
Journal/Proceedings Carbohydrate Polymers
Reftype
DOI/URL URL DOI
Abstract
The assessment of several ink formulations for 3D printing based on two natural macromolecular compounds is presented. In the current research we have exploited the fast crosslinking potential of pectin and the remarkable shear-thinning properties of carboxylated cellulose nanofibrils, which is known to induce a desired viscoelastic behavior. Prior to 3D printing, the viscoelastic properties of the polysaccharide inks were evaluated by rheological measurements and injectability tests. The reliance of the printing parameters on the ink composition was established through one-dimensional lines printing, the base units of 3D-structures. The performance of the 3D-printed structures after ionic cross-linking was evaluated in terms of mechanical properties and rehydration behavior. MicroCT was also used to evaluate the morphology of the 3D-printed objects regarding the effect of pectin/nanocellulose ratio on the geometrical features of scaffolds. The proportionality between the two polymers proved to be the determining factor for the firmness and strength of the printed objects.
AUTHOR Creusen, Guido and Roshanasan, Ardeshir and Garcia Lopez, Javier and Peneva, Kalina and Walther, Andreas
Title Bottom-up design of model network elastomers and hydrogels from precise star polymers [Abstract]
Year 2019
Journal/Proceedings Polymer Chemistry
Reftype
DOI/URL DOI
Abstract
We introduce a platform for the simultaneous design of model network hydrogels and bulk elastomers based on well-defined water-soluble star polymers with a low glass transition temperature (Tg). This platform is enabled via the development of a synthetic route to a new family of 4-arm star polymers based on water-soluble poly(triethylene glycol methyl ether acrylate) (p(mTEGA)){,} which after quantitative introduction of functional end-groups can serve as suitable building blocks for model network formation. We first describe in detail the synthesis of highly defined star polymers using light and Cu-wire mediated Cu-based reversible deactivation radical polymerization. The resulting polymers exhibit narrow dispersities and controlled arm length at very high molecular weights{,} and feature a desirable low Tg of −55 °C. Subsequently{,} we elucidate the rational design of the stiffness and elasticity in covalent model network elastomers and hydrogels formed by fast photo-crosslinking for different arm lengths{,} and construct thermally reversible model network hydrogels based on dynamic supramolecular bonds. In addition{,} we describe preliminary 3D-printing applications. This work provides a key alternative to commonly used star-poly(ethylene glycol) (PEG) for model hydrogel networks{,} and demonstrates access to new main and side chain chemistries{,} thus chain stiffnesses and entanglement molecular weight{,} and{,} critically{,} enables the simultaneous study of the mechanical behavior of bulk network elastomers and swollen hydrogels with the same network topology. In a wider perspective{,} this work also highlights the need for advancing precision polymer chemistry to allow for an understanding of architectural control for the rational design of functional mechanical network materials.
AUTHOR Cofiño, Carla and Perez-Amodio, Soledad and Semino, Carlos E. and Engel, Elisabeth and Mateos-Timoneda, Miguel A.
Title Development of a Self-Assembled Peptide/Methylcellulose-Based Bioink for 3D Bioprinting [Abstract]
Year 2019
Journal/Proceedings Macromolecular Materials and Engineering
Reftype
DOI/URL DOI
Abstract
Abstract The introduction of 3D bioprinting to fabricate living constructs with tailored architecture has provided a new paradigm for biofabrication, with the potential to overcome several drawbacks of conventional scaffold-based tissue regeneration strategies. Hydrogel-based materials are suitable candidates regarding cell biocompatibility but often display poor mechanical properties. Self-assembling peptides are a promising source of biomaterials to be used as 3D scaffolds based on their similarity to extracellular matrices (structurally and mechanically). In this study, an advanced bioink for biofabrication is presented based on the optimization of a RAD16-I-based biomaterial. The strategy followed to build 3D predefined structures by 3D printing is based on an enhancement of bioink viscosity by adding methylcellulose (MC) to a RAD16-I solution. The resultant constructs display high shape fidelity and stability and embedded human mesenchymal stem cells present high viability after 7 days of culture. Moreover, cells are also able to differentiate to the adipogenic lineage, suggesting the suitability of this novel biomaterial for soft tissue engineering applications.
AUTHOR Tondera, Christoph and Akbar, Teuku Fawzul and Thomas, Alvin Kuriakose and Lin, Weilin and Werner, Carsten and Busskamp, Volker and Zhang, Yixin and Minev, Ivan R.
Title Highly Conductive, Stretchable, and Cell-Adhesive Hydrogel by Nanoclay Doping [Abstract]
Year 2019
Journal/Proceedings Small
Reftype
DOI/URL DOI
Abstract
Abstract Electrically conductive materials that mimic physical and biological properties of tissues are urgently required for seamless brain–machine interfaces. Here, a multinetwork hydrogel combining electrical conductivity of 26 S m−1, stretchability of 800%, and tissue-like elastic modulus of 15 kPa with mimicry of the extracellular matrix is reported. Engineering this unique set of properties is enabled by a novel in-scaffold polymerization approach. Colloidal hydrogels of the nanoclay Laponite are employed as supports for the assembly of secondary polymer networks. Laponite dramatically increases the conductivity of in-scaffold polymerized poly(ethylene-3,4-diethoxy thiophene) in the absence of other dopants, while preserving excellent stretchability. The scaffold is coated with a layer containing adhesive peptide and polysaccharide dextran sulfate supporting the attachment, proliferation, and neuronal differentiation of human induced pluripotent stem cells directly on the surface of conductive hydrogels. Due to its compatibility with simple extrusion printing, this material promises to enable tissue-mimetic neurostimulating electrodes.
AUTHOR Apelgren, Peter and Karabulut, Erdem and Amoroso, Matteo and Mantas, Athanasios and Martínez Ávila, Héctor and Kölby, Lars and Kondo, Tetsuo and Toriz, Guillermo and Gatenholm, Paul
Title In Vivo Human Cartilage Formation in Three-Dimensional Bioprinted Constructs with a Novel Bacterial Nanocellulose Bioink [Abstract]
Year 2019
Journal/Proceedings ACS Biomaterials Science & Engineering
Reftype
DOI/URL DOI
Abstract
Bacterial nanocellulose (BNC) is a 3D network of nanofibrils exhibiting excellent biocompatibility. Here, we present the aqueous counter collision (ACC) method of BNC disassembly to create bioink with suitable properties for cartilage-specific 3D-bioprinting. BNC was disentangled by ACC, and fibril characteristics were analyzed. Bioink printing fidelity and shear-thinning properties were evaluated. Cell-laden bioprinted grid constructs (5 × 5 × 1 mm3) containing human nasal chondrocytes (10 M mL-1) were implanted in nude mice and explanted after 30 and 60 days. Both ACC and hydrolysis resulted in significantly reduced fiber lengths, with ACC resulting in longer fibrils and fewer negative charges relative to hydrolysis. Moreover, ACC-BNC bioink showed outstanding printability, postprinting mechanical stability, and structural integrity. In vivo, cell-laden structures were rapidly integrated, maintained structural integrity, and showed chondrocyte proliferation, with 32.8 ± 13.8 cells per mm2 observed after 30 days and 85.6 ± 30.0 cells per mm2 at day 60 (p = 0.002). Furthermore, a full-thickness skin graft was attached and integrated completely on top of the 3D-bioprinted construct. The novel ACC disentanglement technique makes BNC biomaterial highly suitable for 3D-bioprinting and clinical translation, suggesting cell-laden 3D-bioprinted ACC-BNC as a promising solution for cartilage repair. Bacterial nanocellulose (BNC) is a 3D network of nanofibrils exhibiting excellent biocompatibility. Here, we present the aqueous counter collision (ACC) method of BNC disassembly to create bioink with suitable properties for cartilage-specific 3D-bioprinting. BNC was disentangled by ACC, and fibril characteristics were analyzed. Bioink printing fidelity and shear-thinning properties were evaluated. Cell-laden bioprinted grid constructs (5 × 5 × 1 mm3) containing human nasal chondrocytes (10 M mL-1) were implanted in nude mice and explanted after 30 and 60 days. Both ACC and hydrolysis resulted in significantly reduced fiber lengths, with ACC resulting in longer fibrils and fewer negative charges relative to hydrolysis. Moreover, ACC-BNC bioink showed outstanding printability, postprinting mechanical stability, and structural integrity. In vivo, cell-laden structures were rapidly integrated, maintained structural integrity, and showed chondrocyte proliferation, with 32.8 ± 13.8 cells per mm2 observed after 30 days and 85.6 ± 30.0 cells per mm2 at day 60 (p = 0.002). Furthermore, a full-thickness skin graft was attached and integrated completely on top of the 3D-bioprinted construct. The novel ACC disentanglement technique makes BNC biomaterial highly suitable for 3D-bioprinting and clinical translation, suggesting cell-laden 3D-bioprinted ACC-BNC as a promising solution for cartilage repair.
AUTHOR Zhuang, Pei and Ng, Wei Long and An, Jia and Chua, Chee Kai and Tan, Lay Poh
Title Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications [Abstract]
Year 2019
Journal/Proceedings PLOS ONE
Reftype
DOI/URL DOI
Abstract
One of the major challenges in the field of soft tissue engineering using bioprinting is fabricating complex tissue constructs with desired structure integrity and mechanical property. To accomplish such requirements, most of the reported works incorporated reinforcement materials such as poly(ϵ-caprolactone) (PCL) polymer within the 3D bioprinted constructs. Although this approach has made some progress in constructing soft tissue-engineered scaffolds, the mechanical compliance mismatch and long degradation period are not ideal for soft tissue engineering. Herein, we present a facile bioprinting strategy that combines the rapid extrusion-based bioprinting technique with an in-built ultraviolet (UV) curing system to facilitate the layer-by-layer UV curing of bioprinted photo-curable GelMA-based hydrogels to achieve soft yet stable cell-laden constructs with high aspect ratio for soft tissue engineering. GelMA is supplemented with a viscosity enhancer (gellan gum) to improve the bio-ink printability and shape fidelity while maintaining the biocompatibility before crosslinking via a layer-by-layer UV curing process. This approach could eventually fabricate soft tissue constructs with high aspect ratio (length to diameter) of ≥ 5. The effects of UV source on printing resolution and cell viability were also studied. As a proof-of-concept, small building units (3D lattice and tubular constructs) with high aspect ratio are fabricated. Furthermore, we have also demonstrated the ability to perform multi-material printing of tissue constructs with high aspect ratio along both the longitudinal and transverse directions for potential applications in tissue engineering of soft tissues. This layer-by-layer ultraviolet assisted extrusion-based (UAE) Bioprinting may provide a novel strategy to develop soft tissue constructs with desirable structure integrity.
AUTHOR Markstedt, Kajsa and Håkansson, Karl and Toriz, Guillermo and Gatenholm, Paul
Title Materials from trees assembled by 3D printing – Wood tissue beyond nature limits [Abstract]
Year 2019
Journal/Proceedings Applied Materials Today
Reftype
DOI/URL URL DOI
Abstract
Materials from trees have the potential to replace fossil based and other non-sustainable materials in everyday products, thus transforming the society back to a bioeconomy. This paper presents a 3D printing platform which mimics wood biogenesis for the assembly of wood biopolymers into wood-like hierarchical composites. The genome was substituted with G-code, the programming language which controls how the 3D printer assembles material. The rosette was replaced by the printer head for extrusion of cellulose. Instead of microtubules guiding the alignment of cellulose, the printing direction was guided by an x/y stage, thus mimicking the microfibril angle. The printed structures were locked by an enzymatic crosslinking reaction similar to what occurs in the cell wall upon lignification. Hierarchical structures characteristic for wood were designed and printed with control of density, swelling and directional strength. Accelerating the development of the 3D printing technology helps realize the circular bioeconomy where garments, packaging, furniture and entire houses are manufactured by 3D printing wood.
AUTHOR Zhou, Miaomiao and Lee, Bae Hoon and Tan, Yu Jun and Tan, Lay Poh
Title Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing [Abstract]
Year 2019
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Gelatin methacryloyl (GelMA) is a versatile biomaterial that has been shown to possess many advantages such as good biocompatibility, support for cell growth, tunable mechanical properties, photocurable capability, and low material cost. Due to these superior properties, much research has been carried out to develop GelMA as a bioink for bioprinting. However, there are still many challenges, and one major challenge is the control of its rheological properties to yield good printability. Herein, this study presents a strategy to control the rheology of GelMA through partial enzymatic crosslinking. Unlike other enzymatic crosslinking strategies where the rheological properties could not be controlled once reaction takes place, we could, to a large extent, keep the rheological properties stable by introducing a deactivation step after obtaining the optimized rheological properties. Ca2+-independent microbial transglutaminase (MTGase) was introduced to partially catalyze covalent bond formation between chains of GelMA. The enzyme was then deactivated to prevent further uncontrolled crosslinking that would render the hydrogel not printable. After printing, a secondary post-printing crosslinking step (photo crosslinking) was then introduced to ensure long-term stability of the printed structure for subsequent cell studies. Biocompatibility studies carried out using cells encapsulated in the printed structure showed excellent cell viability for at least 7 d. This strategy for better control of rheological properties of GelMA could more significantly enhance the usability of this material as bioink for bioprinting of cell-laden structures for soft tissue engineering.
AUTHOR Pan, Houwen Matthew and Chen, Shengyang and Jang, Tae-Sik and Han, Win Tun and Jung, Hyun-do and Li, Yaning and Song, Juha
Title Plant seed-inspired cell protection, dormancy, and growth for large-scale biofabrication [Abstract]
Year 2019
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Biofabrication technologies have endowed us with the capability to fabricate complex biological constructs. However, cytotoxic biofabrication conditions have been a major challenge for their clinical application, leading to a trade-off between cell viability and scalability of biofabricated constructs. Taking inspiration from nature, we proposed a cell protection strategy which mimicks the protected and dormant state of plant seeds in adverse external conditions and their germination in response to appropriate environmental cues. Applying this bioinspired strategy to biofabrication, we successfully preserved cell viability and enhanced the seeding of cell-laden biofabricated constructs via a cytoprotective pyrogallol (PG)-alginate encapsulation system. Our cytoprotective encapsulation technology utilizes PG-triggered sporulation and germination processes to preserve cells, is mechanically robust, chemically resistant, and highly customizable to adequately match cell protectability with cytotoxicity of biofabrication conditions. More importantly, the facile and tunable decapsulation of our PG-alginate system allows for effective germination of dormant cells, under typical culture conditions. With this approach, we have successfully achieved a biofabrication process which is reproducible, scalable, and provided a practical solution for off-the-shelf availability, shipping and temporary storage of fabricated bio-constructs.
AUTHOR Rotbaum, Y. and Puiu, C. and Rittel, D. and Domingos, M.
Title Quasi-static and dynamic in vitro mechanical response of 3D printed scaffolds with tailored pore size and architectures [Abstract]
Year 2019
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Scaffold-based Tissue Engineering represents the most promising approach for the regeneration of load bearing skeletal tissues, in particular bone and cartilage. Scaffolds play major role in this process by providing a physical template for cells to adhere and proliferate whilst ensuring an adequate biomechanical support at the defect site. Whereas the quasi static mechanical properties of porous polymeric scaffolds are well documented, the response of these constructs under high strain compressive rates remain poorly understood. Therefore, this study investigates, for the first time, the influence of pore size and geometry on the mechanical behaviour of Polycaprolactone (PCL) scaffolds under quasi static and dynamic conditions. 3D printed scaffolds with varied pore sizes and geometries were obtained using different filament distances (FD) and lay-down patterns, respectively. In particular, by fixing the lay-down pattern at 0/90° and varying the FD between 480 and 980 μm it was possible to generate scaffolds with square pores with dimensions in the range of 150–650 μm and porosities of 59–79%. On the other hand, quadrangular, hexagonal, triangular and complex pore geometries with constant porosity (approx. 70%) were obtained at a fixed FD of 680 μm and imposing four different lay-down patterns of 0/90, 0/60/120, 0/45/90/135 and 0/30/60/90/120/150°, respectively. The mechanical response of printed scaffolds was assessed under two different compression loading regimes spanning five distinct strain rates, from 10−2 to 2000 s−1, using two different apparatus: a conventional screw-driven testing machine (Instron 4483) and a Split Hopkinson pressure bar (SHPB) equipped with a set of A201 Flexi-force™ (FF) force sensors and a pulse shaper. Our results show that the mechanical properties of PCL scaffolds are not strain rate sensitive between 1300 and 2000 s−1 and these strongly depend on the pore size (porosity) rather than pore geometry. Those findings are extremely relevant for the engineering of bone tissue scaffolds with enhanced mechanical stability by providing new data describing the mechanical response of these constructs at high strain rates as well as the at the transition between quasi static and dynamic regimes.
AUTHOR Gloria, Antonio and Frydman, B. and Lamas, Miguel L. and Serra, Armenio C. and Martorelli, Massimo and Coelho, Jorge F. J. and Fonseca, Ana C. and Domingos, M.
Title The influence of poly(ester amide) on the structural and functional features of 3D additive manufactured poly(ε-caprolactone) scaffolds [Abstract]
Year 2019
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
The current research reports for the first time the use of blends of poly(ε-caprolactone) (PCL) and poly(ester amide) (PEA) for the fabrication of 3D additive manufactured scaffolds. Tailor made PEA was synthesized to afford fully miscible blends of PCL and PEA using different percentages (5, 10, 15 and 20% w/w). Stability, characteristic temperatures and material's compatibility were studied through thermal analyses (i.e., TGA, DSC). Even though DMTA and static compression tests demonstrated the possibility to improve the storage modulus, Young's modulus and maximum stress by increasing the amount of PEA, a decrease of hardness was found beyond a threshold concentration of PEA as the lowest values were achieved for PCL/PEA (20% w/w) scaffolds (from 0.39 ± 0.03 GPa to 0.21 ± 0.02 GPa in the analysed load range). The scaffolds presented a controlled morphology and a fully interconnected network of internal channels. The water contact angle measurements showed a clear increase of hydrophilicity resulting from the addition of PEA. This result was further corroborated with the improved adhesion and proliferation of human mesenchymal stem cells (hMSCs). The presence of PEA also influenced the cell morphology. Better cell spreading and a much higher and homogenous number of cells were observed for PCL/PEA scaffolds when compared to PCL ones.
AUTHOR Gretzinger, Sarah and Beckert, Nicole and Gleadall, Andrew and Lee-Thedieck, Cornelia and Hubbuch, Jürgen
Title 3D bioprinting – Flow cytometry as analytical strategy for 3D cell structures [Abstract]
Year 2018
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
The importance of 3D printing technologies increased significantly over the recent years. They are considered to have a huge impact in regenerative medicine and tissue engineering, since 3D bioprinting enables the production of cell-laden 3D scaffolds. Transition from academic research to pharmaceutical industry or clinical applications, however, is highly dependent on developing a robust and well-known process, while maintaining critical cell characteristics. Hence, a directed and systematic approach to 3D bioprinting process development is required, which also allows for the monitoring of these cell characteristics. This work presents the development of a flow cytometry-based analytical strategy as a tool for 3D bioprinting research. The development was based on a model process using a commercially available alginate-based bioink, the β-cell line INS-1E, and direct dispensing as 3D bioprinting method. We demonstrated that this set-up enabled viability and proliferation analysis. Additionally, use of an automated sampler facilitated high-throughput screenings. Finally, we showed that each process step, e.g. suspension of cells in bioink or 3D printing, cross-linking of the alginate scaffold after printing, has a crucial impact on INS-1E viability. This reflects the importance of process optimization in 3D bioprinting and the usefulness of the flow cytometry-based analytical strategy described here. The presented strategy has a great potential as a cell characterisation tool for 3D bioprinting and may contribute to a more directed process development.
AUTHOR Petta, D. and Armiento, A. R. and Grijpma, D. and Alini, M. and Eglin, D. and D'Este, M.
Title 3D bioprinting of a hyaluronan bioink through enzymatic-and visible light-crosslinking [Abstract]
Year 2018
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Extrusion-based three-dimensional bioprinting relies on bioinks engineered to combine viscoelastic properties for extrusion and shape retention, and biological properties for cytocompatibility and tissue regeneration. To satisfy these conflicting requirements, bioinks often utilize either complex mixtures or complex modifications of biopolymers. In this paper we introduce and characterize a bioink exploiting a dual crosslinking mechanism, where an enzymatic reaction forms a soft gel suitable for cell encapsulation and extrusion, while a visible light photo-crosslinking allows shape retention of the printed construct. The influence of cell density and cell type on the rheological and printability properties was assessed correlating the printing outcomes with the damping factor, a rheological characteristic independent of the printing system. Stem cells, chondrocytes and fibroblasts were encapsulated, and their viability was assessed up to 14 days with live/dead, alamar blue and trypan blue assays. Additionally, the impact of the printing parameters on cell viability was investigated. Owing to its straightforward preparation, low modification, presence of two independent crosslinking mechanisms for tuning shear-thinning independently of the final shape fixation, the use of visible green instead of UV light, the possibility of encapsulating and sustaining the viability of different cell types, the hyaluronan bioink here presented is a valid biofabrication tool for producing 3D printed tissue-engineered constructs.
AUTHOR Aied, Ahmed and Song, Wenhui and Wang, Wenxin and Baki, Abdulrahman and Sigen, A.
Title 3D Bioprinting of stimuli-responsive polymers synthesised from DE-ATRP into soft tissue replicas [Abstract]
Year 2018
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Synthetic polymers possess more reproducible physical and chemical properties than their naturally occurring counterparts. They have also emerged as an important alternative for fabricating tissue substitutes because they can be molecularly tailored to have vast array of molecular weights, block structures, active functional groups, and mechanical properties. To this date however, there has been very few successful and fully functional synthetic tissue and organ substitutes and with the rapidly spreading 3D printing technology beginning to reshape the tissue engineering and regenerative field, the need for an effective, safe, and bio printable biomaterial is becoming more and more urgent. Here, we have developed a synthetic polymer from controlled living radical polymerisation that can be printed into well-defined structures. The polymer showed low cytotoxicity before and after printing. Additionally, the incorporation of gelatine-methacrylate coated PLGA microparticles within the hydrogel provided cell adhesion surfaces for cell proliferation. The results point to possible application of the microparticle seeded, synthetic hydrogel as a direct printable tissue or organ substitute.
AUTHOR Li, Huijun and Tan, Yu Jun and Li, Lin
Title A strategy for strong interface bonding by 3D bioprinting of oppositely charged κ-carrageenan and gelatin hydrogels [Abstract]
Year 2018
Journal/Proceedings Carbohydrate Polymers
Reftype
DOI/URL URL
Abstract
A promising approach for improving the interfacial bonding of a three-dimensionally (3D) printed multilayered structure has been investigated by taking advantage of the electrostatic interactions between two hydrogels with oppositely charges. Here, two hydrogels namely gelatin and κ-carrageenan, which are the cationic and anionic hydrogels respectively, are used. It is found that the interfacial bonding strength between these two oppositely charged hydrogels is significantly higher than that of a bilayered gelatin or a bilayered κ-carrageenan. The bioprinted multilayered κ-carrageenan-gelatin hydrogel construct demonstrates a very good biocompatibility and a good structure integrity at 37 °C. Our strategy also overcomes the limitation of using gelatin for bio-fabrication at 37 °C, without further post crosslinking.
AUTHOR Ng, Wei Long and Goh, Min Hao and Yeong, Wai Yee and Naing, May Win
Title Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs [Abstract]
Year 2018
Journal/Proceedings Biomaterials Science
Reftype
DOI/URL DOI
Abstract
Native tissues and/or organs possess complex hierarchical porous structures that confer highly-specific cellular functions. Despite advances in fabrication processes{,} it is still very challenging to emulate the hierarchical porous collagen architecture found in most native tissues. Hence{,} the ability to recreate such hierarchical porous structures would result in biomimetic tissue-engineered constructs. Here{,} a single-step drop-on-demand (DOD) bioprinting strategy is proposed to fabricate hierarchical porous collagen-based hydrogels. Printable macromolecule-based bio-inks (polyvinylpyrrolidone{,} PVP) have been developed and printed in a DOD manner to manipulate the porosity within the multi-layered collagen-based hydrogels by altering the collagen fibrillogenesis process. The experimental results have indicated that hierarchical porous collagen structures could be achieved by controlling the number of macromolecule-based bio-ink droplets printed on each printed collagen layer. This facile single-step bioprinting process could be useful for the structural design of collagen-based hydrogels for various tissue engineering applications.
AUTHOR García-Lizarribar, Andrea and Fernández-Garibay, Xiomara and Velasco-Mallorquí, Ferran and G. Castaño, Albert and Samitier, Josep and Ramón-Azcón, Javier
Title Composite Biomaterials as Long-Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue
Year 2018
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI
AUTHOR Schmieg, Barbara and Schimek, Adrian and Franzreb, Matthias
Title Development and performance of a 3D‐printable Polyethylenglycol‐Diacrylate hydrogel suitable for enzyme entrapment and long‐term biocatalytic applications [Abstract]
Year 2018
Journal/Proceedings Engineering in Life Sciences
Reftype
DOI/URL DOI
Abstract
Physical entrapment of enzymes within a porous matrix is a fast and gentle process to immobilize biocatalysts to enable their recycling and long‐term use. This study introduces the development of a biocompatible 3D‐printing material suitable for enzyme entrapment, while having good rheological and UV‐hardening properties. Three different viscosity‐enhancing additives have been tested in combination with a polyethylenglycol‐diacrylate‐based hydrogel system. The addition of polyxanthan or hectorite clay particles results in hydrogels that degrade over hours or days, releasing entrapped compounds. In contrast, the addition of nanometer‐sized silicate particles ensures processability while preventing disintegration of the hydrogel. Lattice structures with a total height of 6 mm consisting of 40 layers were 3D‐printed with all materials and characterized by image analysis. Rheological measurements identified a shear stress window of 200 < τ < 500 Pa at shear rates of 25 s−1 and 25°C for well‐defined geometries with an extrusion‐based printhead. Enzymes immobilized in these long‐term stable hydrogel structures retained an effective activity of approximately 10% compared to the free enzyme in solution. It could be shown that the reduction of effective activity isn't caused by a significant reduction of the intrinsic enzyme activity but by mass transfer limitations within the printed hydrogel structures. This article is protected by copyright. All rights reserved
AUTHOR Bastola, A. K. and Paudel, M. and Li, L.
Title Development of hybrid magnetorheological elastomers by 3D printing [Abstract]
Year 2018
Journal/Proceedings Polymer
Reftype
DOI/URL URL DOI
Abstract
Intelligent or smart materials have one or more properties that can be significantly changed in a controlled fashion by external stimuli, such as temperature, pH, electric or magnetic fields, etc. Magnetorheological (MR) materials are a class of smart materials whose properties can be varied by applying an external magnetic field. In this work, the possibility of employing a suitable 3D printing technology for the development of one of the smart MR materials, the magnetorheological elastomer (MRE) has been explored. In order to achieve such 3D printing, a multi-material printing is implemented, where a controlled volume of MR fluid is encapsulated within an elastomer matrix in the layer-by-layer fashion. The choice of printing materials determines the final structure of the 3D printed hybrid MR elastomer. Printing with a vulcanizing MR suspension produces the solid MR structure inside the elastomer matrix while printing with a non-vulcanizing MR suspension (MR fluid) results in the structures that the MR fluid is encapsulated inside the elastomer matrix. The 3D printability of different materials has been studied by measuring their rheological properties and we found that the highly shear thinning and thixotropic properties are important for 3D printability. The quality of the printed filaments strongly depends on the key printing parameters such as extrusion pressure, initial height and feed rate. The experimental results from the forced vibration testing show that the 3D printed MR elastomers could change their elastic and damping properties when exposed to the external magnetic field. Furthermore, the 3D printed MR elastomer also exhibits the anisotropic behavior when the direction of the magnetic field is changed with respect to the orientation of the printed filaments. This study has demonstrated that the 3D printing is viable for fabrication of hybrid MR elastomers with controlled structures of magnetic particles or MR fluids.
AUTHOR Lee, Mihyun and Bae, Kraun and Guillon, Pierre and Chang, Jin and Arlov, Øystein and Zenobi-Wong, Marcy
Title Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity [Abstract]
Year 2018
Journal/Proceedings ACS Applied Materials and Interfaces
Reftype
DOI/URL DOI
Abstract
Three-dimensional (3D) bioprinting allows the fabrication of 3D structures containing living cells whose 3D shape and architecture are matched to a patient. The feature is desirable to achieve personalized treatment of trauma or diseases. However, realization of this promising technique in the clinic is greatly hindered by inferior mechanical properties of most biocompatible bioink materials. Here, we report a novel strategy to achieve printing large constructs with high printing quality and fidelity using an extrusion-based printer. We incorporate cationic nanoparticles in an anionic polymer mixture, which significantly improves mechanical properties, printability, and printing fidelity of the polymeric bioink due to electrostatic interactions between the nanoparticles and polymers. Addition of cationic-modified silica nanoparticles to an anionic polymer mixture composed of alginate and gellan gum results in significantly increased zero-shear viscosity (1062%) as well as storage modulus (486%). As a result, it is possible to print a large (centimeter-scale) porous structure with high printing quality, whereas the use of the polymeric ink without the nanoparticles leads to collapse of the printed structure during printing. We demonstrate such a mechanical enhancement is achieved by adding nanoparticles within a certain size range (90%) and extracellular matrix secretion are observed for cells printed with nanocomposite inks. The design principle demonstrated can be applied for various anionic polymer-based systems, which could lead to achievement of 3D bioprinting-based personalized treatment.
AUTHOR Kumari, Sushma and Bargel, Hendrik and Anby, Mette U. and Lafargue, David and Scheibel, Thomas
Title Recombinant Spider Silk Hydrogels for Sustained Release of Biologicals [Abstract]
Year 2018
Journal/Proceedings ACS Biomaterials Science and Engineering
Reftype
DOI/URL DOI
Abstract
Therapeutic biologics (i.e., proteins) have been widely recognized for the treatment, prevention, and cure of a variety of human diseases and syndromes. However, design of novel protein-delivery systems to achieve a nontoxic, constant, and efficient delivery with minimal doses of therapeutic biologics is still challenging. Here, recombinant spider silk-based materials are employed as a delivery system for the administration of therapeutic biologicals. Hydrogels made of the recombinant spider silk protein eADF4(C16) were used to encapsulate the model biologicals BSA, HRP, and LYS by direct loading or through diffusion, and their release was studied. Release of model biologicals from eADF4(C16) hydrogels is in part dependent on the electrostatic interaction between the biological and the recombinant spider silk protein variant used. In addition, tailoring the pore sizes of eADF4(C16) hydrogels strongly influenced the release kinetics. In a second approach, a particles-in-hydrogel system was used, showing a prolonged release in comparison with that of plain hydrogels (from days to week). The particle-enforced spider silk hydrogels are injectable and can be 3D printed. These initial studies indicate the potential of recombinant spider silk proteins to design novel injectable hydrogels that are suitable for delivering therapeutic biologics.
AUTHOR Kelder, Cindy and Bakker, Astrid Diana and Klein-Nulend, Jenneke and Wismeijer, Daniël
Title The 3D Printing of Calcium Phosphate with K-Carrageenan under Conditions Permitting the Incorporation of Biological Components—A Method [Abstract]
Year 2018
Journal/Proceedings Journal of Functional Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Critical-size bone defects are a common clinical problem. The golden standard to treat these defects is autologous bone grafting. Besides the limitations of availability and co-morbidity, autografts have to be manually adapted to fit in the defect, which might result in a sub-optimal fit and impaired healing. Scaffolds with precise dimensions can be created using 3-dimensional (3D) printing, enabling the production of patient-specific, ‘tailor-made’ bone substitutes with an exact fit. Calcium phosphate (CaP) is a popular material for bone tissue engineering due to its biocompatibility, osteoconductivity, and biodegradable properties. To enhance bone formation, a bioactive 3D-printed CaP scaffold can be created by combining the printed CaP scaffold with biological components such as growth factors and cytokines, e.g., vascular endothelial growth factor (VEGF), bone morphogenetic protein-2 (BMP-2), and interleukin-6 (IL-6). However, the 3D-printing of CaP with a biological component is challenging since production techniques often use high temperatures or aggressive chemicals, which hinders/inactivates the bioactivity of the incorporated biological components. Therefore, in our laboratory, we routinely perform extrusion-based 3D-printing with a biological binder at room temperature to create porous scaffolds for bone healing. In this method paper, we describe in detail a 3D-printing procedure for CaP paste with K-carrageenan as a biological binder.
AUTHOR Li, Huijun and Tan, Yu Jun and Liu, Sijun and Li, Lin
Title Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding [Abstract]
Year 2018
Journal/Proceedings ACS Applied Materials and Interfaces
Reftype
DOI/URL DOI
Abstract
A novel strategy to improve the adhesion between printed layers of three-dimensional (3D) printed constructs is developed by exploiting the interaction between two oppositely charged hydrogels. Three anionic hydrogels [alginate, xanthan, and κ-carrageenan (Kca)] and three cationic hydrogels [chitosan, gelatin, and gelatin methacrylate (GelMA)] are chosen to find the optimal combination of two oppositely charged hydrogels for the best 3D printability with strong interface bonding. Rheological properties and printability of the hydrogels, as well as structural integrity of printed constructs in cell culture medium, are studied as functions of polymer concentration and the combination of hydrogels. Kca2 (2 wt % Kca hydrogel) and GelMA10 (10 wt % GelMA hydrogel) are found to be the best combination of oppositely charged hydrogels for 3D printing. The interfacial bonding between a Kca layer and a GelMA layer is proven to be significantly higher than that of the bilayered Kca or bilayered GelMA because of the formation of polyelectrolyte complexes between the oppositely charged hydrogels. A good cell viability of >96% is obtained for the 3D-bioprinted Kca–GelMA construct. This novel strategy has a great potential for 3D bioprinting of layered constructs with a strong interface bonding.
AUTHOR Allig, Sebastian and Mayer, Margot and Thielemann, Christiane
Title Workflow for bioprinting of cell-laden bioink
Year 2018
Journal/Proceedings Lekar a Technika
Reftype
DOI/URL URL
AUTHOR Suntornnond, R. and Tan, E. Y. S. and An, J. and Chua, C. K.
Title A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures [Abstract]
Year 2017
Journal/Proceedings Scientific Reports
Reftype
DOI/URL URL DOI
Abstract
Vascularization is one major obstacle in bioprinting and tissue engineering. In order to create thick tissues or organs that can function like original body parts, the presence of a perfusable vascular system is essential. However, it is challenging to bioprint a hydrogel-based three-dimensional vasculature-like structure in a single step. In this paper, we report a new hydrogel-based composite that offers impressive printability, shape integrity, and biocompatibility for 3D bioprinting of a perfusable complex vasculature-like structure. The hydrogel composite can be used on a non-liquid platform and is printable at human body temperature. Moreover, the hydrogel composite supports both cell proliferation and cell differentiation. Our results represent a potentially new vascularization strategy for 3D bioprinting and tissue engineering.
AUTHOR Bastola, A. K. and Hoang, V. T. and Li, L.
Title A novel hybrid magnetorheological elastomer developed by 3D printing [Abstract]
Year 2017
Journal/Proceedings Materials and Design
Reftype
DOI/URL URL
Abstract
Abstract In this study, a novel magnetorheological (MR) hybrid elastomer has been developed using a 3D printing method. In such an MR hybrid elastomer, a controlled volume of an MR fluid was encapsulated layer by layer into an elastomer matrix by means of a 3D printer and each layer was a composite structure consisting of an MR fluid and an elastomer. Similar to current MR fluids and MR elastomers, mechanical properties of 3D printed MR hybrid elastomers could be controlled via an externally applied magnetic field. The experimental results showed that the relative change in the damping capability of the new MR elastomer was more pronounced than the change in its stiffness when exposed to an external magnetic field. The study demonstrated that the 3D printing technique is feasible for fabrication of MR elastomers with controlled microstructures including magnetic particles or MR fluids. The 3D printed MR hybrid elastomer is also a potential material as a tunable spring-damper element.
AUTHOR Lorson, Thomas and Jaksch, Sebastian and Lübtow, Michael M. and Jüngst, Tomasz and Groll, Jürgen and Lühmann, Tessa and Luxenhofer, Robert
Title A Thermogelling Supramolecular Hydrogel with Sponge-Like Morphology as a Cytocompatible Bioink [Abstract]
Year 2017
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
Abstract
Biocompatible polymers that form thermoreversible supramolecular hydrogels have gained great interest in biomaterials research and tissue engineering. When favorable rheological properties are achieved at the same time, they are particularly promising candidates as material that allow for the printing of cells, so-called bioinks. We synthesized a novel thermogelling block copolymer and investigated the rheological properties of its aqueous solution by viscosimetry and rheology. The polymers undergo thermogelation between room temperature and body temperature, form transparent hydrogels of surprisingly high strength (G′ > 1000 Pa) and show rapid and complete shear recovery after stress. Small angle neutron scattering suggests an unusual bicontinuous sponge-like gel network. Excellent cytocompatibility was demonstrated with NIH 3T3 fibroblasts, which were incorporated and bioplotted into predefined 3D hydrogel structures without significant loss of viability. The developed materials fulfill all criteria for future use as bioink for biofabrication.
AUTHOR Ribeiro, Alexandre and Blokzijl, Maarten Michiel and Levato, Riccardo and Visser, Claas Willem and Castilho, Miguel and Hennink, Wim E. and Vermonden, Tina and Malda, Jos
Title Assessing bioink shape fidelity to aid material development in 3D bioprinting [Abstract]
Year 2017
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Abstract During extrusion-based bioprinting, the deposited bioink filaments are subjected to deformations, such as collapse of overhanging filaments, which compromises the ability to stack several layers of bioink, and fusion between adjacent filaments, which compromises the resolution and maintenance of a desired pore structure. When developing new bioinks, approaches to assess their shape fidelity after printing would be beneficial to evaluate the degree of deformation of the deposited filament and to estimate how similar the final printed construct would be to the design. However, shape fidelity has been prevalently assessed qualitatively through visual inspection after printing, hampering the direct comparison of the printability of different bioinks. In this technical note, we propose a quantitative evaluation for shape fidelity of bioinks based on testing the filament collapse on overhanging structures and the filament fusion of parallel printed strands. Both tests were applied on a hydrogel platform based on poloxamer 407 and poly(ethylene glycol) (PEG) blends, providing a library of hydrogels with different yield stresses. The presented approach is an easy way to assess bioink shape fidelity, applicable to any filament-based bioprinting system and able to quantitatively evaluate this aspect of printability , based on the degree of deformation of the printed filament. In addition, we built a simple theoretical model that relates filament collapse with bioink yield stress. The results of both shape fidelity tests underline the role of yield stress as one of the parameters influencing the printability of a bioink. The presented quantitative evaluation will allow for reproducible comparisons between different bioink platforms.
AUTHOR Siqueira, Gilberto and Kokkinis, Dimitri and Libanori, Rafael and Hausmann, Michael K. and Gladman, Amelia Sydney and Neels, Antonia and Tingaut, Philippe and Zimmermann, Tanja and Lewis, Jennifer A. and Studart, André R.
Title Cellulose Nanocrystal Inks for 3D Printing of Textured Cellular Architectures [Abstract]
Year 2017
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
3D printing of renewable building blocks like cellulose nanocrystals offers an attractive pathway for fabricating sustainable structures. Here, viscoelastic inks composed of anisotropic cellulose nanocrystals (CNC) that enable patterning of 3D objects by direct ink writing are designed and formulated. These concentrated inks are composed of CNC particles suspended in either water or a photopolymerizable monomer solution. The shear-induced alignment of these anisotropic building blocks during printing is quantified by atomic force microscopy, polarized light microscopy, and 2D wide-angle X-ray scattering measurements. Akin to the microreinforcing effect in plant cell walls, the alignment of CNC particles during direct writing yields textured composites with enhanced stiffness along the printing direction. The observations serve as an important step forward toward the development of sustainable materials for 3D printing of cellular architectures with tailored mechanical properties.
AUTHOR Thamm, Christopher and DeSimone, Elise and Scheibel, Thomas
Title Characterization of Hydrogels Made of a Novel Spider Silk Protein eMaSp1s and Evaluation for 3D Printing [Abstract]
Year 2017
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI
Abstract
Recombinantly produced spider silk proteins have high potential for bioengineering and various biomedical applications because of their biocompatibility, biodegradability, and low immunogenicity. Here, the recently described small spider silk protein eMaSp1s is assembled into hydrogels, which can be 3D printed into scaffolds. Further, blending with a recombinantly produced MaSp2 derivative eADF4(C16) alters the mechanical properties of the resulting hydrogels. Different spider silk hydrogels also show a distinct recovery after a high shear stress deformation, exhibiting the tunability of their features for selected applications.
AUTHOR Paxton, Naomi Claire and Smolan, Willi and Böck, Thomas and Melchels, Ferry P. W. and Groll, Juergen and Juengst, Tomasz
Title Proposal to Assess Printability of Bioinks for Extrusion-Based Bioprinting and Evaluation of Rheological Properties Governing Bioprintability [Abstract]
Year 2017
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Abstract The development and formulation of printable inks for extrusion-based 3D bioprinting has been a major challenge in the field of biofabrication. Inks, often polymer solutions with the addition of crosslinking to form hydrogels, must not only display adequate mechanical properties for the chosen application, but also show high biocompatibility as well as printability. Here we describe a reproducible two-step method for the assessment of the printability of inks for bioprinting, focussing firstly on screening ink formulations to assess fibre formation and the ability to form 3D constructs before presenting a method for the rheological evaluation of inks to characterise the yield point, shear thinning and recovery behaviour. In conjunction, a mathematical model was formulated to provide a theoretical understanding of the pressure-driven, shear thinning extrusion of inks through needles in a bioprinter. The assessment methods were trialled with a commercially-available crème, poloxamer 407, alginate-based inks and an alginate-gelatin composite material. Yield stress was investigated by applying a stress ramp to a number of inks, which demonstrated the necessity of high yield for printable materials. The shear thinning behaviour of the inks was then characterised by quantifying the degree of shear thinning and using the mathematical model to predict the window of printer operating parameters in which the materials could be printed. Furthermore, the model predicted high shear conditions and high residence times for cells at the walls of the needle and effects on cytocompatibility at different printing conditions. Finally, the ability of the materials to recover to their original viscosity after extrusion was examined using rotational recovery rheological measurements. Taken together, these assessment techniques revealed significant insights into the requirements for printable inks and shear conditions present during the extrusion process and allow the rapid and reproducible characterisation of a wide variety of inks for bioprinting.
AUTHOR DeSimone, Elise and Schacht, Kristin and Pellert, Alexandra and Scheibel, Thomas
Title Recombinant spider silk-based bioinks [Abstract]
Year 2017
Journal/Proceedings Biofabrication
Reftype
DOI/URL URL
Abstract
Bioinks, 3D cell culture systems which can be printed, are still in the early development stages. Currently, extensive research is going into designing printers to be more accommodating to bioinks, designing scaffolds with stiff materials as support structures for the often soft bioinks, and modifying the bioinks themselves. Recombinant spider silk proteins, a potential biomaterial component for bioinks, have high biocompatibility, can be processed into several morphologies and can be modified with cell adhesion motifs to enhance their bioactivity. In this work, thermally gelled hydrogels made from recombinant spider silk protein encapsulating mouse fibroblast cell line BALB/3T3 were prepared and characterized. The bioinks were evaluated for performance in vitro both before and after printing, and it was observed that unprinted bioinks provided a good platform for cell spreading and proliferation, while proliferation in printed scaffolds was prohibited. To improve the properties of the printed hydrogels, gelatin was given as an additive and thereby served indirectly as a plasticizer, improving the resolution of printed strands. Taken together, recombinant spider silk proteins and hydrogels made thereof show good potential as a bioink, warranting further development.
AUTHOR Reitmaier, Sandra and Kovtun, Anna and Schuelke, Julian and Kanter, Britta and Lemm, Madlin and Hoess, Andreas and Heinemann, Sascha and Nies, Berthold and Ignatius, Anita
Title Strontium(II) and mechanical loading additively augment bone formation in calcium phosphate scaffolds [Abstract]
Year 2017
Journal/Proceedings Journal of Orthopaedic Research
Reftype
DOI/URL DOI
Abstract
Calcium phosphate cements (CPCs) are widely used for bone-defect treatment. Current developments comprise the fabrication of porous scaffolds by three-dimensional plotting and doting using biologically active substances, such as strontium. Strontium is known to increase osteoblast activity and simultaneously to decrease osteoclast resorption. This study investigated the short- and long-term in vivo performances of strontium(II)-doted CPC (SrCPC) scaffolds compared to non-doted CPC scaffolds after implantation in unloaded or load-bearing trabecular bone defects in sheep. After 6 weeks, both CPC and SrCPC scaffolds exhibited good biocompatibility and osseointegration. Fluorochrome labeling revealed that both scaffolds were penetrated by newly formed bone already after 4 weeks. Neither strontium doting nor mechanical loading significantly influenced early bone formation. In contrast, after 6 months, bone formation was significantly enhanced in SrCPC compared to CPC scaffolds. Energy dispersive X-ray analysis demonstrated the release of strontium from the SrCPC into the bone. Strontium addition did not significantly influence material resorption or osteoclast formation. Mechanical loading significantly stimulated bone formation in both CPC and SrCPC scaffolds after 6 months without impairing scaffold integrity. The most bone was found in SrCPC scaffolds under load-bearing conditions. Concluding, these results demonstrate that strontium doting and mechanical loading additively stimulated bone formation in CPC scaffolds and that the scaffolds exhibited mechanical stability under moderate load, implying good clinical suitability. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res
AUTHOR Bertlein, Sarah and Brown, Gabriella and Lim, Khoon and Jungst, Tomasz and Boeck, Thomas and Blunk, Torsten and Tessmar, Joerg and J. Hooper, Gary and Woodfield, Tim and Groll, Jürgen
Title Thiol-Ene Clickable Gelatin: A Platform Bioink for Multiple 3D Biofabrication Technologies [Abstract]
Year 2017
Journal/Proceedings Advanced Materials
Reftype
DOI/URL DOI
Abstract
Bioprinting can be defined as the art of combining materials and cells to fabricate designed, hierarchical 3D hybrid constructs. Suitable materials, so called bioinks, have to comply with challenging rheological processing demands and rapidly form a stable hydrogel postprinting in a cytocompatible manner. Gelatin is often adopted for this purpose, usually modified with (meth-)acryloyl functionalities for postfabrication curing by free radical photopolymerization, resulting in a hydrogel that is cross-linked via nondegradable polymer chains of uncontrolled length. The application of allylated gelatin (GelAGE) as a thiol-ene clickable bioink for distinct biofabrication applications is reported. Curing of this system occurs via dimerization and yields a network with flexible properties that offer a wider biofabrication window than (meth-)acryloyl chemistry, and without additional nondegradable components. An in-depth analysis of GelAGE synthesis is conducted, and standard UV-initiation is further compared with a recently described visible-light-initiator system for GelAGE hydrogel formation. It is demonstrated that GelAGE may serve as a platform bioink for several biofabrication technologies by fabricating constructs with high shape fidelity via lithography-based (digital light processing) 3D printing and extrusion-based 3D bioprinting, the latter supporting long-term viability postprinting of encapsulated chondrocytes.
AUTHOR Freeman, Fiona E. and Kelly, Daniel J.
Title Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues [Abstract]
Year 2017
Journal/Proceedings Scientific Reports
Reftype Freeman2017
DOI/URL DOI
Abstract
Alginate is a commonly used bioink in 3D bioprinting. Matrix stiffness is a key determinant of mesenchymal stem cell (MSC) differentiation, suggesting that modulation of alginate bioink mechanical properties represents a promising strategy to spatially regulate MSC fate within bioprinted tissues. In this study, we define a printability window for alginate of differing molecular weight (MW) by systematically varying the ratio of alginate to ionic crosslinker within the bioink. We demonstrate that the MW of such alginate bioinks, as well as the choice of ionic crosslinker, can be tuned to control the mechanical properties (Young’s Modulus, Degradation Rate) of 3D printed constructs. These same factors are also shown to influence growth factor release from the bioinks. We next explored if spatially modulating the stiffness of 3D bioprinted hydrogels could be used to direct MSC fate inside printed tissues. Using the same alginate and crosslinker, but varying the crosslinking ratio, it is possible to bioprint constructs with spatially varying mechanical microenvironments. Moreover, these spatially varying microenvironments were found to have a significant effect on the fate of MSCs within the alginate bioinks, with stiffer regions of the bioprinted construct preferentially supporting osteogenesis over adipogenesis.
AUTHOR Raphael, Bella and Khalil, Tony and Workman, Victoria L. and Smith, Andrew and Brown, Cameron P. and Streulli, Charles and Saiani, Alberto and Domingos, Marco
Title 3D cell bioprinting of self-assembling peptide-based hydrogels [Abstract]
Year 2016
Journal/Proceedings Materials Letters
Reftype
DOI/URL URL DOI
Abstract
Abstract Bioprinting of 3D cell-laden constructs with well-defined architectures and controlled spatial distribution of cells is gaining importance in the field of Tissue Engineering. New 3D tissue models are being developed to study the complex cellular interactions that take place during both tissue development and in the regeneration of damaged and/or diseased tissues. Despite advances in 3D printing technologies, suitable hydrogels or 'bioinks' with enhanced printability and cell viability are lacking. Here we report a study on the 3D bioprinting of a novel group of self-assembling peptide-based hydrogels. Our results demonstrate the ability of the system to print well-defined 3D cell laden constructs with variable stiffness and improved structural integrity, whilst providing a cell-friendly extracellular matrix “like” microenvironment. Biological assays reveal that mammary epithelial cells remain viable after 7 days of in vitro culture, independent of the hydrogel stiffness.
AUTHOR Minas, Clara and Carnelli, Davide and Tervoort, Elena and Studart, André R.
Title 3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics [Abstract]
Year 2016
Journal/Proceedings Advanced Materials
Reftype
DOI/URL DOI
Abstract
Bulk hierarchical porous ceramics with unprecedented strength-to-weight ratio and tunable pore sizes across three different length scales are printed by direct ink writing. Such an extrusion-based process relies on the formulation of inks in the form of particle-stabilized emulsions and foams that are sufficiently stable to resist coalescence during printing.
AUTHOR Sommer, Marianne R. and Schaffner, Manuel and Carnelli, Davide and Studart, André R.
Title 3D Printing of Hierarchical Silk Fibroin Structures [Abstract]
Year 2016
Journal/Proceedings ACS Applied Materials and Interfaces
Reftype
DOI/URL DOI
Abstract
Like many other natural materials, silk is hierarchically structured from the amino acid level up to the cocoon or spider web macroscopic structures. Despite being used industrially in a number of applications, hierarchically structured silk fibroin objects with a similar degree of architectural control as in natural structures have not been produced yet due to limitations in fabrication processes. In a combined top-down and bottom-up approach, we exploit the freedom in macroscopic design offered by 3D printing and the template-guided assembly of ink building blocks at the meso- and nanolevel to fabricate hierarchical silk porous materials with unprecedented structural control. Pores with tunable sizes in the range 40–350 μm are generated by adding sacrificial organic microparticles as templates to a silk fibroin-based ink. Commercially available wax particles or monodisperse polycaprolactone made by microfluidics can be used as microparticle templates. Since closed pores are generated after template removal, an ultrasonication treatment can optionally be used to achieve open porosity. Such pore templating particles can be further modified with nanoparticles to create a hierarchical template that results in porous structures with a defined nanotopography on the pore walls. The hierarchically porous silk structures obtained with this processing technique can potentially be utilized in various application fields from structural materials to thermal insulation to tissue engineering scaffolds.
AUTHOR Suntornnond, Ratima and Tan, Edgar Yong Sheng and An, Jia and Chua, Chee Kai
Title A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of New Bioinks [Abstract]
Year 2016
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
Pneumatic extrusion-based bioprinting is a recent and interesting technology that is very useful for biomedical applications. However, many process parameters in the bioprinter need to be fully understood in order to print at an adequate resolution. In this paper, a simple yet accurate mathematical model to predict the printed width of a continuous hydrogel line is proposed, in which the resolution is expressed as a function of nozzle size, pressure, and printing speed. A thermo-responsive hydrogel, pluronic F127, is used to validate the model predictions. This model could provide a platform for future correlation studies on pneumatic extrusion-based bioprinting as well as for developing new bioink formulations.
AUTHOR Kesti, Matti and Fisch, Philipp and Pensalfini, Marco and Mazza, Edoardo and Zenobi-Wong, Marcy
Title Guidelines for standardization of bioprinting: a systematic study of process parameters and their effect on bioprinted structures [Abstract]
Year 2016
Journal/Proceedings BioNanoMaterials
Reftype
DOI/URL DOI
Abstract
Biofabrication techniques including three-dimensional bioprinting could be used one day to fabricate living, patient-specific tissues and organs for use in regenerative medicine. Compared to traditional casting and molding methods, bioprinted structures can be much more complex, containing for example multiple materials and cell types in controlled spatial arrangement, engineered porosity, reinforcement structures and gradients in mechanical properties. With this complexity and increased function, however, comes the necessity to develop guidelines to standardize the bioprinting process, so printed grafts can safely enter the clinics. The bioink material must firstly fulfil requirements for biocompatibility and flow. Secondly, it is important to understand how process parameters affect the final mechanical properties of the printed graft. Using a gellan-alginate physically crosslinked bioink as an example, we show shear thinning and shear recovery properties which allow good printing resolution. Printed tensile specimens were used to systematically assess effect of line spacing, printing direction and crosslinking conditions. This standardized testing allowed direct comparison between this bioink and three commercially-available products. Bioprinting is a promising, yet complex fabrication method whose outcome is sensitive to a range of process parameters. This study provides the foundation for highly needed best practice guidelines for reproducible and safe bioprinted grafts.
AUTHOR Geven, Mike A. and Sprecher, Christoph and Guillaume, Olivier and Eglin, David and Grijpma, Dirk W.
Title Micro-porous composite scaffolds of photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite prepared by low-temperature extrusion-based additive manufacturing [Abstract]
Year 2016
Journal/Proceedings Polymers for Advanced Technologies
Reftype
DOI/URL DOI
Abstract
Complex bony defects such as those of the orbital floor are challenging to repair. Additive manufacturing techniques open up possibilities for the fabrication of implants with a designed macro-porosity for the reconstruction of such defects. Apart from a designed macro-porosity for tissue ingrowth, a micro-porosity in the implant struts will be beneficial for nutrient diffusion, protein adsorption and drug loading and release. In this work, we report on a low-temperature extrusion-based additive manufacturing method for the preparation of composite photo-crosslinked structures of poly(trimethylene carbonate) with bone-forming nano-hydroxyapatite and noricaritin (derived from bone growth stimulating icariin). In this method, we extrude a dispersion of nano-hydroxyapatite and noricaritin particles in a solution of photo-crosslinkable poly(trimethylene carbonate) in ethylene carbonate into defined three-dimensional structures. The ethylene carbonate is subsequently crystallized and extracted after photo-crosslinking. We show that this results in designed macro-porous structures with micro-pores in the struts. The dispersion used to fabricate these structures shows favorable properties for extrusion-based processing, such as a sharp crystallization response and shear thinning. The formed photo-crosslinked materials have a micro-porosity of up to 48%, and the E modulus, ultimate tensile strength and toughness are in excess of 24 MPa, 2.0 N/mm2 and 113 N/mm2 respectively. A sustained release of noricaritin from these materials was also achieved. The results show that the technique described here is promising for the fabrication of micro-porous photo-crosslinked composite structures of poly(trimethylene carbonate) with nano-hydroxyapatite and that these may be applied in the reconstruction of orbital floor defects. Copyright © 2016 John Wiley & Sons, Ltd.
AUTHOR Ng, Wei Long and Yeong, Wai Yee and Naing, May Win
Title Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering [Abstract]
Year 2016
Journal/Proceedings International Journal of Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Bioprinting is a promising automated platform that enables the simultaneous deposition of multiple types of cells and biomaterials to fabricate complex three-dimensional (3D) tissue constructs. Most of the previous bioprinting works focused on collagen-based biomaterial, which has poor printability and long crosslinking time. This posed a immerse challenge to create a 3D construct with pre-determined shape and configuration. There is a need for a functional material with good printability in order to fabricate a 3D skin construct. Recently, the use of chitosan for wound healing applications has attracted huge attention due to its attractive traits such as its antimicrobial properties and ability to trigger hemostasis. In this paper, we report the modification of chitosan-based biomaterials for functional 3D bioprinting. Modification to the chitosan was carried out via the oppositely charged functional groups from chitosan and gelatin at a specific pH of ~pH 6.5 to form polyelectrolyte complexes. The polyelectrolyte hydrogels were evaluated in terms of chemical interactions within polymer blend, rheological properties (viscosities, storage and loss modulus), printing resolution at varying pressures and feed rates and biocompatibility. The chitosan-based hydrogels formulated in this work exhibited good printability at room temperature, high shape fidelity of the printed 3D constructs and good biocompatibility with fibroblast skin cells.
AUTHOR Håkansson, Karl M. O. and Henriksson, Ida C. and de la Peña Vázquez, Cristina and Kuzmenko, Volodymyr and Markstedt, Kajsa and Enoksson, Peter and Gatenholm, Paul
Title Solidification of 3D Printed Nanofibril Hydrogels into Functional 3D Cellulose Structures [Abstract]
Year 2016
Journal/Proceedings Advanced Materials Technologies
Reftype
DOI/URL DOI
Abstract
Cellulose nanofibrils isolated from trees have the potential to be used as raw material for future sustainable products within the areas of packaging, textiles, biomedical devices, and furniture. However, one unsolved problem has been to convert the nanofibril-hydrogel into a dry 3D structure. In this study, 3D printing is used to convert a cellulose nanofibril hydrogel into 3D structures with controlled architectures. Such structures collapse upon drying, but by using different drying processes the collapse can be controlled and the 3D structure can be preserved upon solidification. In addition, a conductive cellulose nanofibril ink is fabricated by adding carbon nanotubes. These findings enable the use of wood derived materials in 3D printing for fabrication of sustainable commodities such as packaging, textiles, biomedical devices, and furniture with conductive parts. Furthermore, with the introduction of biopolymers into 3D printing, the 3D printing technology itself can finally be regarded as sustainable.
AUTHOR Stichler, Simone and Jungst, Tomasz and Schamel, Martha and Zilkowski, Ilona and Kuhlmann, Matthias and Bock, Thomas and Blunk, Torsten and Tessmar, Jorg and Groll, Jurgen
Title Thiol-ene Clickable Poly(glycidol) Hydrogels for Biofabrication. [Abstract]
Year 2016
Journal/Proceedings Annals of biomedical engineering
Reftype
DOI/URL DOI
Abstract
In this study we introduce linear poly(glycidol) (PG), a structural analog of poly(ethylene glycol) bearing side chains at each repeating unit, as polymer basis for bioink development. We prepare allyl- and thiol-functional linear PG that can rapidly be polymerized to a three-dimensionally cross-linked hydrogel network via UV mediated thiol-ene click reaction. Influence of polymer concentration and UV irradiation on mechanical properties and swelling behavior was examined. Thiol-functional PG was synthesized in two structural variations, one containing ester groups that are susceptible to hydrolytic cleavage, and the other one ester-free and stable against hydrolysis. This allowed the preparation of degradable and non-degradable hydrogels. Cytocompatibility of the hydrogel was demonstrated by encapsulation of human bone marrow-derived mesenchymal stem cells (hBMSCs). Rheological properties of the hydrogels were adjusted for dispense plotting by addition of high molecular weight hyaluronic acid. The optimized formulation enabled highly reproducible plotting of constructs composed of 20 layers with an overall height of 3.90 mm.
AUTHOR Schacht, Kristin and J{"{u}}ngst, Tomasz and Schweinlin, Matthias and Ewald, Andrea and Groll, J{"{u}}rgen and Scheibel, Thomas
Title Biofabrication of Cell-Loaded 3D Spider Silk Constructs [Abstract]
Year 2015
Journal/Proceedings Angewandte Chemie International Edition
Reftype
DOI/URL DOI
Abstract
Biofabrication is an emerging and rapidly expanding field of research in which additive manufacturing techniques in combination with cell printing are exploited to generate hierarchical tissue-like structures. Materials that combine printability with cytocompatibility, so called bioinks, are currently the biggest bottleneck. Since recombinant spider silk proteins are non-immunogenic, cytocompatible, and exhibit physical crosslinking, their potential as a new bioink system was evaluated. Cell-loaded spider silk constructs can be printed by robotic dispensing without the need for crosslinking additives or thickeners for mechanical stabilization. Cells are able to adhere and proliferate with good viability over at least one week in such spider silk scaffolds. Introduction of a cell-binding motif to the spider silk protein further enables fine-tuned control over cell–material interactions. Spider silk hydrogels are thus a highly attractive novel bioink for biofabrication.
AUTHOR Moussa, Mira and Carrel, Jean-Pierre and Scherrer, Susanne and Cattani-Lorente, Maria and Wiskott, Anselm and Durual, Stéphane
Title Medium-Term Function of a 3D Printed TCP/HA Structure as a New Osteoconductive Scaffold for Vertical Bone Augmentation: A Simulation by BMP-2 Activation [Abstract]
Year 2015
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
Introduction: A 3D-printed construct made of orthogonally layered strands of tricalcium phosphate (TCP) and hydroxyapatite has recently become available. The material provides excellent osteoconductivity. We simulated a medium-term experiment in a sheep calvarial model by priming the blocks with BMP-2. Vertical bone growth/maturation and material resorption were evaluated. Materials and methods: Titanium hemispherical caps were filled with either bare- or BMP-2 primed constructs and placed onto the calvaria of adult sheep (n = 8). Histomorphometry was performed after 8 and 16 weeks. Results: After 8 weeks, relative to bare constructs, BMP-2 stimulation led to a two-fold increase in bone volume (Bare: 22% ± 2.1%; BMP-2 primed: 50% ± 3%) and a 3-fold decrease in substitute volume (Bare: 47% ± 5%; BMP-2 primed: 18% ± 2%). These rates were still observed at 16 weeks. The new bone grew and matured to a haversian-like structure while the substitute material resorbed via cell- and chemical-mediation. Conclusion: By priming the 3D construct with BMP-2, bone metabolism was physiologically accelerated, that is, enhancing vertical bone growth and maturation as well as material bioresorption. The scaffolding function of the block was maintained, leaving time for the bone to grow and mature to a haversian-like structure. In parallel, the material resorbed via cell-mediated and chemical processes. These promising results must be confirmed in clinical tests.
AUTHOR Kokkinis, Dimitri and Schaffner, Manuel and Studart, Andr{'{e}} R.
Title Multimaterial magnetically assisted 3D printing of composite materials
Year 2015
Journal/Proceedings Nature Communications
Reftype
DOI/URL DOI
AUTHOR M{"{u}}ller, Michael and Becher, Jana and Schnabelrauch, Matthias and Zenobi-Wong, Marcy
Title Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting [Abstract]
Year 2015
Journal/Proceedings Biofabrication
Reftype
DOI/URL URL
Abstract
Bioprinting is an emerging technology in the field of tissue engineering as it allows the precise positioning of biologically relevant materials in 3D, which more resembles the native tissue in our body than current homogenous, bulk approaches. There is however a lack of materials to be used with this technology and materials such as the block copolymer Pluronic have good printing properties but do not allow long-term cell culture. Here we present an approach called nanostructuring to increase the biocompatibility of Pluronic gels at printable concentrations. By mixing acrylated with unmodified Pluronic F127 it was possible to maintain the excellent printing properties of Pluronic and to create stable gels via UV crosslinking. By subsequent elution of the unmodified Pluronic from the crosslinked network we were able to increase the cell viability of encapsulated chondrocytes at day 14 from 62% for a pure acrylated Pluronic hydrogel to 86% for a nanostructured hydrogel. The mixed Pluronic gels also showed good printability when cells where included in the bioink. The nanostructured gels were, with a compressive modulus of 1.42 kPa, mechanically weak, but we were able to increase the mechanical properties by the addition of methacrylated hyaluronic acid. Our nanostructuring approach enables Pluronic hydrogels to have the desired set of properties in all stages of the bioprinting process.
AUTHOR Carrel, Jean-Pierre and Wiskott, Anselm and Moussa, Mira and Rieder, Philippe and Scherrer, Susanne and Durual, St{'{e}}phane
Title A 3D printed TCP/HA structure as a new osteoconductive scaffold for vertical bone augmentation [Abstract]
Year 2014
Journal/Proceedings Clinical Oral Implants Research
Reftype
DOI/URL DOI
Abstract
Introduction OsteoFlux® (OF) is a 3D printed porous block of layered strands of tricalcium phosphate (TCP) and hydroxyapatite. Its porosity and interconnectivity are defined, and it can be readily shaped to conform the bone bed's morphology. We investigated the performance of OF as a scaffold to promote the vertical growth of cortical bone in a sheep calvarial model. Materials and methods Six titanium hemispheres were filled with OF, Bio-Oss (particulate bovine bone, BO), or Ceros (particulate TCP, CO) and placed onto the calvaria of 12 adult sheep (6 hemispheres/sheep). Histomorphometric analyses were performed after 8 and 16 weeks. Results OF led to substantial vertical bone growth by 8 weeks and outperformed BO and CO by a factor 2 yielding OF 22% ± 2.1; BO 11.5% ± 1.9; and CO 12.9% ± 2.1 total new bone. 3 mm away from the bony bed, OF led to a fourfold increase in new bone relative to BO and CO (n = 8, P < 0.002). At 16 weeks, OF, BO, and CO behaved similarly and showed marked new bone synthesis. A moderate degradation was observed at 16 weeks for all bone substitutes. Conclusion When compared to existing bone substitutes, OF enhances vertical bone growth during the first 2 months after implantation in a sheep calvarial model. The controlled porous structure translated in a high osteoconductivity and resulted in a bone mass 3 mm above the bony bed that was four times greater than that obtained with standard substitutes. These results are promising but must be confirmed in clinical tests.
AUTHOR M{"{u}}ller, Michael and Becher, Jana and Schnabelrauch, Matthias and Zenobi-Wong, Marcy
Title Printing thermoresponsive reverse molds for the creation of patterned two-component hydrogels for 3D cell culture. [Abstract]
Year 2013
Journal/Proceedings Journal of visualized experiments : JoVE
Reftype
DOI/URL URL
Abstract
Bioprinting is an emerging technology that has its origins in the rapid prototyping industry. The different printing processes can be divided into contact bioprinting(1-4) (extrusion, dip pen and soft lithography), contactless bioprinting(5-7) (laser forward transfer, ink-jet deposition) and laser based techniques such as two photon photopolymerization(8). It can be used for many applications such as tissue engineering(9-13), biosensor microfabrication(14-16) and as a tool to answer basic biological questions such as influences of co-culturing of different cell types(17). Unlike common photolithographic or soft-lithographic methods, extrusion bioprinting has the advantage that it does not require a separate mask or stamp. Using CAD software, the design of the structure can quickly be changed and adjusted according to the requirements of the operator. This makes bioprinting more flexible than lithography-based approaches. Here we demonstrate the printing of a sacrificial mold to create a multi-material 3D structure using an array of pillars within a hydrogel as an example. These pillars could represent hollow structures for a vascular network or the tubes within a nerve guide conduit. The material chosen for the sacrificial mold was poloxamer 407, a thermoresponsive polymer with excellent printing properties which is liquid at 4 degrees C and a solid above its gelation temperature ~20 degrees C for 24.5% w/v solutions(18). This property allows the poloxamer-based sacrificial mold to be eluted on demand and has advantages over the slow dissolution of a solid material especially for narrow geometries. Poloxamer was printed on microscope glass slides to create the sacrificial mold. Agarose was pipetted into the mold and cooled until gelation. After elution of the poloxamer in ice cold water, the voids in the agarose mold were filled with alginate methacrylate spiked with FITC labeled fibrinogen. The filled voids were then cross-linked with UV and the construct was imaged with an epi-fluorescence microscope.